Package：SuperSOT－6

Device Marking：． 003
Note：The＂．＂（dot）signifies Pin 1
Transistor 1 is NPN device， transistor 2 is PNP device．

NPN \＆PNP Complementary Dual Transistor SuperSOT－ 6 Surface Mount Package

This device was designed for general purpose amplifier applications at collector currents to 300 mA ． Sourced from Process 33 （NPN）and Process 73 （PNP）．

Absolute Maximum Ratings $\quad T_{A=25^{\circ} \text { c unness onthemse noled }}$

Symbol	Parameter	Value	Units
$\mathrm{V}_{\text {CEO }}$	Collector－Emitter Voltage	80	V
$\mathrm{~V}_{\text {CBO }}$	Collector－Base Voltage	80	V
$\mathrm{~V}_{\text {EBO }}$	Emitter－Base Voltage	4	V
I_{C}	Collector Current（continuous）	500	mA
P_{D}	Power Dissipation＠Ta $=25^{\circ} \mathrm{C}^{\star}$	0.7	W
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {OJA }}$	Thermal Resistance，Junction to Ambient	180	${ }^{\circ} \mathrm{C} / \mathrm{W}$

＊Pd total，for both transistors．For each transistor， $\mathrm{Pd}=350 \mathrm{~mW}$ ．
Electrical Characteristics
$T_{A}=25^{\circ} \mathrm{C}$ unbsss onemisen onoed

Symbol	Parameter	Test Conditions	Min	Max	Units
$\mathrm{BV}_{\mathrm{CEO}}$	Collector to Emitter Voltage	IC $=1.0 \mathrm{~mA}$	80		V
$\mathrm{BV}_{\mathrm{CBO}}$	Collector to Base Voltage	IC $=100 \mathrm{uA}$	80		V
$\mathrm{BV}_{\text {EBO }}$	Emitter to Base Voltage	le $=100 \mathrm{uA}$	4		V

NPN \& PNP Complementary Dual Transistor

(continued)
Electrical Characteristics
$T_{A=255^{\circ} \text { unless onemensis nolod }}$

Symbol	Parameter	Test Conditions	Min	Max	Units
$I_{\text {CBO }}$	Collector Cutoff Current	Vcb $=80 \mathrm{~V}$		100	nA
$I_{\text {CEO }}$	Collector Cutoff Current	Vce $=60 \mathrm{~V}$		100	nA
h_{FE}	DC Current Gain	$\mathrm{Vce}=1 \mathrm{~V}, \mathrm{IC}=10 \mathrm{~mA}$ $\mathrm{Vce}=1 \mathrm{~V}, \mathrm{Ic}=100 \mathrm{~mA}$	100		
$\mathrm{~V}_{\mathrm{CE} \text { (sat) }}$	Collector-Emitter Saturation Voltage	$\mathrm{IC}=100 \mathrm{~mA}, \quad \mathrm{Ib}=10 \mathrm{~mA}$		-	
$\mathrm{V}_{\mathrm{BE}(\text { on })}$	Base-Emitter On Voltage	IC $=100 \mathrm{~mA}, \quad \mathrm{Vce}=1 \mathrm{~V}$		0.25	V

Small - Signal Characteristics

f_{T}	Current Gain - Bandwidth Product	Vce $=1 \mathrm{~V}, \mathrm{Ic}=100 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	50		-

