This product is obsolete.
This information is available for your convenience only.

For more information on Zarlink's obsolete products and replacement product lists, please visit http://products.zarlink.com/obsolete products/

Features

- Dual RF Ports for 900 MHz and 1900 MHz
- AGC Amplifier with 90dB of Variable Gain, Fully Compensated for Temperature
- On-chip Active Filter. Removes the Requirement for External IF SAW Filter
- High Power 900MHz and 1900MHz Output Stages
- Quadrature Modulator
- Small Scale MLF Package

Applications

- Transmit Modulator and Up-converter in TDMA/ AMPS Mobile Phones
- Transmit Up-converter in CDMA/AMPS Mobile Phones

The MGCTO4 circuit is designed for use in dual band, dual mode cellular $900 \mathrm{MHz} / \mathrm{PCS} 1900 \mathrm{MHz}$

DS5424
ISSUE 1.1
March 2001

Ordering Information
 MGCT04/KG/LH1S
 MGCT04/KG/LH1T

mobile phones. It can be used for both TDMA/AMPS or CDMA/AMPS systems. The MGCT04 is compatible with baseband and mixed signal interface circuits from Zarlink Semiconductor and other manufacturers.

System costs have been kept to a minimum by removing the requirement for an additional SAW filter in the transmit IF path. The AGC has been split between RF and IF sections to reduce noise and a low pass filter has been included before the IF variable gain amplifier to remove spurious products produced in the modulator.

Figure 1 - MGCT04 Block Diagram

Figure 2 - Pin Connections - top view

Pin	Signal Name	Function
1	RF DEG2	Connection to external inductor to control gain of power amplifiers
2	RF 900B	Inverse output from 900MHz differential output driver
3	RF 900	Output from 900MHz differential output driver
4	RF GND	Ground to RF circuits
5	CP0	Control pin 0. See tables 2 \& 3 for function
6	VCO GND	Ground for VHF oscillator
7	DIV OUT	Output from VHF oscillator divided by 8
8	CP2	Control pin 2. See tables 2 \& 3 for function
9	VHF OSC IN	Input from external VHF oscillator
10	VHF OSC BIAS	Switched bias voltage for external VHF oscillator
11	VCO VCC	Positive supply to VHF oscillator
12	GND	Ground
13	Q IN	Q +input
14	Q INB	Q -input
15	IIN	I +input
16	I INB	I-input
17	VCC	Positive supply
18	UHF VCC	Positive supply to UHF LO input buffers
19	LO 2GHZ	2GHz local oscillator input
20	GND UHF	Ground to UHF oscillator input buffers
21	LO 1GHZ	1GHz local oscillator input
22	AGC	Control voltage for IF and RF variable gain amplifiers
23	CP1	Control pin 1. See tables 2 \& 3 for function
24	RF VCC	Positive supply to RF circuits
25	RF GND	Ground to RF circuits
26	RF 1900B	Inverse output from 1900MHz differential output driver
27	RF 1900	Output from 1900MHz differential output driver
28	RF DEG1	Connection to external inductor to control gain of power amplifiers

Table 1 - Pin Assignments

Absolute Maximum Ratings

Supply voltage (V_{CC})
Control input voltage
Storage temperature, $\mathrm{T}_{\text {STG }}$

4 V
-0.6 V to $\mathrm{V}_{\mathrm{CC}}+0.6 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Operating temperature
$-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Max Junction Temperature (T_{J})
$150^{\circ} \mathrm{C}$

Electrical Characteristics

Test conditions (unless otherwise stated): Tamb $=-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V . UHF LO level $=-15 \mathrm{dBm}$ (both bands), I, Q input $=1.4$ volts p.p, test frequency $=849 \mathrm{MHz}$ (900 output) and 1910 MHz (1900 output).These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage ranges unless otherwise stated.

Characteristics	Value			Units	Conditions	
	Min.	Typ.	Max.			
Supply current			75	$\mu \mathrm{~A}$	All circuits off	
Sleep current		8	10	mA	See Tables 4 and 5 Standby mode	
Standby Mode - Prescaler disabled		4		mA	Pin connected to V_{CC}	
Total supply current		118	160	mA	Maximum power PCS mode	
Standby to operating mode			10	$\mu \mathrm{~s}$		
switching time						
Logic inputs	$\mathrm{V}_{\mathrm{CC}}-0.6$		$\mathrm{~V}_{\mathrm{CC}}$	V		
Logic high voltage	0		0.8	V		
Logic low voltage						

Table 2 - DC Characteristics

Characteristics	Value			Units	Conditions
	Min.	Typ.	Max.		
I and Q modulator I and Q input voltage level I and Q common mode voltage I and Q differential input resistance I and Q input bandwidth IF Vector offset SSB rejection	$\begin{aligned} & 1.0 \\ & 13.5 \\ & 2.5 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.2 \end{aligned}$	2.0	Vpp V k Ω MHz dB dB	Differential $\begin{aligned} & \text { Pout }=+8 \mathrm{dBm} \\ & \text { Pout }=+8 \mathrm{dBm} \end{aligned}$
VHF oscillator input and divider Input drive level VHF oscillator bias voltage Output level from prescaler Prescaler divide ratio	22 400	40 1.2 8	70	mVrms V mVpp	From external VHF osc. via matching network 6 pF load Drive output for synthesiser

Table 3 - AC Characteristics

Characteristics	Value			Units	Conditions

Table 3 - AC Characteristics (continued)

Characteristics	Value			Units	Conditions

Table 3-AC Characteristics (continued)

Notes:

1. $\mathrm{V}(\mathrm{I} / \mathrm{Q})=1.4 \mathrm{~V}$ differential, $\mathrm{VHF} \mathrm{LO}=22 \mathrm{mV} \mathrm{rms}, \mathrm{UHF} \mathrm{LO}=-15 \mathrm{dBm}, \mathrm{VGA}=2.6 \mathrm{volts}$
2. $\mathrm{V}(\mathrm{I} / \mathrm{Q})=1.4 \mathrm{~V}$ dc differential, $\mathrm{VHF} \mathrm{LO}=22 \mathrm{mV} \mathrm{rms}, \mathrm{UHF} \mathrm{LO}=-15 \mathrm{dBm}, \mathrm{VGA}=2.6$ volts
3. Frequency range 10 MHz to $10^{*} \mathrm{ftx}$ except Rx and Tx bands

Circuit Description

General

The MGCT04 circuit is designed to provide the transmit function in dual band dual mode CDMA/ AMPS IS136/AMPS mobile phones. The circuit contains the following blocks:

1. Quadrature modulator
2. VHF voltage controlled oscillator buffer and divide by 8 prescaler
3. Active IF low pass filter
4. IF variable gain amplifier
5. Single sideband mixer with external UHF oscillator inputs
6. RF variable gain amplifier
7. 900 MHz and 1900 MHz high power output driver stages
8. Power and mode control logic

Quadrature Modulator

I and Q data from a baseband circuit such as the Zarlink Semiconductor MGCM02 or MGCM03 circuit
is applied to the I and Q inputs of the quadrature modulator to produce the intermediate frequency by mixing with the local oscillator frequency from the VHF VCO. The control inputs can select either a divide by two or divide by four function between the VHF VCO and the quadrature modulator giving a choice of possible intermediate frequencies.

VHF Oscillator Input Oscillator Bias and Divider

An external VHF oscillator circuit is AC coupled to the VHF oscillator input. The oscillator drives the quadrature modulator and an internal divide by eight circuit to reduce the frequency of the output signal to be sent off chip to the frequency synthesiser. This reduces the power required in the output buffer circuit and also allows a low frequency low power CMOS synthesiser to be used. The divider can be disabled if not required by connecting the output pin (DIV OUT - pin 7) to the positive power supply. This reduces the total supply current by typically 4 mA . An oscillator bias circuit is included on the chip so that the external VHF oscillator transistor can be switched off using the control inputs. The bias voltage is
switched off in either of the sleep conditions shown in Tables 4 and 5.

Active Low Pass Filter

The output from the quadrature modulator is passed to the active low pass filter which attenuates wide band noise and spurious outputs.

IF Variable Gain Amplifier

The filtered IF signal is passed to the IF variable gain amplifier which in turn drives the single sideband mixer. An externally applied AGC control voltage allows the total circuit gain to be varied over a minimum 84 dB range.

The AGC action is split between the IF and RF portions of the circuit and an internal AGC control circuit processes the external AGC control voltage to drive both IF and RF variable gain amplifiers and provides a near linear control characteristic over the entire AGC range.

Single Sideband Mixer

The modulated IF signal is fed to the single sideband mixer which up-converts the IF to the RF frequency to be transmitted by mixing with an RF signal from one of two external UHF oscillator input pins, seiected by an on chip multiplexer. When 1900 MHz mode is programmed with the VHF oscillator in divide by four mode (Tables 4 and 5), the polarity of the quadrature oscillator drive signals to the single sideband mixer are reversed, thus selecting a low side LO for 1900 MHz PCS and high side for 900 MHz . This technique allows a common IF and
filter to be used for both 900 MHz and 1900 MHz bands.

RF Variable Gain Amplifier

The SSB mixer is followed by the RF variable gain amplifier stage which provides about 23 dB of the total gain variation. An additional SAW filter in the transmit path is avoided by providing the gain variation after the mixer.

The variable gain amplifier control circuit ensures that the attenuation from maximum power is initially controlled by the RF variable gain stage thus reducing the noise contribution from the RF mixer.

Output Drivers

Separate output drive stages are provided for 900 MHz and 1900 MHz operation. A differential design is used for both amplifiers to improve power efficiency and to ease power supply decoupling problems. The 900 MHz output stage provides a linear output of 3 to 5 dBm for CDMA and 8 dBm for TDMA operation, but is over-driven in AMPS mode to obtain a typical output of 11 dBm . In both power driver stages the DC current is backed off as the RF and IF gain is reduced, improving efficiency when less than maximum output power is required.

Control Inputs

Three control inputs are provided to select different operating modes for the chip; the various modes selected by the control pins are shown in Tables 4 and 5.

CP2	CP1	CPO	Function
0	0	0	Sleep mode. All circuits powered down
0	0	1	Quadrature modulator on. 1900 MHz mode. Low side UHF LO. IF = VHF VCO $\div 4$
0	1	0	Quadrature modulator on. 900MHz mode. high side UHF LO. IF = VHF VCO $\div 4$
0	1	1	Standby mode. VHF oscillator input buffer, oscillator bias and divider on. All other circuits powered down

Table 4 - Control pin functions; VHF LO in divide-by-four mode

CP2	CP1	CPO	Function
1	0	0	Sleep mode. All circuits powered down
1	0	1	Quadrature modulator on. 1900 MHz mode. High side UHF LO. IF $=$ VHF VCO $\div 2$
1	1	0	Quadrature modulator on. 900MHz mode. high side UHF LO. IF = VHF VCO $\div 2$
1	1	1	Standby mode. VHF oscillator input buffer, oscillator bias and divider on. All other circuits powered down

Table 5 - Control pin functions; VHF LO in divide-by-two mode

Figure 3a-Control inputs CPO, CP1 and CP2

Figure 3b-Oscillator bias buffer

Figure 3c-Divider ouput circuit

Figure 3d - VHF oscillator input buffer

Figure $3 \mathrm{e}-\mathrm{LO} 2 \mathrm{GHz}$ and LO1GHz oscillator inputs

Figure $3 \mathrm{f}-900 \mathrm{MHz}$ and 1900 MHz outputs

Figure 3 g - I and Q inputs

Figure 3h - AGC input

Figure 4 - Typical application circuit

Figure 5 - Typical 1900MHz output matching network

Figure 6 - Typical 900 MHz output matching network

Figure 7 - Typical circuit showing connection of external VHF oscillator

a) UHF LO 1 GHz

b) UHF LO 2 GHz

Note:
Test signal generator impedance is 50 ohms in each case
c) VHF LO

Figure 8 - LO Input Test Circuits

IOP VIEW

BOTTOM VIEW

	$\begin{gathered} \text { COMMON } \\ \text { DIMENSIONS } \end{gathered}$	
	MIN.	MAX
A	-	1.00
A1	0.00	0.05
b	0.18	0.30
D	5.00 BSC	
D1	4.75 BSC	
E	5.00 BSC	
E1	4.75 BSC	
N	28	
Nd	7	
Ne	7	
回	0.50 BSC	
L	0.50	0.75
θ	0°	12°

Conforms to JEDEC MO-220 WHHD-1 iss A

NOTES: 1. DIMENSIONING \& TOLERANCES CONFORM TO ASME Y14.5M. - 1994.
2. N IS THE NUMBER OF TERMINALS.
$\mathrm{Nd} \& \mathrm{Ne}$ ARE THE NUMBER OF TERMINALS IN X \& Y DIRECTION RESPECTIVELY.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED

BETWEEN 0.10 AND 0.25 mm FROM TERMINAL.
4. ALL DIMENSIONS ARE IN MILLIMETERS.
5. LEAD COUNT IS 28 PLUS 4 CORNER LEADS.
6. PACKAGE WARPAGE MAX 0.05 mm .
7. NOT TO SCALE.
8. DIMENSION OF THE EXPOSED METAL PAD MAY BE UPTO O.2OMM SMALLER THAN THE NOMINAL DIE PAD DIMENSION - SEE LEADFRAME DRAWING FOR SPECIFIC PADDLE DIMENSION.

© Zarlink Semiconductor 2003 All rights reserved.					ZARLINK SEMICONDUCTOR		Package Code $\quad \square \square$
ISSUE	2	3	4	5		Previous package codes	
ACN	208382	208538	212490	CDCA			$28(+4)$ Lead QFN ($5 \times 5 \mathrm{~mm}$)
DATE	17 Feb 00	16Mar00	8Apr02	17Dec03			
APPRD.							$G D \sim 002$

For more information about all Zarlink products visit our Web Site at

 www.zarlink.comInformation relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's $I^{2} \mathrm{C}$ components conveys a licence under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent rights to use these components in and $\mathrm{I}^{2} \mathrm{C}$ System, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.

