

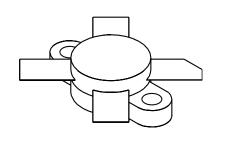
VAM 120

120 Watts, 27 Volts, Class AB Defcom 100 - 150 MHz

GENERAL DESCRIPTION

The VAM 120 is a COMMON EMITTER device designed to operae in a collector modulated VHF power amplifier. It is a common emitter device, optimized for use in the 100-150 MHz range.

ABSOLUTE MAXIMUM RATINGS


Maximum Power Dissipation @ 25°C 140 Watts

Maximum Voltage and Current

BVces Collector to Emiter Voltage 60 Volts
BVebo Emitter to Base Voltage 4.0 Volts
Ic Collector Current 12 A

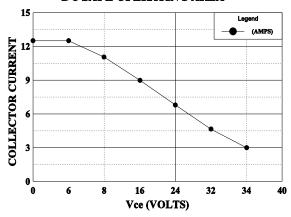
Maximum Temperatures

Storage Temperature $-65 \text{ to } +150^{\circ}\text{C}$ Operating Junction Temperature $+200^{\circ}\text{C}$ CASE OUTLINE 55HT, Style 2

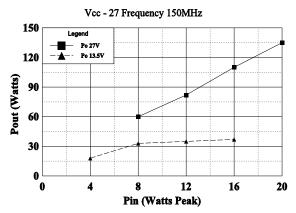
ELECTRICAL CHARACTERISTICS @ 25 °C

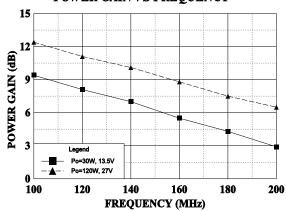
SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Pout	Power Output	F = 150 MHz	120			Watts
Pin	Power Input	Vcc = 27 Volts		15	20	Watts
Pg	Power Gain		7.8	9.0		dB
Pout		F = 150 MHz	30			Watts
Pin		Vcc = 13.5 Volts		7.5	10	Watts
Pg			4.8	6.0		dB
ης	Efficiency			65		%
VSWR	Load Mismatch Tolerance				30:1	

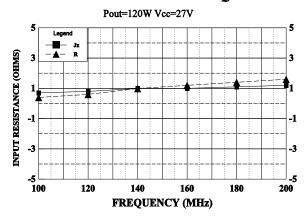
BVebo BVces BVceo Cob	Emitter to Base Breakdown Collector to Emitter Breakdown Collector to Emitter Breakdown Output Capacitance	Ie = 5 mA Ic = 20 mA Ie = 50 mA	4.0 60 32	240		Volts Volts Volts pF
\mathbf{h}_{FE} θ jc	DC - Current Gain Thermal Resistance	Vce = 5 V, Ic = 1 A	10		1.2	°C/W

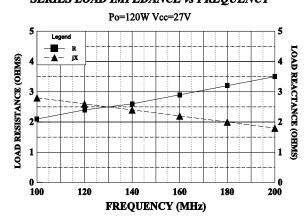

Issue August 1996

GHz TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHZ RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.


VAM -120


DC SAFE OPERATING AREA


POWER OUTPUT vs POWER INPUT


POWER GAIN VS FREQUENCY

SERIES INPUT IMPEDANCE vs FREQUENCY

SERIES LOAD IMPEDANCE vs FREQUENCY

