APPLICATIONS

\checkmark Ethernet-10 Base T
\checkmark Cellular Phones
\checkmark Handheld Electronics
\checkmark FireWire \& USB Interfaces
$\boldsymbol{\checkmark}$ Multiple I/O Ports or Power Supplies

IEC COMPATIBILITY (ENG1DOD-4)

\checkmark 61000-4-2 (ESD): Air - 15kV, Contact - 8kV
\checkmark 61000-4-4 (EFT): 40A - 5/50ns
\checkmark 61000-4-5 (Surge): 12A, 8/20 μ s Level 1(Line-Gnd) \& Level 2(Line-Line)

FEATURES

, 200 Watts Peak Pulse Power per Line ($\mathrm{tp}=8 / 20 \mu \mathrm{~s}$)
\checkmark Monolithic Design
\checkmark Available in Multiple Voltage Types Ranging From 5V to 24 V
\checkmark Protect 4 Bidirectional Lines \& 5 Unidirectional Lines
\checkmark ESD Protection >25 kilovolts
\checkmark Low Clamping Voltage
\checkmark Unidirectional \& Bidirectional Configurations
\checkmark Low Leakage Current
\checkmark RoHS Compliant in Lead-Free Versions

MECHANICAL CHARACTERISTICS

\checkmark Molded JEDEC SOT-23-6 Package
\checkmark Weight 16 milligrams (Approximate)
\checkmark Available in Tin-Lead or Lead-Free Pure-Tin Plating(Annealed)
\checkmark Solder Reflow Temperature:
Tin-Lead - Sn/Pb, 85/15: 240-245 ${ }^{\circ} \mathrm{C}$
Pure-Tin - Sn, 100: $260-270^{\circ} \mathrm{C}$
Flammability rating UL 94V-0
$\checkmark 8 \mathrm{~mm}$ Tape and Reel Per EIA Standard 481
\checkmark Marking: Marking Code \& Pin One Defined By DOT on Package

PIN CONFIGURATIONS

UNIDIRECTIONAL

BIDIRECTIONAL

DEVICE CHARACTERISTICS

MAXIMUM RATINGS @ $25^{\circ} \mathrm{C}$ Unless Otherwise Specified			
PARAMETER	SYMBOL	VALUE	UNITS
Peak Pulse Power $\left(\mathrm{t}_{\mathrm{p}}=8 / 20 \mu \mathrm{~s}\right)-$ See Figure 1	P_{PP}	200	Watts
OperatingTemperature	T_{J}	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS PER LINE @ $25^{\circ} \mathrm{C}$ Unless Otherwise Specified							
PART NUMBER (See Notes 1-3)	DEVICE MARKING	RATED STAND-OFF VOLTAGE	MINIMUM BREAKDOWN VOLTAGE	MAXIMUM CLAMPING VOLTAGE (See Fig. 2)	MAXIMUM CLAMPING VOLTAGE (See Fig. 2)	MAXIMUM LEAKAGE CURRENT	TYPICAL CAPACITANCE
		$\begin{aligned} & \mathrm{V}_{\mathrm{wn}} \\ & \text { voLTS } \end{aligned}$	@ 1mA $\mathrm{V}_{\text {(BRI }}$ VOLTS	$\begin{gathered} @ \mathrm{I}_{\mathrm{p}}=1 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{c}} \\ \text { VOLTS } \end{gathered}$	$\begin{aligned} & @ 8 / 20 \mu \mathrm{~s} \\ & \mathrm{~V}_{\mathrm{c}} @ \mathrm{l}_{\mathrm{pp}} \\ & \hline \end{aligned}$		$\begin{gathered} @ 0 \mathrm{~V}, 1 \mathrm{MHz} \\ \mathrm{C}_{\mathrm{j}} \\ \mathrm{pF} \\ \hline \end{gathered}$
CP05	QRH	5.0	6.0	9.8	11.8V @ 17.0A	20	70
CP05C	QRL	5.0	6.0	9.8	11.8V @ 17.0A	20	70
CP12	QRI	12.0	13.3	19	28.3V @ 7.0A	1	50
CP12C	QRM	12.0	13.3	19	28.3V @ 7.0A	1	50
CP15	QRJ	15.0	16.7	24	45.0V @ 5.0A	1	30
CP15C	QRN	15.0	16.7	24	45.0V @ 5.0A	1	30
CP24	QRK	24.0	26.7	43	65.0V @ 3.0A	1	25
CP24C	QRO	24.0	26.7	43	65.0 V @ 3.0A	1	25

Note 1: Part numbers with an additional "C" suffix are bidirectional devices, i.e., CP05C.
Note 2: Unidirectional Only: Test between pin 1, 3, 4 and 6 to pin 2 or 5.
Note 3: Bidirectional Only: Test between pin 5 to 1 or 3 or 4 or 6 . Electrical characteristics apply in both directions.

FIGURE 1
PEAK PULSE POWER VS PULSE TIME

FIGURE 2

GRAPHS

FIGURE 4 OVERSHOOT \& CLAMPING VOLTAGE FOR CP05

ESD Test Pulse: 25 kilovolt, $1 / 30 \mathrm{~ns}$ (waveshape)

FIGURE 5

FIGURE 6
TYPICAL REVERSE VOLTAGE VS CAPACITANCE FOR CP05C

CPO5
 thru
 CP24C

APPLICATION NDTE

The CP Series are TVS arrays designed to protect I/O or data lines from the damaging effects of ESD or EFT. This product series provides both unidirectional and bidirectional protection, with a surge capability of 200 Watts $P_{p P}$ per line for an $8 / 20 \mu \mathrm{~s}$ waveform and ESD protection >25 kilovolts.

UNIDIRECTIONAL COMMON-MODE CONFIGURATION (Figure 1)

The CP Series provides up to four (4) lines of protection in a common-mode configuration as depicted in Figure 1.

Circuit connectivity is as follows:
\checkmark Line 1 is connected to Pin 1
\checkmark Line 2 is connected to Pin 3 .
$\checkmark \quad$ Line 3 is connected to Pin 4.
\checkmark Line 4 is connected to Pin 6
$\checkmark \quad$ Pin 5 is connected to ground.
$\checkmark \quad$ Pin 2 is not connected.

BIDIRECTIONAL COMMON-MODE CONFIGURATION (Figure 2)

The CPxxC Series provides up to four (4) lines of protection in a common-mode configuration as depicted in Figure 2.

Circuit connectivity is as follows:
v Line 1 is connected to Pin 1.
$\checkmark \quad$ Line 2 is connected to Pin 3.
\checkmark Line 3 is connected to Pin 4
\checkmark Line 4 is connected to Pin 5 .
\checkmark Pin 6 is connected to ground.
\checkmark Pin 2 is not connected.
Figure 1 - Unidirectional Configuration Common-Mode I/O Port Protection

CIRCUIT BOARD LAYOUT RECOMMENDATIONS

Circuit board layout is critical for Electromagnetic Compatibility (EMC) protection. The following guidelines are recommended:
\checkmark The protection device should be placed near the input terminals or connectors, the device will divert the transient current immediately before it can be coupled into the nearby traces.
\checkmark The path length between the TVS device and the protected line should be minimized.
\checkmark All conductive loops including power and ground loops should be minimized.
\checkmark The transient current return path to ground should be kept as short as possible to reduce parasitic inductance.
\checkmark Ground planes should be used whenever possible. For multilayer PCBs, use ground vias.

Figure 2 - Bidirectional Configuration Common-Mode I/O Port Protection

COPYRIGHT © ProTek Devices 2005

COPYRIGHT © ProTek Devices 2005 , SPECIFICATIONS: ProTek reserves the right to change the electrical and or mechanical
characteristics described herein without notice (except JEDEC).
DESIGN CHANGES: ProTek reserves the right to discontinue product lines without notice, and that
the final judgement concerning selection and specifications is the buyer's and that in furnishing
engineering and technical assistance, ProTek assumes no responsibility with respect to the
selection or specifications of such products.

ProTek Devices

2929 South Fair Lane, Tempe, AZ 85282
Tel: 602-431-8101 Fax: 602-431-2288
E-Mail: sales@protekdevices.com Web Site: www.protekdevices.com

