

# **Current Transducer LF 205-P**

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).





#### **Electrical data** Primary nominal r.m.s. current 200 Α I<sub>PN</sub> Primary current, measuring range 0 .. ± 420 Α Ř, $T_{\Lambda} = 70^{\circ}C$ Measuring resistance @ $T_A = 85^{\circ}C$ @ ± 200 A<sub>max</sub> 71 with ± 12 V 69 Ω @ ± 420 A<sub>max</sub> 0 14 0 12 Ω @ $\pm 200 A_{max}$ 0 100 23 98 Ω with ± 15 V @ ± 420 A<sub>max</sub> 0 28 23 26 Ω 100 Secondary nominal r.m.s. current mΑ Conversion ratio 1:2000 Supply voltage (± 5 %) ± 12 .. 15 V Current consumption @ ± 15V $17 + I_{s}$ mΑ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 3.5 k۷ Accuracy - Dynamic performance data

| Accuracy - Dynamic performance data                                                                |                                                                                                                                                                                                                           |                               |                                |                         |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------|--|--|
| $egin{array}{c} \mathbf{x}_{\scriptscriptstyle G} \ \mathbf{e}_{\scriptscriptstyle L} \end{array}$ | Overall accuracy @ $I_{PN}$ , $T_A = 25^{\circ}C$<br>Linearity                                                                                                                                                            | ± 0.5 < 0.1                   |                                | %<br>%                  |  |  |
| I <sub>O</sub> I <sub>OM</sub> I <sub>OT</sub>                                                     | Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Residual current 1) @ $\mathbf{I}_{\rm p}$ = 0, after an overload of 3 x $\mathbf{I}_{\rm PN}$ Thermal drift of $\mathbf{I}_{\rm O}$ - 40°C + 85°C | Typ<br>± 0.12                 | Max<br>± 0.2<br>± 0.1<br>± 0.4 | mA<br>mA                |  |  |
| t <sub>ra</sub><br>t <sub>r</sub><br>di/dt<br>f                                                    | Reaction time @ 10 % of I <sub>P max</sub> Response time <sup>2)</sup> @ 90 % of I <sub>P max</sub> di/dt accurately followed Frequency bandwidth (- 3 dB)                                                                | < 500<br>< 1<br>> 100<br>DC 1 | 00                             | ns<br>µs<br>A/µs<br>kHz |  |  |

| General data              |                                                   |           |    |  |  |
|---------------------------|---------------------------------------------------|-----------|----|--|--|
| $\mathbf{T}_{A}$          | Ambient operating temperature                     | - 40 + 85 | °C |  |  |
| <b>T</b> <sub>s</sub>     | Ambient storage temperature                       | - 40 + 90 | °C |  |  |
| $\mathbf{R}_{\mathrm{s}}$ | Secondary coil resistance @ T <sub>A</sub> = 70°C | 33        | Ω  |  |  |
| · ·                       | @ $T_{A} = 85^{\circ}C$                           | 35        | Ω  |  |  |
| m                         | Mass                                              | 58        | g  |  |  |
|                           | Standards 3)                                      | EN 50178  |    |  |  |

 $I_{PN} = 200 A$ 



#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

# **Advantages**

- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

# **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) The result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- <sup>3)</sup> A list of corresponding tests is available.

011120/2



# **Dimensions LF 205-P** (in mm. 1 mm = 0.0394 inch)



### Mechanical characteristics

- General tolerance
- Fastening & secondary connection Recommanded PCB hole
- Primary through-hole
- Supplementary fastening Recommended PCB hole Recommended screws LEM code
- ± 0.2 mm
- 3 pins 0.63x0.56 mm Ø 0.9 mm
- Ø 15.5 mm
- 2 holes Ø 1.75 mm
- 2.4 mm
- KA22 x 6
- 47.30.60.006.0

### Remarks

- I<sub>s</sub> is positive when I<sub>p</sub> flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.