

March 2002 Revised May 2003

FIN1108 • FIN1108T (Preliminary) LVDS 8 Port High Speed Repeater

General Description

This 8 port repeater is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology.

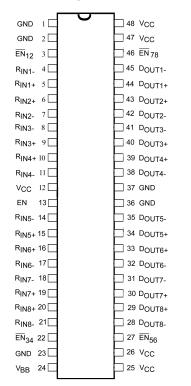
The FIN1108 accepts and outputs LVDS levels with a typical differential output swing of 330 mV which provides low EMI at ultra low power dissipation even at high frequencies. The FIN1108 provides a $\rm V_{BB}$ reference for AC coupling on the inputs. In addition the FIN1108 can directly accept LVPECL, HSTL, and SSTL-2 for translation to LVDS.

The FIN1108T has internal termination across the receiver inputs for reduced part count, reduced stub length and better noise immunity. See Applications section.

Features

- Greater than 800 Mbps data rate
- 3.3V power supply operation
- 3.5 ps maximum random jitter and 135 ps maximum deterministic jitter
- Wide rail-to-rail common mode range
- LVDS receiver inputs accept LVPECL, HSTL, and SSTL-2 directly
- Ultra low power consumption
- 20 ps typical channel-to-channel skew
- Power off protection
- > 7.5 kV HBM ESD Protection
- Meets or exceeds the TIA/EIA-644-A LVDS standard
- Available in space saving 48-lead TSSOP package
- Open circuit fail safe protection
- V_{BB} reference output
- FIN1108T (R_T) features Internal Termination Resistors

Ordering Code:

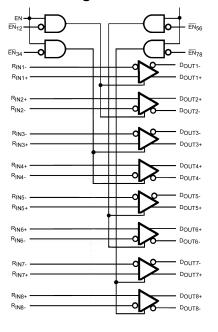

Order Number	Package Number	Package Description				
FIN1108MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide				
FIN1108TMTD (Preliminary)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide				

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Pin Descriptions

Pin Name	Description
R _{IN1+} , R _{IN2+} , R _{IN3+} , R _{IN4+} , R _{IN5+} , R _{IN6+} , R _{IN7+} , R _{IN8+}	Non-inverting LVDS Input
R _{IN1-} , R _{IN2-} , R _{IN3-} , R _{IN4-} , R _{IN5-} , R _{IN6-} , R _{IN7-} , R _{IN8-}	Inverting LVDS Input
D _{OUT1+} , D _{OUT2+} , D _{OUT3+} , D _{OUT4+} , D _{OUT5+} , D _{OUT6+} , D _{OUT7+} , D _{OUT8+}	Non-inverting Driver Output
D _{OUT1-} , D _{OUT2-} , D _{OUT3-} , D _{OUT4-} , D _{OUT5-} , D _{OUT6-} , D _{OUT7-} , D _{OUT8-}	Inverting Driver Output
EN	Driver Enable Pin for All Output
EN ₁₂	Inverting Driver Enable Pin for D _{OUT1} and D _{OUT2}
EN ₃₄	Inverting Driver Enable Pin for D _{OUT3} and D _{OUT4}
EN ₅₆	Inverting Driver Enable Pin for D _{OUT5} and D _{OUT6}
EN ₇₈	Inverting Driver Enable Pin for D _{OUT7} and D _{OUT8}
V _{CC}	Power Supply
GND	Ground
V_{BB}	Reference Voltage Output

Connection Diagram



Function Table

Inputs				Outputs		
EN	EN _{xx}	D _{IN+}	D _{IN-}	D _{OUT+}	D_{OUT-}	
Н	L	Н	L	Н	L	
Н	L	L	Н	L	Н	
Н	L	Fail Sat	fe Case	Н	L	
Х	Н	Х	Х	Z	Z	
L	Х	Х	Х	Z	Z	

- H = HIGH Logic Level L = LOW Logic Level
- X = Don't Care
 Z = High Impedance

Functional Diagram

Applications

Signal Optimization via Internal Termination

For LVDS signaling in point-to-point applications, receivers or repeaters with on-chip termination are preferable to reduce the overshoot or undershoot due to the reflection caused by stubs at receiver inputs. As a rule of thumb, usually the termination resistor for an LVDS receiver should be placed as close as possible to the receiver, especially for high speed applications. If the distance between termination resistors and receivers is too long, the interconnection will be seen as an un-terminated stub which can produce reflections resulting in higher EMI. Internal termination can effectively smooth out this ringing which can otherwise jeopardize the receiver noise margin. This is important for

reliable high-speed operation with tighter required signal settling times. Below is a list of the advantages/disadvantages of internal termination.

Internal termination is not suitable for all applications. In order to set a proper V_{OD} at the driver outputs, receivers with on-chip termination resistors only work for point-to-point applications since multi-drop applications would require termination resistor for each receiver, reducing the equivalent termination to $R_{\text{T/n}}.$ This would reduce the driver output swing by n.

Advantages:

- Reduced device count resulting in reduced board space and production cost.
- 2. Reduced reflections caused by the stub length on the receiver inputs, improving the signal integrity.

Disadvantages:

- Without special process treatment, on-chip termination can experience greater temperature variation. This is usually tolerable for low speed applications that have a sufficient unit interval.
- 2. For applications with high common-mode noise, a center tapped capacitor at the receiver side is desirable to filter out the common-mode voltage noise of the input LVDS signal. This scheme works for an external termination scheme with two (50Ω each for nominal 100Ω termination resistor) half-value termination resistors connected in series and center tapped to a capacitor to Ground. To implement this scheme using internal termination resistors, a center tappin would have to be used. This would increase the package size of the part.

Absolute Maximum Ratings(Note 1)

(Soldering, 10 seconds) 260°C ESD (Human Body Model) 7500V ESD (Machine Model) 400V

260°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

Magnitude of Differential

100 mV to V_{CC}

3.0V to 3.6V

Voltage (|V_{ID}|) Common Mode Voltage

Range (V_{IC}) (0V + $|V_{ID}|/2$) to ($V_{CC} - |V_{ID}|/2$) Operating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Parameter	Test Conditions		Min	Typ (Note 2)	Max	Units
Differential Input Threshold HIGH	See Figure 1; $V_{IC} = +0.05V$, + 1.2V, or $V_{CC} - 0.05V$				100	mV
Differential Input Threshold LOW	See Figure 1; V _{IC} = +0.05V, + 1.2V, or V _{CC} - 0.05V		-100			mV
Input HIGH Voltage (EN or EN)			2.0		V _{CC}	V
Input LOW Voltage (EN or EN)			GND		0.8	V
Output Differential Voltage			250	330	450	mV
V _{OD} Magnitude Change from Differential LOW-to-HIGH	$R_L = 100 \Omega$, Driver Enabled,	•			25	mV
Offset Voltage	See Figure 2	•	1.125	1.23	1.375	V
Offset Magnitude Change from Differential LOW-to-HIGH		•			25	mV
Short Circuit Output Current	$D_{OUT+} = 0V$ and $D_{OUT-} = 0V$, Driver Enabled			-3.4	-6	mA
	V _{OD} = 0V, Driver Enabled			±3.4	±6	mA
Input Current (EN, EN, D _{INx+} , D _{INx-})	$V_{IN} = 0V$ to V_{CC} , Other Input = V_{CC} or $0V$ (for Differential Inputs)				±20	μА
Power Off Input or Output Current	$V_{CC} = 0V$, V_{IN} or $V_{OUT} = 0V$ to 3.6V				±20	μΑ
Disabled Power Supply Current	Drivers Disabled				20	mA
Power Supply Current	Drivers Enabled, Any Valid Input Condition				80	mA
Disabled Output Leakage Current	Driver Disabled, $D_{OUT+} = 0V$ to 3.6V or $D_{OUT-} = 0V$ to 3.6V				±20	μА
Common Mode Voltage Range			V _{ID} /2		$V_{CC} - (V_{ID}/2)$	V
Input Capacitance				3		pF
Output Capacitance				3		pF
Output Reference Voltage	$V_{CC} = 3.3V$, $I_{BB} = 0$ to $-275 \mu\text{A}$		1.125	1.2	1.375	V
Terminating Resistance				100		Ω
	Differential Input Threshold HIGH Differential Input Threshold LOW Input HIGH Voltage (EN or EN) Input LOW Voltage (EN or EN) Output Differential Voltage VOD Magnitude Change from Differential LOW-to-HIGH Offset Voltage Offset Magnitude Change from Differential LOW-to-HIGH Short Circuit Output Current Input Current (EN, EN, DINX+, DINX+) Power Off Input or Output Current Disabled Power Supply Current Power Supply Current Disabled Output Leakage Current Common Mode Voltage Range Input Capacitance Output Capacitance Output Reference Voltage	Differential Input Threshold HIGH See Figure 1; $V_{IC} = +0.05V$, $+1.2V$, or V_{C} Differential Input Threshold LOW See Figure 1; $V_{IC} = +0.05V$, $+1.2V$, or V_{C} Input HIGH Voltage (EN or \overline{EN}) Input LOW Voltage (EN or \overline{EN}) Output Differential Voltage V_{CD} Magnitude Change from Differential LOW-to-HIGH $R_L = 100 \Omega$, Driver Enabled, Offset Voltage See Figure 2 Offset Magnitude Change from Differential LOW-to-HIGH $D_{OUT+} = 0V$ and $D_{OUT-} = 0V$, Driver Enabled Short Circuit Output Current $D_{OUT+} = 0V$ and $D_{OUT-} = 0V$, Driver Enabled Input Current (EN, \overline{EN} , D_{INX+} , D_{INX-}) $V_{IN} = 0V$ to V_{CC} , Other Input = V_{CC} or $0V$ (for Differential Inputs) Power Off Input or Output Current $V_{CC} = 0V$, V_{IN} or $V_{OUT} = 0V$ to $3.6V$ Disabled Power Supply Current Drivers Disabled Power Supply Current Drivers Enabled, Any Valid Input Condition Disabled Output Leakage Current Driver Disabled, $D_{OUT+} = 0V$ to $3.6V$ or $D_{OUT-} = 0V$ to $3.6V$ Common Mode Voltage Range Input Capacitance En Output Capacitance $V_{CC} = 3.3V$, $I_{BB} = 0$ to $-275 \mu A$	Differential Input Threshold HIGH Differential Input Threshold LOW Differential Input Threshold LOW Differential Input Threshold LOW See Figure 1; $V_{IC} = +0.05V, +1.2V, \text{ or } V_{CC} -0.05V$ Input HIGH Voltage (EN or \overline{EN}) Input LOW Voltage (EN or \overline{EN}) Output Differential Voltage VoD Magnitude Change from Differential LOW-to-HIGH Offset Voltage Offset Magnitude Change from Differential LOW-to-HIGH Short Circuit Output Current DOUT+ = 0V and DOUT- = 0V, Driver Enabled VOD = 0V, Other Input = VCC or 0V (for Differential Inputs) Power Off Input or Output Current Disabled Power Supply Current Disabled Power Supply Current Disabled Output Leakage Current Disabled Output Leakage Current Disabled Output Leakage Current Disabled Output Leakage Current Disabled Output Capacitance $V_{CC} = 3.3V, I_{BB} = 0 \text{ to } -275 \mu\text{A}$	$ \begin{array}{ c c c c } \hline \textbf{Parameter} & \textbf{Test Conditions} \\ \hline \textbf{Differential Input Threshold HIGH} & \textbf{See Figure 1; $V_{IC} = +0.05V, +1.2V$, or $V_{CC} = 0.05V$} \\ \hline \textbf{Differential Input Threshold LOW} & \textbf{See Figure 1; $V_{IC} = +0.05V, +1.2V$, or $V_{CC} = 0.05V$} \\ \hline \textbf{Differential Input Threshold LOW} & \textbf{See Figure 1; $V_{IC} = +0.05V, +1.2V$, or $V_{CC} = 0.05V$} \\ \hline \textbf{Input LOW Voltage (EN or \overline{EN})} & \textbf{2.0} \\ \hline \textbf{Input LOW Voltage (EN or \overline{EN})} & \textbf{GND} \\ \hline \textbf{Output Differential Voltage} & \textbf{250} \\ \hline \textbf{V}_{OD} \text{ Magnitude Change from} \\ \hline \textbf{Differential LOW-to-HIGH} & \textbf{R}_L = 100 \ \Omega, \textbf{Driver Enabled}, \\ \hline \textbf{Offset Magnitude Change from} \\ \hline \textbf{Differential LOW-to-HIGH} & \textbf{See Figure 2} & \textbf{1.125} \\ \hline \textbf{Offset Magnitude Change from} \\ \hline \textbf{Differential LOW-to-HIGH} & \textbf{Short Circuit Output Current} & \textbf{D}_{OUT+} = \textbf{0V} \text{ and } \textbf{D}_{OUT-} = \textbf{0V}, \\ \hline \textbf{Driver Enabled} & \textbf{V}_{OD} = \textbf{0V}, \textbf{Driver Enabled} \\ \hline \textbf{V}_{OD} = \textbf{0V}, \textbf{Driver Enabled} \\ \hline \textbf{Input Current (EN, \overline{EN}, D_{INx+}, D_{INx-})} & \textbf{V}_{IN} = \textbf{0V to V}_{CC}. \textbf{Other Input} = \textbf{V}_{CC} \textbf{ or 0V} \\ \textbf{(for Differential Inputs)} & \textbf{Power Off Input or Output Current}} & \textbf{V}_{CC} = \textbf{0V}, \textbf{V}_{IN} \textbf{ or $V_{OUT} = \textbf{0V to 3.6V}} \\ \hline \textbf{Disabled Power Supply Current} & \textbf{Drivers Enabled, Any Valid Input Condition} \\ \hline \textbf{Disabled Output Leakage Current}} & \textbf{Driver Disabled, D}_{OUT-} = \textbf{0V to 3.6V} \textbf{ or } \\ \hline \textbf{D}_{OUT-} = \textbf{0V to 3.6V} & \textbf{O}_{OUT-} = \textbf{0V to 3.6V} \textbf{ or } \\ \hline \textbf{D}_{OUT-} = \textbf{0V to 3.6V} & \textbf{Enable Input} \\ \hline \textbf{LVDS Input} & \textbf{UVDS Input} \\ \hline \textbf{Output Capacitance} & \textbf{Enable Input} \\ \hline \textbf{D}_{OUTD} & \textbf{0Utput Reference Voltage} & \textbf{V}_{CC} = \textbf{3.3V}, \textbf{I}_{BB} = \textbf{0 to -275} \ \mu \textbf{A} & \textbf{1.125} \\ \hline \textbf{1.125} & \textbf{0Utput Reference Voltage} & \textbf{0Utput Reference Voltage} & \textbf{0Utput Polical Input Dout Capacitance} \\ \hline \textbf{0Utput Reference Voltage} & \textbf{0Utput Polical Input Dout Capacitance} & \textbf{0Utput Reference Voltage} & \textbf{0Utput Polical Input Dout Capacitance} \\ \hline \textbf{0Utput Reference Voltage} & 0Utput Polical In$	Test Conditions (Note 2) Differential Input Threshold HIGH See Figure 1; $V_{IC} = +0.05V$, $+1.2V$, or $V_{CC} = 0.05V$ ———————————————————————————————————	Differential Input Threshold HIGH See Figure 1; V _{IC} = +0.05V, + 1.2V, or V _{CC} - 0.05V 100

Note 2: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

AC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units
t _{PLHD}	Differential Output Propagation Delay LOW-to-HIGH		0.75	1.1	1.75	ns
t _{PHLD}	Differential Output Propagation Delay HIGH-to-LOW	$R_L = 100 \ \Omega, \ C_L = 5 \ pF,$	0.75	1.1	1.75	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)	V _{ID} = 200 mV to 450 mV,	0.29	0.4	0.58	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)	$V_{IC} = V_{ID}/2$ to $V_{CC} - (V_{ID}/2)$,	0.29	0.4	0.58	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}	Duty Cycle = 50%,		0.02	0.2	ns
t _{SK(LH)} , t _{SK(HL)}	Channel-to-Channel Skew (Note 4)	See Figure 1 and Figure 1		0.02 0.02	0.15	ns
t _{SK(PP)}	Part-to-Part Skew (Note 5)				0.5	ns
f _{MAX}	Maximum Frequency (Note 6)(Note 7)		400	>630		MHz
t _{PZHD}	Differential Output Enable Time from Z to HIGH			3	5	ns
t _{PZLD}	Differential Output Enable Time from Z to LOW	$R_L = 100 \Omega$, $C_L = 5 pF$,		3.1	5	ns
t _{PHZD}	Differential Output Disable Time from HIGH to Z	See Figure 2 and Figure 3		2.2	5	ns
t _{PLZD}	Differential Output Disable Time from LOW to Z			2.5	5	ns
t _{DJ}	LVDS Data Jitter, Deterministic	$V_{ID} = 300 \text{ mV}, \text{ PRBS} = 2^{23} - 1,$ $V_{IC} = 1.2 \text{V at } 800 \text{ Mbps}$		80	135	ps
t _{RJ}	LVDS Clock Jitter, Random (RMS)	$V_{\text{ID}} = 300 \text{ mV},$ $V_{\text{IC}} = 1.2 \text{V}$ at 400 MHz		1.9	3.5	ps

Note 3: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

Note 4: $t_{SK(LH)}$, $t_{SK(HL)}$ is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.

Note 5: tsK(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

Note 6: Passing criteria for maximum frequency is the output V_{OD} > 250 mV and the duty cycle is better than 45% / 55% with all channels switching.

Note 7: Output loading is transmission line environment only; C_L is < 1 pF of stray test fixture capacitance.

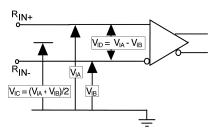


FIGURE 1. Differential Receiver Voltage Definitions

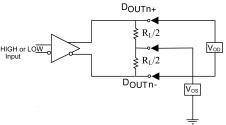
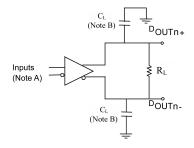



FIGURE 2. Differential Driver DC Test Circuit

Note A: All LVDS input pulses have frequency = 10 MHz, t_{R} or t_{F} < = 0.5 ns

Note B: C_L includes all probe and jig capacitances

FIGURE 3. Differential Driver Propagation Delay and Transition Time Test Circuit

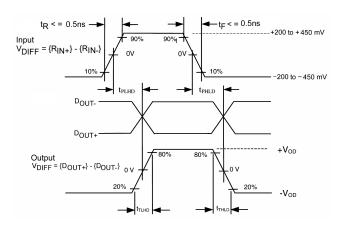
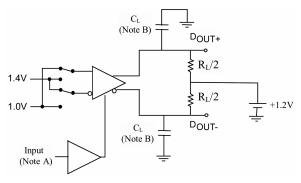



FIGURE 4. AC Waveform

Note A: All LVTTL input pulses have frequency = 10MHz, t_R or t_F <= 2 ns Note B: C_L includes all probe and jig capacitances

FIGURE 5. Differential Driver Enable and Disable Circuit

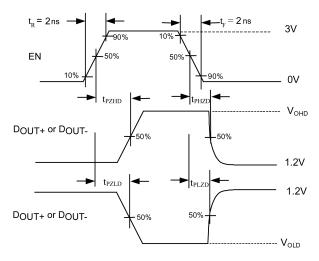
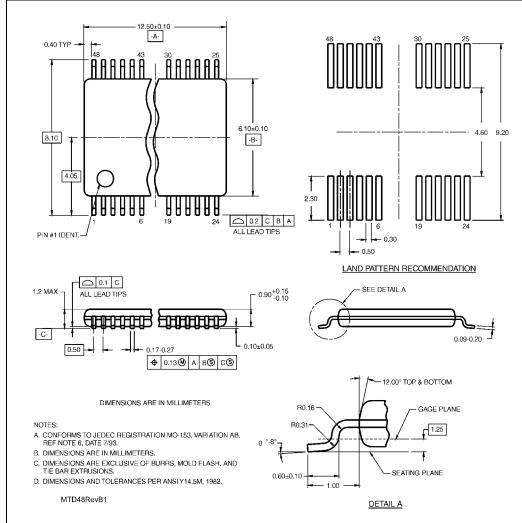



FIGURE 6. Enable and Disable AC Waveforms

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com