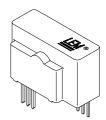


Current Transducer LAH 50-P


For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = \overline{50 \text{ A}}$

Electrical data

I _{PN}	Primary nominal r.m.s. current		50				Α
I _P	Primary current, measuring range 1)		0 110				Α
$\dot{\mathbf{R}}_{\mathrm{M}}$	Measuring resistance @		$T_{A} = 70^{\circ}C \mid T_{A} = 85^{\circ}C$;	
141				\mathbf{R}_{Mmax}			
	with ± 12 V	@ I _{PN} [± A _{DC}]	0	221	0	214	Ω
		@ I _{PN} [A _{RMS}] ²⁾	0	115	0	108	Ω
	with ± 15 V	@ I _{PN} [± A _{DC}]	0	335	0	327	Ω
		@ I _{PN} [A _{RMS}] ²⁾	0	195	0	188	Ω
	C			0.5			A

I _{SN}	Secondary nominal r.m.s. current	25	mΑ
K _N	Conversion ratio	1:2000	
v _c	Supply voltage (± 5 %)	± 12 15	\
I _c	Current consumption	10 (@ ± 15V) + I _s	_s mA
Ň _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	5	k۷
V Ŷ	R.m.s. voltage for partial discharge extinction @ 10 pC	> 2	k٧
Ŷ _w	Impulse withstand voltage 1.2/50 µs	> 12	k√

Accuracy - Dynamic performance data

G	General data						
f	Frequency bandwidth (- 1 dB)	DC 200	kHz				
di/dt	di/dt accurately followed	> 200	A/µs				
t _r	Response time 4) @ 90 % of I _{PN}	< 500	ns				
t _{ra}	Reaction time @ 10 % of I _{PN}	< 200	ns				
	- 25°C + 85°C	$\pm 0.10 \pm 0.40$	mΑ				
I _{OT}	Thermal drift of I _O 0°C + 70°C	± 0.10 ± 0.30	mΑ				
I _{OM}	Residual current @ $I_p = 0$, after an overload of 5 x I_{pN}	± 0.10 ± 0.15	mΑ				
I_{\circ}	Offset current @ T _A = 25°C	± 0.15	mΑ				
		Typ Max					
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity	< 0.15	%				
X	Accuracy ³⁾ @ I_{PN} , $T_A = 25$ °C	± 0.25	%				

T _A	Ambient operating temperature		- 25 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
$\mathbf{R}_{\mathrm{s}}^{r}$	Secondary coil resistance	@ $T_{A} = 70^{\circ}C$	135	Ω
Ü		@ $T_{A} = 85^{\circ}C$	142	Ω
	Insulating material group	A	1	
m	Mass		22	g
	Standards 5)		EN 50178	

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

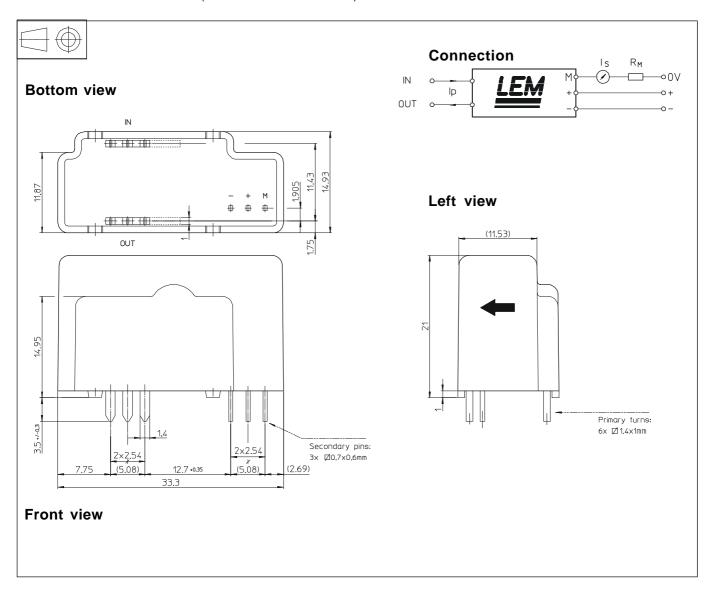
Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes : 1) For 10 s, with $R_{_{\rm M}} \le 71~\Omega$ ($V_{_{\rm C}} = \pm~15~{\rm V}$)


- 2) 50 Hz Sinusoidal
- $^{3)}$ Without \mathbf{I}_{O} & \mathbf{I}_{OM}
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available.

060124/7

page 1/3

Dimensions LAH 50-P (in mm. 1 mm = 0.0394 inch)

Number	Primary	current	Nominal	Turns	Primary	Primary insertion
of primary	nominal	maximum	output current	ratio	resistance	inductance
turns	I _{PN} [A]	I _P [A]	I _{SN} [mA]	K _N	$\mathbf{R}_{P} \; [m\Omega]$	L _P [μΗ]
1	50	110	25	1 : 2000	0.12	0.008

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm
- 6 pins 1.4 x 1 mm
- 2 mm
- 3 pins 0.7 x 0.6 mm 1.2 mm

Remarks

- \bullet $\, {\rm I}_{_{\rm S}}$ is positive when $\, {\rm I}_{_{\rm P}}$ flows from terminals "IN" to terminals "OUT".
- The jumper temperature and PCB should not exceed 100°C.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

060124/7