

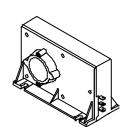
Current Transducer LB 1000-SI/SP2

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		1000 0 ± 1500 $\mathbf{R}_{M \text{min}} \mathbf{R}_{M \text{max}}$		A A
	with ± 15 V	@ ± 1000 A _{max}	0	25	Ω
		@ ± 1500 A _{max}	0	5	Ω
I _{SN}	Secondary nominal r.m.s. current		200		m A
$\mathbf{K}_{_{\mathrm{N}}}$	Conversion ratio		1:500	00	
$V_{\rm c}$	Supply voltage (± 5 %)		± 15		V
I _C	Current consumption		21 + I ,	3	mΑ
$\mathbf{V}_{_{d}}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV

Accuracy - Dynamic performance data


X _G	Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity	;	± 0.3 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$ Thermal drift of \mathbf{I}_{O}	+ 10°C + 50°C	Typ ± 0.1	Max ± 0.4 ± 0.2	m A m A
t _, di/dt f	Response time 1) @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	100	μs A/μs kHz

General data

T_A	Ambient operating temperature	+ 10 + 50	°C
T _s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	40	Ω
m	Mass	700	g
	Standards 2)	EN 50178	

Notes: 1) With a di/dt of 100 A/µs

$I_{PN} = 1000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

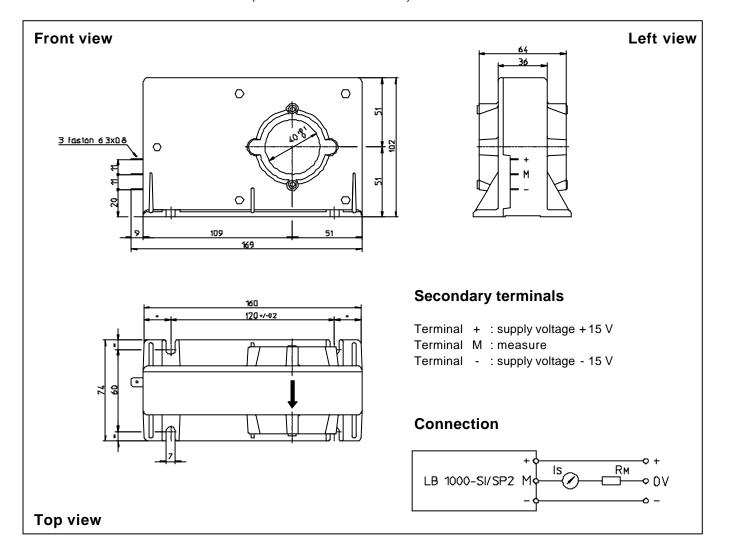
Special features

- Better zero crossing performance
- $T_A = +10^{\circ}C..+50^{\circ}C$
- Shield between primary and secondary.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

000901/0

²⁾ A list of corresponding tests is available

Dimensions LB 1000-SI/SP2 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

Primary through-holeConnection of secondary

± 0.5 mm

 $4 \; slots \varnothing \; 7 \; mm$

Ø 40 mm

Faston 6.3 x 0.8 mm.

Remarks

- I_s is positive when I_s flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.