MB511
 1GHz HIGH SPEED PRESCALER

HIGH SPEED PRESCALER

The Fujitsu MB511 is a 1.0 GHz high speed prescaler that forms a Phase Locked Loop (PLL) circuit when combined with a Fujitsu frequency synthesizer. Based on Fujitsu's advanced Bipolar processing, the MB511 maintains a consistent low power consumption of $23 \mathrm{~mA} @ 5 \mathrm{~V}$. In addition, it can detect low amplitude input signals with a sensitivity of -20 dBm min.

The MB511 will divide the input frequency a modulus of 1,2 , or 8 , and is well suited for applications in CATV and electronically tuned TV.

FEATURES

- Wide operating frequency range:
$\mathrm{f}_{\text {in }}=50$ to $1000 \mathrm{MHz}\left(\mathrm{v}_{\text {in }}=-20 \mathrm{dBm}\right)$
- Maximum operating frequency depends upon a divide ratio:

1/1: $\quad 250 \mathrm{MHz}$ max. (Buffer through)
1/2: 500 MHz max.
1/8: 1000 MHz max.

- Low supply current:

23mA @ 5 V

- High input sensitivity: -20 dBm min.
- Stable Output Amplitude: $800 \mathrm{mVp}-\mathrm{p}\left(\mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}\right)$
- Wide temperature range: $\quad \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$
- Plastic 8-pin Dual-In-Line package (Suffix: -P)

Plastic 8-pin Flat package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Input Voltage	V_{IN}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	I_{O}	10	mA
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Note: Permanentdevice damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN ASSIGNMENT

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Figure 1. MB511 Block Diagram

FUNCTION TABLE

S1	S2	Divide Ratio	Operating Frequency
L	L	Not used	-
L	H	1	250 MHz
H	L	2	500 MHz
H	H	8	1000 MHz

$\mathrm{H}=\mathrm{V}_{\mathrm{CC}}$
L = OPEN

PIN DESCRIPTIONS

Pin Number	Symbol	I/O	Descriptions
1	IN	I	Input. The connection with VCO should be an AC connection.
2	VCC $_{\text {CC }}$	-	Power supply voltage input.
3	NC	-	No connection.
4	OUT	O	Output. Termination resistor is necessary due to emitter follower output.
5	GND	-	Ground.
6	S2	I	Divide ratio control input.
7	S1	I	Divide ratio control input.
8	IN	I	Complementary Input.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Note
		Min.	Typ.	Max.		
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V	
Operating Temperature	T_{A}	-40		+85	${ }^{\circ} \mathrm{C}$	
Load Capacitance	C_{L}			5	pF	Termination resistor 500Ω

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Value			Unit	Note	
		Min.	Typ.	Max.				
Power Supply Current			$I_{\text {cc }}$	15	23	32	mA	Except termination output current.
Output Amplitude		V_{O}	0.4	0.8	1.2	V_{p-p}	500Ω termination, $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ max.	
Input Frequency	1/1	f_{1}	50		250	MHz	Min. value is measured with coupling capacitor of 1000pF.	
	1/2	f_{2}	50		500	MHz		
	1/8	f_{3}	50		1000	MHz		
Input Signal Amplitude		P_{IN}	-20		+10	dBm	50Ω	
High Level Input Voltage	S1, S2	V_{IH}	$\mathrm{V}_{\mathrm{CC}}-0.7$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.5$	V		
Low Level Input Voltage		$\mathrm{V}_{\text {IL }}$		OPEN		V		
Low Level Input Current	S1, S2	I_{IH}	40		160	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	

Figure 2. Test Circuit

TYPICAL CHARACTERISTICS CURVES

Figure 3. Input Sensitivity Curve (1/8 Divide Ratio) Power Supply Voltage Dependency

Figure 4. Input Sensitivity Curve (1/2 Divide Ratio) Power Supply Voltage Dependency

Figure 5. Input Sensitivity Curve (1/1 Divide Ratio) Power Supply Voltage Dependency

Figure 6. Power Supply Current vs. Power Supply Voltage

TYPICAL CHARACTERISTICS CURVES (Continued)

Figure 7. Input Sensitivity Curve (1/8 Divide Ratio) Temperature Dependency

Figure 9. Input Sensitivity Curve (1/1 Divide Ratio) Temperature Dependency

Figure 6. Input Sensitivity Curve (1/2 Divide Ratio) Temperature Dependency

Figure 10. Power Supply Current vs. Temperature

PACKAGE DIMENSIONS

MB511

PACKAGE DIMENSIONS (Continued)

8-LEAD PLASTIC FLAT PACKAGE

 (CASE No: FPT-08P-M01)

Dlmensions in inches (millimeters)

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
International Marketing Div.
Furukawa Sogo Bldg., 6-1, Marunouchi 2-chome
Chiyoda-ku, Tokyo 100, Japan
Tel: (03) 3216-3211
Telex: 781-2224361
FAX: (03) 3215-0662

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: 408-922-9000
FAX: 408-432-9044

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10,
6072 Dreieich-Buchschlag,
Germany
Tel: (06103) 690-0
Telex: 411963
FAX: (06103) 690-122

Asia

FUJITSU MICROELECTRONICS ASIA PTE LIMITED
51 Bras Basah Road,
Plaza By The Park,
\#06-04 to \#06-07
Singapore 0719
Tel: 336-1600
Telex: 55573
FAX: 336-1609

