Current Transducer LF 205-P For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). #### **Electrical data** Primary nominal r.m.s. current 200 Α I_{PN} Primary current, measuring range 0 .. ± 420 Α Ř, $T_{\Lambda} = 70^{\circ}C$ Measuring resistance @ $T_A = 85^{\circ}C$ @ ± 200 A_{max} 71 with ± 12 V 69 Ω @ ± 420 A_{max} 0 14 0 12 Ω @ $\pm 200 A_{max}$ 0 100 23 98 Ω with ± 15 V @ ± 420 A_{max} 0 28 23 26 Ω 100 Secondary nominal r.m.s. current mΑ Conversion ratio 1:2000 Supply voltage (± 5 %) ± 12 .. 15 V Current consumption @ ± 15V $17 + I_{s}$ mΑ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 3.5 k۷ Accuracy - Dynamic performance data | Accuracy - Dynamic performance data | | | | | | | |--|---|-------------------------------|--------------------------------|-------------------------|--|--| | $egin{array}{c} \mathbf{x}_{\scriptscriptstyle G} \ \mathbf{e}_{\scriptscriptstyle L} \end{array}$ | Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$
Linearity | ± 0.5 < 0.1 | | %
% | | | | I _O I _{OM} I _{OT} | Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Residual current 1) @ $\mathbf{I}_{\rm p}$ = 0, after an overload of 3 x $\mathbf{I}_{\rm PN}$ Thermal drift of $\mathbf{I}_{\rm O}$ - 40°C + 85°C | Typ
± 0.12 | Max
± 0.2
± 0.1
± 0.4 | mA
mA | | | | t _{ra}
t _r
di/dt
f | Reaction time @ 10 % of I _{P max} Response time ²⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 3 dB) | < 500
< 1
> 100
DC 1 | 00 | ns
µs
A/µs
kHz | | | | General data | | | | | | |---------------------------|---|-----------|----|--|--| | \mathbf{T}_{A} | Ambient operating temperature | - 40 + 85 | °C | | | | T _s | Ambient storage temperature | - 40 + 90 | °C | | | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 70°C | 33 | Ω | | | | · · | @ $T_{A} = 85^{\circ}C$ | 35 | Ω | | | | m | Mass | 58 | g | | | | | Standards 3) | EN 50178 | | | | $I_{PN} = 200 A$ #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0. # **Advantages** - Excellent accuracy - · Very good linearity - · Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - · Current overload capability. # **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. Notes: 1) The result of the coercive field of the magnetic circuit - 2) With a di/dt of 100 A/µs - ³⁾ A list of corresponding tests is available. 011120/2 # **Dimensions LF 205-P** (in mm. 1 mm = 0.0394 inch) ### Mechanical characteristics - General tolerance - Fastening & secondary connection Recommanded PCB hole - Primary through-hole - Supplementary fastening Recommended PCB hole Recommended screws LEM code - ± 0.2 mm - 3 pins 0.63x0.56 mm Ø 0.9 mm - Ø 15.5 mm - 2 holes Ø 1.75 mm - 2.4 mm - KA22 x 6 - 47.30.60.006.0 ### Remarks - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.