January 2005 Revised June 2005

FSUSB22 Low Power 2 Port Hi-Speed USB 2.0 (480Mbps) Switch

General Description

FAIRCHILD

SEMICONDUCTOR

FSUSB22 is a low power high bandwidth switch specially designed for applications of the switching of high speed USB 2.0 signals in handset and consumer applications such as cell phone, digital camera, and notebook with hubs or controllers of limited USB I/O. The wide bandwidth (750MHz) of this switch allows signals to pass with minimum edge and phase distortion. Superior channel-to-channel crosstalk results in minimal interference. It is compatible with USB2.0 Hi-Speed standard.

Features

- -40dB OFF Isolation at 250MHz
- -40dB non-adjacent channel crosstalk at 250MHz
- 4.5Ω typical On Resistance (R_{ON})
- -3dB bandwidth: 750MHz
- Low power consumption (1uA max)
- Control input: TTL compatible
- Bidirectional operation ■ USB Hi-Speed and Full Speed signaling capability

Applications

• Cell phone, PDA, digital camera, and notebook

Ordering Code:

Order Number	Package Number	Package Description
FSUSB22BQX	MLP016E	16-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.5mm
FSUSB22QSC	MQA16	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
FSUSB22QSCX_NL (Note 1)	MQA16	Pb-Free 16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
FSUSB22MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
FSUSB22MTCX_NL (Note 1)	MTC16	Pb-Free 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

FSUSB22

Pin Descriptions

Pin Name	Description
OE	Bus Switch Enable
S	Select Input
A	Bus A
B ₁ –B ₂	Bus B

Truth Table

S	OE	Function
х	н	Disconnect
L	L	$A = B_1$
Н	L	$A = B_2$

Pad Assignments for DQFN

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Switch Voltage (V _S)	–0.5V to V _{CC} +0.05V
DC Input Voltage (V _{IN}) (Note 3)	-0.5V to +4.6V
DC Input Diode Current (I _{IK}) V _{IN} < 0V	–50 mA
DC Output (I _{OUT}) Sink Current	128 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature Range (T _{STG})	–65°C to +150 °C
ESD	
Human Body Model	4kV

Recommended Operating Conditions (Note 4)

Power Supply Operating (V _{CC})	3.0V to 3.6V
Input Voltage (V _{IN})	0V to V_{CC}
Output Voltage (V _{OUT})	0V to V_{CC}
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0 ns/V to 5 ns/V
Switch I/O	0 ns/V to DC
Free Air Operating Temperature (T _A)	–40 °C to +85 °C

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 4: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

		$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$					
Symbol	Parameter	(V)	Min	Typ (Note 5)	Max	Units	Conditions
VIK	Clamp Diode Voltage	3.0			-1.2	V	I _{IN} = -18 mA
VIH	HIGH Level Input Voltage	3.0 - 3.6	2.0			V	
V _{IL}	LOW Level Input Voltage	3.0 - 3.6			0.8	V	
II.	Input Leakage Current	3.6			±1.0	μΑ	$0 \le V_{IN} \le 3.6V$
I _{OFF}	OFF-STATE Leakage Current	3.6			±1.0	μΑ	$0 \leq A, B \leq V_{CC}$
R _{ON}	Switch On Resistance (Note 6)	3.0		5.0	7.0	Ω	V _{IN} = 0.8V I _{ON} = 8 mA
		3.0		4.5	6.5	Ω	V _{IN} = 3.0V I _{ON} = 8 mA
ΔR_{ON}	Delta R _{ON}	3.0		0.3		Ω	$V_{IN} = 0.8V, V_{IN} = 0V - 1.5V, I_{ON} = 8 \text{ mA}$
R _{FLAT(ON)}	On Resistance Flatness (Note 7)	3.0		1.0		Ω	I _{OUT} = 8 mA
I _{CC}	Quiescent Supply Current	3.6			1.0	μA	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$

Note 5: Typical values are at $V_{CC}=3.0V$ and $T_{A}=+25\,^{\circ}C$

Note 6: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 7: Flatness is defined as the difference between the maximum and minimum value On Resistance over the specified range of conditions.

FSUSB22

FSUSB22

AC Electrical Characteristics

Symbol	Parameter	V _{CC} (V)	$T_A = -40$ °C to $+85$ °C				Figure		
			Min	Typ (Note 8)	Max	Units	Conditions	Number	
t _{ON}	Turn ON Time S-to-Bus B	3.0 to 3.6		4.5	6.0	ns		Figures 5, 6	
toff	Turn OFF Time S-to-Bus B	3.0 to 3.6		2.5	4.0	ns		Figures 5, 6	
t _{PD}	Propagation Delay	3.0 to 3.6		0.25		ns	C _L = 10 pF	Figure 10	
O _{IRR}	Non-Adjacent OFF-Isolation	3.0 to 3.6		-30.0		dB	$f = 250MHz, R_L = 50\Omega$	Figure 7	
X _{TALK}	Non-Adjacent Channel Crosstalk	3.0 to 3.6		-38.0		dB	$R_L = 50\Omega$, f= 250MHz	Figure 8	
BW	-3dB Bandwidth	3.0 to 3.6		750		MHz	$R_L = 50\Omega$	Figure 9	

Note 8: Typical values are at V_{CC} = 3.3V and T_A = +25°C

USB Related AC Electrical Characteristics (Note 9)

Symbol	Parameter	V _{cc}	V_{CC} $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			Unite	Conditions	Figure		
		(V)	Min	Тур	Max	Onits	conditions	Number		
t _{SK(O)}	Channel-to-Channel Skew	3.0 to 3.6		0.051		ns	C _L = 10 pF	Figures 10, 11		
t _{SK(P)}	Skew of Opposite Transition of the Same Output	3.0 to 3.6		0.020		ns	С _L = 10 рF	Figures 10, 11		
TJ	Total Jitter	3.0 to 3.6		0.210		ns	$R_L = 50\Omega$, $C_L = 10$ pF $t_R = t_F = 750$ ps at 480 Mbps			

Note 9: Typical values are at V_{CC} = 3.3V and T_A = +25°C

Capacitance (Note 10)

Symbol	Parameter	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Unite	Conditions	
Symbol	Falanetei	Тур	Units	Conditiona	
C _{IN}	Control Pin Input Capacitance	2.5	pF	$V_{CC} = 0V$	
C _{ON}	A/B ON Capacitance	12.0	pF	$V_{CC} = 3.3V, \overline{OE} = 0V$	
C _{OFF}	Port B OFF Capacitance	4.5	pF	V_{CC} and $\overline{OE} = 3.3V$	

Note 10: Typical values are at V_{CC} = 3.3V and T_A = +25 $^{\circ}\text{C}$

5

FSUSB22

Tape and Reel Specification

Tape Format for DQ	FN			
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
BQX	Carrier	2500/3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

www.fairchildsemi.com

8

