

## **General Description**

The ME70XXA series is a set of three-terminal low power voltage detectors implemented in CMOS technology. Each voltage detector in the series detects a particular fixed voltage ranging from 2.4V to 5V. The voltage detectors consist of a high-precision voltage divider circuit, band gap voltage source, a comparator and an output driver. CMOS technology ensures low power consumption.

Although designed primarily as fixed voltage detectors, these devices can be used with external components to detect user specified threshold voltages (NMOS open drain type only).

### **Features**

- Low power consumption
- Low temperature coefficient
- Built-in high-stability reference source
- Built-in hysteresis characteristic
- TO-92 and SOT-23 package

### **Applications**

- Battery checkers
- · Level selectors
- Power failure detectors
- Microcomputer reset
- Battery memory backup
- Non-volatile RAM signal storage protector

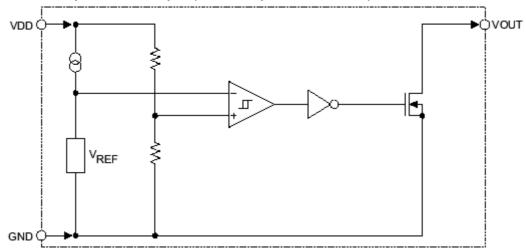
#### **Selection Table**

| Part No. | Detectable<br>Voltage | Hysteresis<br>Width | Tolerance | Package | Marking          |
|----------|-----------------------|---------------------|-----------|---------|------------------|
| ME7027A  | 2.7V                  | 0.13V               | 3%        | TO-92   | 70XX (for TO-92) |
| ME7044A  | 4.4V                  | 0.22V               | 3%        | SOT-23  | 0XX (for SOT-23) |

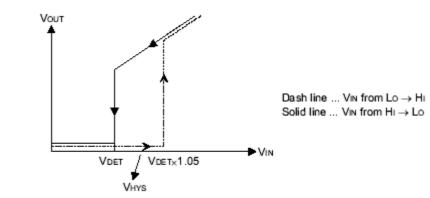

Note: The output type selection codes are:

NMOS open drain normal open, active low

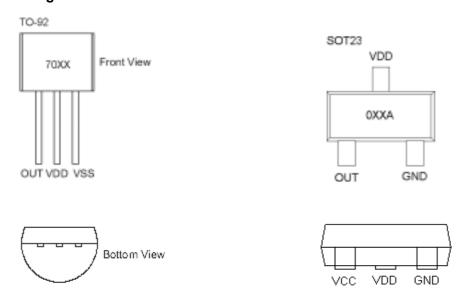
For example: The ME7044A is a 4.4V, NMOS open drain active low output

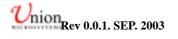

### **Output Type Selection Table**

| V <sub>DD</sub> Type V <sub>OUT</sub> | V <sub>DD</sub> >V <sub>DET</sub> (+) | V <sub>DD</sub> ≤V <sub>DET</sub> (−) |
|---------------------------------------|---------------------------------------|---------------------------------------|
| A                                     | Hi-Z                                  | VSS                                   |




# **Block Diagram**


## N Channel Open Drain Output (Normal Open; Active Low)




## A Type



# Pin Assignment





# **Absolute Maximum Ratings**

| Supply Voltage      | VSS-0.3V to VSS+10V  | Operating Temperature0 | to 70 |
|---------------------|----------------------|------------------------|-------|
| Output Voltage      | VSS-0.3V to VDD+0.3V | Output Current         | 50mA  |
| Storage Temperature | 50 to 125            | Power Consumption      | 200mW |

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

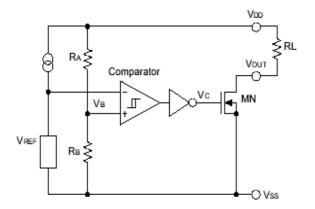
### **Electrical Characteristics**

#### **ME7027A**

| Symbol                                                | Parameter               | Tes                                                                     | t Conditions | Min.    | Turn  | Max.   | Unit    |  |
|-------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|--------------|---------|-------|--------|---------|--|
| Cymbol                                                | Parameter               | <b>V</b> DD                                                             | Conditions   | IVIIII. | Тур.  | IVIAX. | Oill    |  |
| VDET                                                  | Detection Voltage       |                                                                         |              | 2.619   | 2.700 | 2.781  | V       |  |
| Vhys                                                  | Hysteresis Width        |                                                                         |              | 0.02    | 0.05  | 0.1    | V       |  |
| VHYS                                                  | Hysteresis Width        | _                                                                       | _            | VDET    | VDET  | VDET   |         |  |
| ldd                                                   | Operating Current       | 8V                                                                      | No load      | _       | 2     | 3      | $\mu$ A |  |
| VDD                                                   | Operating Voltage       | -                                                                       | _            | 1.5     | _     | 10     | ٧       |  |
| lol                                                   | Output Sink Current     | 2V                                                                      | Vout=0.2V    | 0.5     | 1     | _      | mA      |  |
| $\frac{\Delta V_{\scriptscriptstyle DET}}{\Delta Ta}$ | Temperature Coefficient | 0 <ta<70< td=""><td>_</td><td>± 0.2</td><td>_</td><td>mV/</td></ta<70<> |              | _       | ± 0.2 | _      | mV/     |  |

### **ME7044A**

| Symbol                                                | Parameter               | Tes  | st Conditions                                                           | Min.    | Turn  | Max.   | Unit  |  |
|-------------------------------------------------------|-------------------------|------|-------------------------------------------------------------------------|---------|-------|--------|-------|--|
| Cymbol                                                | Parameter               | VDD  | Conditions                                                              | IVIIII. | Тур.  | IVIAX. | Oille |  |
| VDET                                                  | Detection Voltage       | -    | _                                                                       | 4.268   | 4.400 | 4.532  | V     |  |
| Musica                                                | Llystoropio Width       |      |                                                                         | 0.02    | 0.05  | 0.1    | V     |  |
| VHYS                                                  | Hysteresis Width        | _    | _                                                                       | VDET    | VDET  | VDET   |       |  |
| IDD                                                   | Operating Current       | 8V   | No load                                                                 | _       | 2     | 3      | μΑ    |  |
| VDD                                                   | Operating Voltage       | 1    | _                                                                       | 1.5     | _     | 10     | V     |  |
| lol                                                   | Output Sink Current     | 3.6V | Vout=0.2V                                                               | 3       | 6     | _      | mA    |  |
| $\frac{\Delta V_{\scriptscriptstyle DET}}{\Delta Ta}$ | Temperature Coefficient | _    | 0 <ta<70< td=""><td>_</td><td>± 0.2</td><td>_</td><td>mV/</td></ta<70<> | _       | ± 0.2 | _      | mV/   |  |


## **Functional Description**

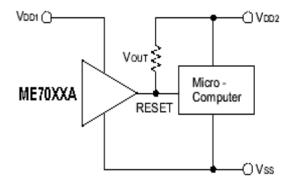
The ME70XXA series is a set of voltage detectors equipped with a high stability voltage reference which is connected to the negative input of a comparator—denoted as VREF in the following figure for NMOS output voltage detector.

When the voltage drop to the positive input of the comparator (i,e,VB) is higher than VREF, VOUT goes high, and VB is expressed as VBH=VDD×RB / (RA+RB). If VDD is decreased so that VB falls to a value less than VREF, the comparator output inverts from high to low, VOUT goes low, VC is high. If VDD falls below the minimum operating voltage, the output becomes undefined.

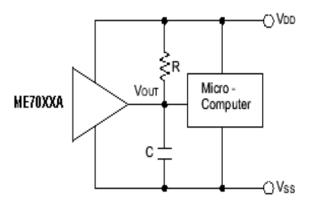
The figure demonstrates the NMOS output type with positive output polarity (VOUT is normally open, active low).

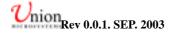
Application circuits shown are examples of positive output polarity (normally open, active low) unless otherwise specified.




NMOS Output Voltage Detector (ME70XXA)

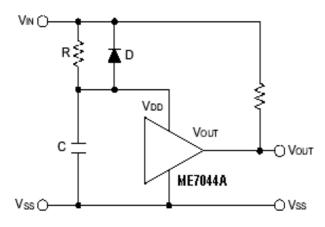
## **Application Circuits**

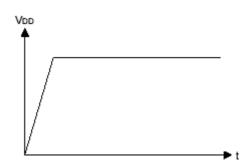

### **Microcomputer Reset Circuit**


Normally a reset circuit is required to protect the microcomputer system from malfunctions due to power fail . The following examples show how different output configurations perform a reset function in various systems.

 NMOS open drain output application for separate power supply




NMOS open drain output application with R-C delay



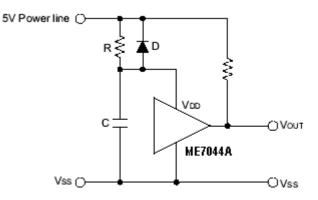




#### **Power-on Reset Circuit**

With several external components, the NMOS open drain type of the ME70XXA series can be used to perform a power-on reset function as shown.

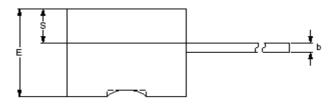


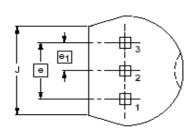


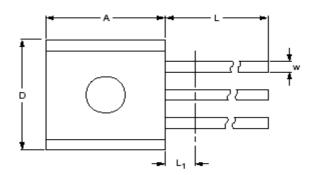


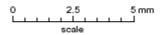

### **5V Power Line Monitoring Circuit**

Generally, a minimum operating voltage of 4.5V is guaranteed in a 5V power line system. The ME7044A is recommended for use as 5V power line monitoring circuit.


• 5V power line monitor with power-on reset





# **Package Information**

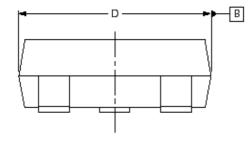
## 3-Pin TO-92 Outline Dimensions

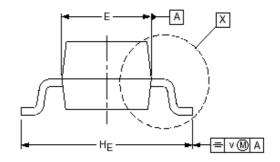


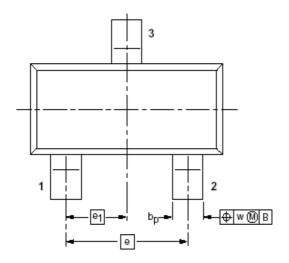


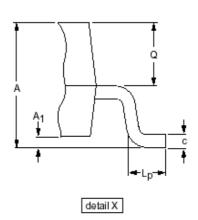


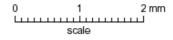



### DIMENSIONS (mm are the original dimensions)


| UNIT | А | b            | D            | E            | е    | e <sub>1</sub> | J<br>min. | L            | L <sub>1</sub> <sup>(1)</sup><br>max. | s            | w            |
|------|---|--------------|--------------|--------------|------|----------------|-----------|--------------|---------------------------------------|--------------|--------------|
| mm   |   | 0.51<br>0.36 | 4.95<br>4.45 | 3.94<br>3.30 | 2.54 | 1.27           | 3.4       | 15.4<br>12.7 | 1.27                                  | 1.52<br>1.14 | 0.56<br>0.41 |


Note





### **3-Pin SOT-23 Outline Dimensions**











### DIMENSIONS (mm are the original dimensions)

| UNIT | А          | A <sub>1</sub><br>max. | bp           | С            | D          | E          | e   | e <sub>1</sub> | HE         | Lp           | Q            | v   | w   |
|------|------------|------------------------|--------------|--------------|------------|------------|-----|----------------|------------|--------------|--------------|-----|-----|
| mm   | 1.1<br>0.9 | 0.1                    | 0.48<br>0.38 | 0.15<br>0.09 | 3.0<br>2.8 | 1.4<br>1.2 | 1.9 | 0.95           | 2.5<br>2.1 | 0.45<br>0.15 | 0.55<br>0.45 | 0.2 | 0.1 |