!./ATriscend®

August, 2002 (Version 1.10

B Industry’s first complete 32-bit Configurable
System-on-Chip (CSoC)

High-performance, low-power consumption,
32-bit RISC processor (ARM7TDMI™)

8Kbyte mixed instruction/data cache
16Kbyte internal scratchpad RAM

Next-generation embedded programmable
logic architecture (up to 25,600 ASIC gates)

High-performance dedicated internal bus
(up to 455Mbytes per second at 60 MHz)

External memory interface supporting
Flash, EEPROM, SRAM, and SDRAM

Advanced real-time, in-system debugging
capability

Stand-alone operation from a single
external memory (code + initialization)
2.5-volt core with 3.3- or 2.5-volt I/0s

Four independent high-performance DMA
channels

To external memory

00

B High-performance, 32-bit
ARM7TDMI RISC Processor

Triscend A7S Configurable

System-on-Chip Platform

Product Description

Popular, industry-standard 32-
bit RISC processor

Binary and source code
compatible with other ARM7/ARM7TDMI
variants

Widespread C/C++ compiler, source-level
debugger, and RTOS support

Superior code density using the Thumb®
instruction set

54 MIPS (Dhrystone 2.1) at 60 MHz

Low latency, real-time interrupt response
Fast hardware multiplier

32-bit register bank and ALU

32-bit addressing — 4Gbyte linear address
32-bit barrel shifter

EmbeddedICE™ on-chip debugger

I Clock Synthesizer I '] 1
Memory Interface Selector PIO
I Power Control I Unit /_\>£ Selector PIO
SDRAM Controller =
Static/Flash Interface |~N— —] Selector PIO
Power-On Reset .
I I Selector gonﬂgl—'{abl_e PIO
Selector ySteCn;L ogic PIO
16KBytes PN . ()
ScratchPad H matrix PIO
ARM7TDMIT sram =9 =)
E or N—] — Selector PIO
g Trace Buffer . - "
o .
O wn " > P
g > — PIO
o m ——————
Cache - — « O =
* 8K Bytes i >q .
* 4-Wa§/, Set Associative CSl Bridge - T g Configurable System
* Protection Unit ‘ o) @ Interconnect socket
a2 Standard Peripherals
— o =
Hardware [> = 16-input
i D =N o Interrupt Controller
Breakpoint Unit - S . .
< \ 16-bit 16-bit
CSI Bus Four-channel K D — Timer Timer
Arbiter DMA Controller >'\:_> 3o-bit
N v Watchdog Timer
\— JTAG Interface 2 :> UART UART
Q with FIFO || with FIFO

Configurable System
Interconnect (CSI) bus

Figure 1. Block diagram of the Triscend A7S Configurable System-on-Chip (CSoC).

© 2000-2002 by Triscend Corporation. All rights reserved.
Patents Pending.

TCH305-0001-002

Triscend
Click a feature to link to its description.

Triscend A7S Configurable System-on-Chip Platform

Table 1. Triscend A7S Configurable System-on-Chip Family

Embedded Configurable Csl P1O*
Processor Dedicated System |System Logic | Address | Pins
Device Core Resources RAM (CSL) Cells | Selectors | (Max)
Flash memory interface
SDRAM memory interface
TA7S04 ARM7TDMI 4-channel DMA controller 448 32 124
32-bit RISC CPU | Two 16C550-style UARTSs
8K unified cache | TWo 16-bit timers
Barrel shifter | 32-bit watchdog timer 4Kx32
Hardware multiplier | 16-input interrupt controller
Thumb extensions |Power management
TA7S20 | pipic extonsions. | Power-on reset 2,048 128 252
Hardware breakpoint unit
JTAG debugger

* Maximum PIO on each base device, actual PIO count depends on package style and initialization mode. See Table 61.

B Rich set of embedded support peripherals

4-channel high-performance DMA controller
— fly-by performance

— memory-to-memory transfers

— linked-list DMA

— frame transfer support

Memory Subsystem Interface Unit (MSSIU)
for flexible, glueless interface to external
memories (ROM, EEPROM, Flash, SRAM,
and SDRAM)

Two 16C550-style serial ports (UART) with
modem interface

Two 16-bit timers/counters
32-bit Watchdog timer

16-input interrupt controller with fast
interrupt response

IEEE 1149.1 enhanced JTAG interface
In-system debug/breakpoint unit
Power-on reset

Power-down and power-management
modes

B Full-Featured Memory Interface Unit

Simultaneous support for independent
external Flash and SDRAM memory sub-
systems using x8 or x16 memory devices
Expandable external data bus: 8-bit, 16-bit
and 32-bit support

Up to two external SDRAM banks

Automatic support for self-refresh, auto-
refresh and initialization of SDRAM

Programmable SDRAM parameters for
optimal memory bandwidth

B Embedded SRAM-based Configurable Sys-
tem Logic (CSL) matrix

Next-generation embedded programmable
logic architecture, optimized with processor
and bus interface

Over 2,600 flip-flops and 190 programma-
ble inputs and outputs (P1Os)

Abundant, flexible interconnect structure
with easy access to and from system bus

Dedicated circuitry for fast adders,
counters, and multipliers

CSL cells optionally used as distributed
memory, including true dual-port operation

Six independent low-skew clock or global
signal distribution buffers plus bus clock

Supported by standard logic design tools
— VHDL and Verilog logic synthesis

— Schematic entry

— VHDL and Verilog simulation

B High performance dedicated system bus

Configurable System Interconnect (CSlI)
bus integrates CSL matrix, CSoC system

455Mbytes per second peak transfer rate
32-bit address bus and 32-bit data bus
Programmable wait-state support

Openly-defined CSI Socket bus interface to
CSL matrix

— CSL peripheral addresses independent
of placement in CSL matrix

— CSL peripherals compatible with past
and future CSoC families

Ten bus masters and built-in arbitration
— ARM7TDMI™ CPU

— Four-channel DMA controller

— JTAG interface

SUBJECT TO CHANGE

TCH305-0001-002

WMaTriscend

System Overview

The Triscend A7S Configurable System-on-Chip (CSoC) device is a complete, high-
performance user-programmable system. The A7S contains

= an embedded 32-bit ARM7TDMI RISC processor

= a next generation embedded programmable logic architecture, optimized for processor
and bus interface

= a high-performance 32-bit internal bus supporting up to 455Mbytes per second peak
transfer rates

= 16Kbytes of internal scratchpad SRAM memory and a separate 8Kbyte cache.

The ARM7TDMI is a general-purpose 32-bit RISC microprocessor that supports the com-
plete ARM 32-bit instruction set and the reduced 16-bit instruction set, referred to as
Thumb. The ARM7TDMI processor offers the following advantages:

= High-performance for very low power consumption and price
= Excellent code density using the Thumb instruction set
= Low-latency interrupt response

ARM7TDMI Processor System with Cache, Scratchpad RAM

The processor is paired with an 8Kbyte unified code/data cache and a 16Kbyte (4Kx32)
scratchpad RAM for storing timing critical code or data. The scratchpad is accessible over
the Configurable System Interconnect (CSI) bus by other CSI bus masters, primarily for
DMA transfers. The ARM processor is integrated with other system components and the
Configurable System Logic (CSL) matrix to provide a complete configurable system, as il-
lustrated in Figure 1.

Next-Generation Embedded Programmable Logic Architecture

The embedded SRAM-based Configurable System Logic (CSL) matrix provides full, easy-
to-use system customization. The high-performance programmable logic architecture
consists of a highly interconnected matrix of CSL cells. Resources within the matrix pro-
vide seamless access to and from the internal CSI bus. Each CSL cell performs various
potential functions, including combinatorial and sequential logic. The combinatorial por-
tion performs Boolean logic operations, arithmetic functions, and memory. The sequential
element performs independently or in tandem with the combinatorial function. The abun-
dant programmable input/output blocks (P1Os) provide a highly flexible interface between
external functions and the internal system bus or configurable system logic. Each PIO of-
fers advanced 1/O capabilities including selectable output drive current, optional input hys-
teresis, and programmable low-power functionality during power-down mode.

Internal, High-Performance Bus

A high-performance internal system bus—called the Configurable System Interconnect
(CSI) bus— interconnects the embedded processor, its peripherals, and the CSL matrix at
a maximum speed of 60MHz. The bus simultaneously provides 32 bits of read data, 32
bits of write data, and a 32-bit address. Multiple bus masters arbitrate for bus access.
Potential bus masters include the ARM7TDMI processor, the read and write channels of
all four DMA channels, and the JTAG interface. CSL-based devices become CSI bus
masters using DMA services. The CSI bus and the local CPU bus following the little en-
dian format.

TCH305-0001-002 3 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

JTAG Connector 25V Tooxt
TCK_TMS_TDI_TDO | "% +33v supply
+ + + * T T T CSoC Initialization Data
TCK TMS TDI TDO VCC VCCIOVSYS Application Code Storage
32.768 kHz CEO- CE-
WA XIN WE- WE-
= OE- oe- FLASH
L] xout b0 1Mx8
A[19:0]
SDCEO-
. SDCLK
vecio Triscend A7 SDCKE
% Conflgurable_ D[7:0] Faster Code Fetch Store
RST- System-on-Chlp D[1558] [Application Data Storage
vceio (CSOC) D[23:16] —] CE-
D[31:24] | o RAS
CAS
SLAVE- aal ||+ WE-
“25v ' DQM([1:0]
SDRAM
A[19:0 CLK
L VCCPLL A[23:20] cke 4Mx16
GNDPLL A[31:24]
PIO[xxx:0] GND GNDIO .
L] o BS[1:0]
J7 l A[10:0]
$ DQ[15:0]
CE-
o RAS
CAS
. L1 WE-
54 DQM[1:0]
SDRAM
&K 4Mx16
[7:6]
! BS[1:0]
f8s) A[10:0]
DQ[15:0]

Figure 2. A typical A7S-based system.

External Interface to Flash, SDRAM

A static memory interface unit seamlessly connects the A7S device to external static
memories such as Flash or SRAM, as shown in Figure 2. An external Flash memory de-
vice contains the A7S’s initialization boot program plus the system application code. The
external memory interface has programmable read/write control and chip-select signals
that provide flexible set-up, strobe, and hold timing. The CPU connects directly to exter-
nal memory, eliminating any potential latency incurred by using the CSI bus. For low fre-
quency or minimal applications, the ARM7TDMI processor directly fetches its instructions
from external Flash.

The A7S optionally supports external SDRAM, offering additional affordable and high-
density memory to the system. The SDRAM interface connects an A7S-based system to
a variety of SDRAM types and configurations, including 100-pin DIMMs. The SDRAM in-
terface operates at up to 60 MHz and provides options to optimize the interface timing for
slower system clocks. SDRAM memory is ideal for DMA buffers. Similarly, the applica-
tion program can be stored in slow, cheap, byte-wide Flash and copied into SDRAM at
power-up. Then, the CPU starts executing code from the wider and faster SDRAM mem-
ory. The Flash and SDRAM interfaces share device pins, as shown in Figure 2.

SUBJECT TO CHANGE 4 TCH305-0001-002

WMaTriscend

Four-Channel DMA

The four-channel DMA controller provides high-bandwidth communication between CSL-
based I/0 devices, at up to 228M bytes per second, per direction. The easy-to-use DMA
handshake simplifies interface and control logic within the CSL. The DMA controller pro-
vides advanced capabilities such as linked-list and frame-transfer support.

Dedicated Peripherals
The A7S also offers a set of common dedicated peripherals including

= two 16-bit timers with pre-scalers,

= two 16C450/550-like serial controllers (UART), with an optional modem interface
= a 32-bit watchdog timer, and

= an interrupt controller.

Complete Single-Chip System

The majority of the system, including the CPU, operates from a single clock signal. The
clock source is typically driven directly via an external pin or connected to the on-chip PLL
clock synthesizer. The clock synthesizer operates from an external 32.768 kHz watch
crystal. Additionally, an internal ring oscillator is provided. Six other global buffers pro-
vide high-fanout signals to CSL functions. The bus clock and the global buffers are op-
tionally stopped upon a breakpoint event and shut off during power-down mode.

Power management controls provide selectable power-down options over internal func-
tions. Furthermore, each PIO provides pin-by-pin power-down settings.

An internal initialization boot ROM controls device initialization after power-on or after the
reset pin is released. The initialization boot ROM locates user's initialization data and
code stored in external Flash or other non-volatile memory. The Triscend FastChip de-
velopment system programs external Flash via the A7S’s JTAG port.

Additionally, the JTAG interface provides real-time, in-system debugging capabilities,
eliminating the need for an external emulator. The JTAG interface has full access and
control over the CPU, peripherals, and CSL functions during debugging.

When debugging application software, the A7S employs the rich set of standard
ARM7TDMI debugging tools. The A7S fully supports the standard ARM internal break-
point and watchpoint capabilities. In addition, the A7S’s breakpoint unit monitors both the
CPU local bus or the CSI bus. Upon a predefined set of conditions, the breakpoint unit
halts or interrupts the execution of the application program. The breakpoint unit also sup-
ports real-time tracing of local CPU bus or the CSI bus transactions.

All together, the Triscend A7S Configurable System-on-Chip (CSoC) platform offers un-
paralleled time-to-market and performance advantages for embedded system designs.

TCH305-0001-002 5 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

A7S Development Support

The Triscend A7S Configurable System-on-Chip (CSoC) platform is supported by a vari-
ety of third-party development tools including compilers, debuggers, real-time operating
systems (RTOS), and in-system debuggers/emulators as shown in Table 2. Most compil-
ers that support the ARM7 architecture also support the Triscend A7S CSoC device. To
accelerate development, there are multiple development boards available, shown in Table
3. Additionally, Triscend provides a free Software Development Kit (SDK) that includes
board support packages (BSPs) for leading RTOS environments and a source-level driver
library.

The A7S’s Configurable System Logic (CSL) matrix is well supported by a variety of logic
design entry solutions, including both VHDL or Verilog logic synthesis and schematic entry
as shown in Table 2. Likewise, there are VHDL and Verilog simulation models available
for popular logic verification tools.

Table 2. Supported Development Tools for A7S CSoC.

ARM7TDMI Software Development CSoC/Logic Design Development

Triscend Software Development Kit (SDK) | Triscend FastChip CSoC Development

= Source-level device driver library System

= Board Support Packages (BSPs)
Compilers

= Wind River Diab C/C++™ Compiler
= ARM® Developer Suite (ADS) C/C++

= Graphical development/integration
environment, Windows-based

= Drag-and-drop Soft Module library

= Create initialization images for Triscend
CSoC devices

Compiler ' = Download directly or program external
= GNU C Compiler (GCCQC) Flash via JTAG
Source-Level Debuggers = Seamless integration with third-party

= Wind River visionCLICK, in-system sup- microprocessor and logic design tools

port using Wind River visionPROBE I = Powerful real-time, in-system debugging

= ARM eXtended Debugger (AXD)
= GNU gdb Debugger

Real-Time Operating System (RTOS)
Support

= Wind River Tornado/VxWorks®
= Red Hat eCos™
= Red Hat yClinux

JTAG-Based Hardware
Emulators/Debuggers

= Wind River visionPROBE Il (ARM and
CSoC debugging)

= ARM Mutli-ICE™ (ARM only debugging)

= EPI JEENI and MAJIC™ (ARM only de-
bugging)

VHDL/Verilog Logic Synthesis
= Synplicity® Synplify®

= Synopsys® FPGA Compiler Il
Schematic Entry

= Cadence/OrCAD Capture

= SpinCircuit eCapture

= Innoveda ViewDraw

VHDL Logic Simulation

= Model Technology™ ModelSim
= Innoveda Fusion/Speedwave

= VITAL/SDF support

Verilog Logic Simulation

= Model Technology™ ModelSim

= Cadence® Verilog XL®

= Synopsys®VCS

Triscend CSI Bus Functional Model

SUBJECT TO CHANGE 6

TCH305-0001-002

http://www.windriver.com/products/html/dcc_compiler.html
http://www.arm.com/devtools/ADS?OpenDocument
http://www.gnu.org/software/gdb/gdb.html
http://www.windriver.com/products/html/vclick.html
http://www.windriver.com/products/html/vprobeii.html
http://www.arm.com/devtools.ns4/html/ADS!OpenDocument&ExpandSection=4#_Section4
http://www.gnu.org/software/gdb/gdb.html
http://www.windriver.com/products/html/vxwks54.html
http://www.redhat.com/embedded/technologies/ecos/
http://www.redhat.com/embedded/technologies/micro-linux/
http://www.windriver.com/products/html/vprobeii.html
http://www.embeddedperformance.com/products/arm/hardware/jeeni.shtml
http://www.embeddedperformance.com/products/arm/hardware/majic_arm_datasheet.shtml
http://www.triscend.com/products/indexfcintro.html
http://www.triscend.com/products/indexfc_ip.html
http://www.synplicity.com/products/synplify.html
http://www.synopsys.com/products/fpga/fpga_comp11.html
http://www.orcad.com/product/Schematic/Capture/default.asp
http://www.spincircuit.com/download.html
http://www.innoveda.com/products/datasheets_HTML/viewdraw.asp
http://www.model.com/products/default.asp
http://www.innoveda.com/products/datasheets_HTML/sw.asp
http://www.model.com/products/default.asp
http://www.cadence.com/company/pr/photogallery/prod_verilog_xl.html
http://www.synopsys.com/products/simulation/simulation.html

WMaTriscend

((>ICIS) 1y wawdojarag ammuos\

"MO|4 JuswdojaAad S/ puadsiil pajrelag ‘g ainbi

pieogiebie] /v

()) Jorenw3/iabbngaq
(7a4) »ureaineg diyoised paseg-ov.Ll 050 1y
1866ngag) <
[2A87-82n0S »| Ongsg/peojumoq Q
A
weiboig e Buibbngag waisAs-u| ‘awl] -feay
uolezifenu uonezifeniu
Alepuooss 208D
N
N adAL
- Alows pue
apoD 193[q0 a.nbyuod h 921N0S %90[D ()
L >
A D |9po
O [euonoun4g
119N \. — sng IS0
ubisaqg 1SD 6 El=]
Y
salelql] ulwil 4as
i —
LINGY N : . [~ uolre|nwis Bulwil
1009 =~
S N R soies [[| (L
: ! IS N IsI1eN
siesausg /V uone|nwIs A A A
— + A salelql
) sjurelisuo)d mU uone|nwiIs
o ! arelaua ul < puaosi]
obeyoed SS9.ppy ! o puia
e — i 1
y
SOLY sjurenysuod SISAYIUAS
C D, ue)
. uoieInBlyuoD it \\ 21607
— 5 _mvos__w pue uonelbalu| ubisag DosD yy
6 ulwwelibo.id O
Hioddng | endwod 4400 i uoneoyddy
pleog pusdsuy \“ INGLLNYY ZNYY O d d
Aleiqi || alniae) uonduossg
< Areigry SINPON aneweyds | | BojuaA/IaHA
—— usDs) pIEaId IsipaN
Areiqi P - -lasn 0’0z dia3
19AUQ TYHLY | | < > salelIqg]
puaosi ubisaqg
puadsii]
O 1odwy
— /
owvo%m_mmm@\&mm_.mv\uw%._. walsAs 1wawdojanaq a_couwmu_iu.&.. sjoo] ubisaqg 21607 Alred-paiyL
. i J J . J

SUBJECT TO CHANGE

TCH305-0001-002

Triscend A7S Configurable System-on-Chip Platform

Table 3. A7S Development Boards.

Supplier Part Number
Triscend Corporation THW-KIT-720
Embedded Performance Inc. (EPI) Dev-A7

PC-Based Development Platform

Figure 3 presents a detailed view of the entire Triscend A7S development flow. FastChip
is a Windows-based application and operates on most PC-compatible computers with the
recommended minimum 192Mbytes of RAM memory. The Triscend FastChip develop-
ment system provides design integration and configuration capabilities, working in con-
junction with third-party logic design and software development tools.

Powerful FastChip CSoC Development System

FastChip includes a powerful Soft Module library of commonly used embedded systems
functions like additional UARTS, timers, various bus interfaces, etc. Likewise, FastChip
includes libraries that allow designers to create custom functions using third-part logic de-
sign and simulation tools. Designs imported into FastChip via an EDIF 2.0.0 netlist be-
come FastChip modules.

FastChip also exports a CSoC designs for either VHDL or Verilog logic simulation pur-
poses. A Triscend-provided bus functional model simulates traffic on the A7S’s internal
CSl bus.

Seamless Integration with ARM7TDMI Compiler

After defining the A7S’s logic, FastChip’s Bind utility creates the physical hardware im-
plementation for the CSoC device. Similarly, FastChip’s Generate utility allocates ad-
dresses for any functions attached to the Configurable System Interconnect (CSI) bus and
creates an application programming model for a third-party ARM compiler. This model in-
cludes register definitions for both standard ARM7TDMI functions and any custom hard-
ware.

FastChip combines the output from the Bind utility and the object code from the
ARM7TDMI compiler to create a CSoC initialization image. Using this image, FastChip ei-
ther directly downloads to an A7S device or programs external Flash memory attached to
the A7. Optionally, the initialization image can be saved as an Intel Hex file four use with
an external device programmer.

Real-time, In-system, Full-Speed Debugging

Furthermore, FastChip provides a real-time, in-system debugging environment using the
actual A7S production silicon with the actual system hardware and application software.
FastChip drives a supported JTAG-based debugger/emulator and provides interfaces to
third-party source-level debuggers. Via a source-level debugger, software developers
have register-level access to the A7S device, complete with breakpoints and trace. Fast-
Chip’s Debug utility also provides logic debugging capabilities, including the ability to
probe flip-flop values and the outputs of CSL cells.

FastChip’s Configure and Download/Debug utilities are packaged as a separate, stand-
alone application called FastChip Device Link (FDL), providing software developers with
necessary software development capabilities without the complexity of the entire FastChip
CSoC development system.

SUBJECT TO CHANGE 8 TCH305-0001-002

http://www.triscend.com/products/Textdeva7.html#A7StartKit
http://www.embeddedperformance.com/products/arm/hardware/dev-a7_board.shtml
http://www.triscend.com/products/indexfc_ip.html

WMaTriscend

Comprehensive Technical Support

The Triscend A7S Configurable System-on-Chip family and the FastChip development
system are supported by a world-wide network of factory-trained field applications engi-
neers. Additionally, the Triscend SupportCenter provides online support via the world-
wide web at http://support.triscend.com or via E-mail at SupportCenter@Triscend.com.

TCH305-0001-002 9 SUBJECT TO CHANGE

http://support.triscend.com/
mailto:SupportCenter@Triscend.com

Triscend A7S Configurable System-on-Chip Platform

Address[31:0]

il

Address Register 0
o

2

c

Q

2 =

= Address [}

Q Incrementer 2

Register Bank

(31x32-bit registers)
(6 status register)

—
/_,\ 32x8 ; :

\‘_\/ Multiplier \‘_‘/

[—

Barrel
Shifter

b J4t

i 32-bit ALU /

I

ALU bus

A bus
B bus

. . Instruction Pipeline
Write Data Register Read Data Register
Thumb Instruction Decoder

g i)

Write Data[31:0] Read Data[31:0]

Figure 4. ARM7TDMI CPU Block Diagram.

ARM7TDMI Processor Overview

The A7S Configurable System-on-Chip family includes an embedded ARM7TDMI 32-bit
RISC processor. The A7S is binary compatible with other ARM7-based devices. Figure 4
shows the major architectural features within the ARM7TDMI processor and the following
text provides a brief overview. Please refer to the ARM7TDMI data sheet or Resources
for more additional information.

Notable Architectural Features

Registers

The ARM7TDMI CPU has sixteen active 32-bit general-purpose registers at any given in-
stance. There are a total of 31 such registers but some are only available during excep-

tion handling.

SUBJECT TO CHANGE 10 TCH305-0001-002

http://www.arm.com/

WMaTriscend

Arithmetic Logic Unit

The arithmetic logic unit (ALU) performs 32-bit arithmetic and logic instructions in a single
clock cycle.

Barrel Shifter

The 32-bit barrel shifter allows a general shift operation to be combined with a general
ALU operation in a single instruction that executes in a single clock cycle.

Hardware Multiplier

The ARM7TDMI processor includes a dedicated 32 x 8 hardware multiplier. Additionally,
the multiplier supports multiply-accumulate functions, which are central to many digital
signal processing (DSP) applications.

The performance of the multiplier depends on the data values and the type of data multi-
plied, as shown in Table 4. The multiplier terminates the instruction immediately upon
computing the result, regardless of the data width.

Table 4. ARM7TDMI Multiplier Performance.

Multiplier Operation Clock Cycles
32x32=32 2t05
Multiply two 32-bit values with a 32-bit result
32x32=64 3to6
Multiply two 32-bit values with a 64-bit result
32x32+32=32 3to6

Multiply two 32-bit values, add the result with a 32-bit value, producing
a 32-bit result
32x32+64=64 4107
Multiply two 32-bit values, add the result with a 64-bit value, producing
a 64-bit result

Conditional Code Execution

Each ARM instruction is conditionally executed, based on the current status flags. The
capability minimizes short branches, which might otherwise reduce system performance.

Three-Address Data Processing Instructions

The two source operand registers and the result register are independently specified,
which aids performance and improves code density.

Thumb Instruction Set

The Thumb instruction set provides an extremely dense 16-bit representation of the most
commonly used instructions. Thumb offers cost advantages for smaller systems and per-
formance advantages in systems with 8-bit or 16-bit external memory subsystems.

CISC-like Instructions

Load and store multiple instructs allow an application to quickly and easily save and re-
store registers

TCH305-0001-002 11 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Operating States

The ARM7TDMI processor provides two operating states. ARM state executes 32-bit,
word-aligned ARM instructions, providing the full richness of the ARM instruction set. The
alternate THUMB state operates with 16-bit, half-word aligned THUMB instructions, offer-
ing significant code size reductions. An application can switch between the two states
providing the optimum mix of performance and code density.

Operating Modes

The ARM7TDMI processor supports seven different operating modes, as shown in Table
5. Mode changes may occur under software control or by external interrupts or exception
processing. Most application programs execute in User mode. The non-user modes,
known as privileged modes, are designed to service interrupts or exceptions, or to access
protected system resources.

Table 5. ARM7TDMI Operating Modes.

Mode Purpose
User (usr) The normal ARM program execution state.
FIQ (fiq) Designed to support a data transfer or channel processes.
IRQ (irq) Used for general-purpose interrupt handling.
Supervisor (svc) | Protected mode for the operating system.
Abort (abt) Entered after a data or instruction prefetch abort.
System (sys) A privileged user mode for the operating system.
Undefined (und) | Entered when an undefined instruction is executed.

Registers

The ARM7TDMI has 37 registers, consisting of 31 general-purpose 32-bit registers and
six status registers. However, not all registers are viewable at once. The visibility of a
particular register depends on the processor state and operating mode.

ARM State Register Set

In ARM state, 16 general registers and one or two status registers are visible at any one
time. In privileged (non-user) mode, various mode-specific banked registers become
available. Table 6 shows which registers are available in each operating mode. Banked
registers are shaded.

The ARM state register set contains 16 directly accessible registers, named RO through
R15. All of these, except R15, are general-purpose registers and may store either data or
address values.

Additionally, there is a seventeenth register used to store status information, named
CPSR (Current Program Status Register).

FIQ mode supports seven banked registers mapped to R8 through R14 (R8_fig through
R14 _fig). In ARM state, many FIQ handlers do not need to save any registers. User,
IRQ, Supervisor, Abort, and Undefined each have two banked registers mapped to R13
and R14, allowing each of these modes to have a private stack pointer and link registers.

SUBJECT TO CHANGE 12 TCH305-0001-002

WMaTriscend

R14

R15

CPSR

Used as the subroutine link register. Receives a copy of R15 when the Branch
and Link (BL) instruction is executed. At all other times, R14 performs as a
general-purpose register. Similarly, the corresponding banked registers—
R14_svc, R14_irq, R14_fiq, R14_abt, and R14_und—hold the return values of
R15 when interrupts or exceptions occur, or when a Branch and Link (BL) in-
struction is executed within an interrupt or exception handling routine.

Holds the Program Counter (PC). In ARM state, R15 bits [1:0] are zero while
R15 bits [31:2] contain the program counter (PC). In THUMB state, R15 bit 0
is zero and R15 bits [31:1] contain the PC.

The Current Program Status Registers (CPSR) contains condition code flags
and the current mode bits.

ARM Thumb Extensions

The ARM7TDMI processor includes the Thumb extension to the 32-bit ARM architecture.
The Thumb instruction set features a subset of the most commonly used 32-bit ARM in-

structions, which have been compressed into 16-bit wide op codes.

When executed,

these 16-bit instructions are decompressed transparently into full 32-bit ARM instructions,
in real time, without degrading performance.

Designers can use both 16-bit Thumb and 32-bit ARM instructions sets in an application,
providing an optimal mix of code density, performance, and instruction richness.

Table 6. Register organization in ARM state.

ARM State General Registers and Program Counter

System &
User FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8 fiq R8 R8 R8 R8
R9 R9 fig R9 R9 R9 R9
R10 R10_fig R10 R10 R10 R10
R11 R11 fig R11 R11 R11 R11
R12 R12 fiq R12 R12 R12 R12
R13 R13 fiq R13 svc R13 abt R13 irq R13 und
R14 R14 fiqg R14 svc R14 abt R14 irq R14 und
R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)
ARM State Program Status Registers
[cpsrR || cCPSR CPSR CPSR CPSR CPSR
SPSR fiq SPSR svc | | SPSR_abt SPSR irq SPSR und

|:| indicates a banked register.

TCH305-0001-002

13

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Thumb offers better code density than common 8- and 16-bit CISC/RISC controllers.
Thumb application programs are merely a fraction of the code size of traditional 32-bit ar-
chitectures. Consequently, program memory is smaller and hence cost reduced.

THUMB State Register Set

The THUMB state register set is a subset of the ARM state set. The programmer has di-
rect access to eight general-purpose registers, named RO through R7, plus the Program
Counter (PC), a stack pointer register (SP), a link register (LR), and the Current Program
Status Register (CPSR).

There are banked Stack Pointers, Link Registers, and Saved Process Status Registers
(SPRs) for each privileged mode, as shown in Table 7.

In THUMB state, registers R8 through R15—called the Hi registers—are not part of the
standard THUMB register set. However, the assembly-language programmer has limited
access to the Hi registers and can use them for fast temporary storage.

Values are transferred from a Lo register (RO through R8) to a Hi register, and vice versa,
using special variants of the MOV instruction. Hi register values can also be compared
against or added to Lo register values using the CMP and ADD instructions.

Program Status Registers

The ARM7TDMI processor contains a Current Program _Status Register (CPSR) plus
five Saved Program Status Registers (SPSRs) used by exception handlers. These regis-
ters

= Hold information about the most recently-performed ALU operation
= Control the enabling and disabling of interrupts
= Set the processor operating mode

The bottom 8 bits of a program status register, consisting of the I, F, T, and M[4:0] bits,
are known collectively as the control bits. These bits change when an exception occurs.

Table 7. Register organization in THUMB state.
THUMB State General Registers and Program Counter

System &
User FIQ Supervisor Abort IRQ Undefined
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
SP SP_fig SP_svc SP_abt SP_irq SP_und
LR LR fig LR svc LR _abt LR irg LR _und
PC PC PC PC PC PC
THUMB State Program Status Registers
[cpsrR || cPsR CPSR CPSR CPSR CPSR
SPSR fiq SPSR svc | | SPSR abt SPSR irq SPSR und

|:| indicates a banked register.

SUBJECT TO CHANGE

14

TCH305-0001-002

WMaTriscend

If the processor is operating in a privileged mode, these bits may be manipulated by soft-
ware.

When changing a program status register value, you must ensure that the reserved bits
are not altered. Furthermore, the application program should not rely on the reserved bits
containing a specific value.

Program Status Register Format

Bit Description/Function
31 | Negative, Less Than (N):
30 | Zero (2):

29 | Carry, Borrow, or Extend (C):
28 | Overflow (V):
27:8 | Reserved
7 IRQ Disable (I):
0: IRQs enabled
1: IRQs disabled
6 FIQ Disable (F):
0: FIQs enabled
1: FIQs disabled
5 THUMB State Enable (T):
0: Operating in ARM state, using 32-bit instructions
1: Operating in THUMB state, using 16-bit instructions
4:0 | Operating Mode (M[4:0]):
These bits determine the processor’s operating mode, as shown in Table 8.
Only use values explicitly defined. These values are typically set by the real-
time operating system.

Table 8. Processor Operating Mode Settings.

Mode M[4:0]
User 10000
FIQ 10001
IRQ 10010
Supervisor 10011
Abort 10111
Undefined 11011
System 11111

TCH305-0001-002 15 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Exception Vectors

When an exception occurs, such as a reset or an interrupt, the processor branches to a
predefined vector address as shown in Table 9. The table shows the source or cause of
the exception, the priority of each exception should they happen simultaneously, the CPU
operating state entered by the exception, and the vector address.

Table 9. ARM7TDMI Exception Types and Vectors.

Exception CPU Vector
Type Priority Cause/Source State Address
Fast Interrupt FIQ interrupt to the Interrupt
(FIQ) 3 Controller FIQ 0x1C
Interrupt Any of the 15 IRQ interrupts to
(IRQ) 4 the Interrupt Controller IRQ 0x18
Reserved 0x14
Data Abort > Memory access V.IO|a'[I0nS from Abort 0x10
the Protection Unit
Prefetch The CPU attempts to execute an
retete 5 invalid instruction or a BKPT Abort 0x0C
Abort . .
instruction
Software 6 The CRU executes a SWI Supervisor 0X08
Interrupt instruction
Undefined The CPU executes a coprocessor
. 6 instruction and no coprocessor Undefined 0x04
Instruction
responds
Reset 1 Any reset condition Supervisor 0x00

SUBJECT TO CHANGE 16 TCH305-0001-002

WMaTriscend

Side-band Signals
} CSlI SockeAt Interface i

r A

4.1\
Data Write 3

e vreewermn
K Data Read

Address >

ARM7TDMI
Processor

4-Channel
DMA Controller

Bus Clock >

DMA Request/
Acknowledge

-

Wi g

Configurable System Interconnect (CSI) Bus

Wait-State
Control

Configurable System Logic (CSL) Matrix

Breakpoint

Hardware Control

Breakpoint Unit

y

A
A

Figure 5. The Configurable System Interconnect (CSI) bus and the socket interface to
user-defined logic functions in the CSL matrix.

Configurable System Interconnect (CSI) Bus

The Configurable System Interconnect (CSI) bus, shown in Figure 5, bridges the proces-
sor with its peripherals including the Configurable System Logic (CSL) matrix.

The CSI bus socket provides a simple, synchronous interface to custom logic functions or
peripherals implemented in the CSL matrix, as shown in Figure 6. The CSI bus interface
socket consists of the following signals.

= A 32-bit write data port

= A 32-bit read data port, including a read enable signal and read return path from the CSL
matrix onto the CSI system bus

= A 32-bit address port

= A set of address Selector functions to decode CSI bus transactions. The number of Se-
lectors varies according to device size as shown in Table 10. The Selectors also option-
ally steer DMA request and acknowledge signals to and from CSL-based devices.

= The bus clock. All CSI bus events occur on the rising edge of the bus clock.
= Wait-state control and monitor signals
= Hardware breakpoint control and monitor signals

Data Write Port

After being granted the bus by the CSI bus arbiter, the current CSI bus master presents
up to 32 bits of write data on the CSI socket during every active bus cycle.

TCH305-0001-002 17 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Data Write -I Iﬂ‘» ------------------------- +>_|- Data Read
32 32
Address = 7‘»
32
Selector Decode— — CSL Logic —» —Read Enable
DMA Acknowledge—] |—pei FUNCION + 1 1 Hyia Regsel
Bus Waited — —— —— —Wait Next Cycle
Breakpoint Event— —> —>] — Force Breakpoint
-
Bus Clock—l— Synchronous Interface

Figure 6. The CSI bus socket represents a simple-to-use, synchronous interface to cus-
tom logic functions implemented in the CSL logic matrix.

Data Read Port

An decoded or acknowledged CSL-based function asserts its read enable signal to pre-
sent up to 32 bits of read data onto the CSI bus socket. All unselected CSL functions
drive the read port with logic Low. The read data values from all CSL-based functions are
logically OR-ed together before appearing on the CSI bus. Read data can be presented
during every active bus cycle.

Byte, Half-Word, and Word Operations and Data Alignment

The CSI bus provides automatic handling for byte, half-word, and word operations. Figure
7 shows the supported data types and the associated byte lane alignment for each type.
A 32-bit register can optionally be addressed as a single 32-bit word, two 16-bit half-
words, or as four individual bytes.

Address Port

The bus master, granted the bus by the CSI bus arbiter, presents 32 bits of address on
the CSI socket during every active bus cycle.

All 32 address bits appear the CSl interface socket. Typically, only a few if any of the ad-
dress signals are used by functions in the CSL matrix. The actual address decoding for a
bus transaction is usually performed using the on-chip address Selectors.

Access A[1:0] 31 24 23 16 15 87 0
Word x x | Word (W)

Half-Word 0 x Half-word (HO)
Half-Word 1 x | Half-word (H1)
Byte 00 Byte (BO) |
Byte 01 Byte (B1)
Byte 10 Byte (B2)
Byte 11 | Byte (B3)

Figure 7. CSl bus data types and byte-lane alignment. The FastChip byte-lane
specifier is shown in parentheses.

SUBJECT TO CHANGE 18 TCH305-0001-002

WMaTriscend

Address Selectors

The CSI socket interface practically eliminates the need to use any CSL matrix resources
to decode bus transactions. One of the more important elements in the CSI socket inter-
face is the programmable address decoder function, generically called a Selector. A Se-
lector performs functions similar to a chip-select unit or an address decoder built using a
PLD. As shown in Figure 8, a Selector decodes a range of addresses and produces
separate read and write decode outputs, based on the bus address, and the size of the
data transaction, commonly referred to as byte enables. By specifying the matching con-
ditions, a Selector decodes a range of addresses, stretching from a single byte up to a
4Gbyte region in memory.

Match Value

N

Address]31:0] : —» Read Select

Selector

—» \Write Select
Byte Enable[3:0])

Figure 8. A simplified view of a Selector.

Address Selector Operation

A Selector detects transactions to a specified range of CSI bus addresses by decoding
the full 32-bit CSI address bus. If a transaction targets its address range, the Selector as-
serts one of its read or write decode outputs coincident with the appearance of address
and data on the bus socket, all synchronized to the bus clock. This approach dramatically
simplifies the logic and timing of CSL logic functions attached to the CSlI bus.

The number of available Selectors depends on the particular device. The number of Se-
lectors grows with the increasing size of the CSL matrix. There is one Selector located
above every column of sixteen CSL cells in a bank, as shown in Table 10 and Figure 16.

Table 10. Number of selectors by device.

Device Selectors
TA7S04 32
TA7S20 128

Functionally, each Selector is similar to diagram shown in Figure 9. Each Selector con-
tains two 32-bit registers that define the target address. The MATCHO register defines
which particular address bits match when the address bit is Low. The MATCH1 register
defines which particular address bits match when the address bit is High. If the same bit
location is set in both registers, then the corresponding address bit is a "don't care”,
matching regardless if the address bit is High or Low. For the A7, bits A[1:0] are typically
programmed for “don’'t care” because most transactions are word-oriented and word
aligned.

If all the address bits match the values defined in the MATCHO and MATCH1 register,
then the Selector further decodes read or write operations and the byte-lane alignment
setting. During a read operation, if the address matches to the correct target address and

TCH305-0001-002 19 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

byte-lane alignment, then the Selector asserts its read-select output, RDSEL. Likewise, if
the transfer is a write, then the Selector asserts its write-select output, WRSEL.

Address Specification

The MATCHO and MATCH1 register values are automatically defined by the Triscend
FastChip development system at design time and are loaded into the Selectors during de-
vice initialization. These register values are not changed by application software.

The addresses loaded into MATCHO and MATCH1 registers and the byte-lane alignment
are symbolically defined during hardware design by defining the following parameters.

= The symbolic name for the address range. This is the name used in application soft-
ware to refer to the target address range.

= The size of the addressed range, which must be a power of two, ranging from ‘1’ indicat-
ing a single byte to ‘4G’ indicating a 4G byte region.
= The byte alignment for the selector, whether defined a word-wide, half-word-wide, or
byte-wide access.
= The address space or spaces to which the selector should respond. For the A7, there
is a single 32-bit linear data space.
The Triscend FastChip Devel opment System allows you to specify only a symbolic
address. The FastChip Generate utility allocates and assigns the physical address

Jf!‘ for you, based on the resource reguirements that you define. The Generate utility
- also passes the symbolic and physical assignments to your compiler via a header

FastChi
P file By assigning only a symbolic address, all of your functions are re-useable and
can be mixed and matched without address conflicts.
T x
(e}
Csl BusAAddress 5 = DE ol
.) 55 2 sg ¢
? 2=z =T a = m
| X X b l
[Matcho: Is Bit Low? | W_vw I ——RDSELO
L I — Byte-Lane
[Matchi: Is Bit High? | I\/Yatching B
—) ——WRSELO
YW wy] —— RDSEL1
Byte-Lane
atching [®
——WRSEL1

Figure 9. The distributed address selector functions decode read and write transac-
tions to a target address range. The Selectors eliminate the need to build de-
coding logic using CSL resources.

SUBJECT TO CHANGE 20 TCH305-0001-002

WMaTriscend

© <
o
Csl BusAAddress 5 3. ol OI
< \ 5% 2 ig =
2 %2 =T @& x2 @
| (XX] P u
[Matcho: Is Bit Low?] Y Vlu |) [RDSELO
: —TL——— Byte-Lane 0_L
[Matchi: Is Bit High? | atching [
4) ———SELO
<
Y |) [RDSEL1
L/
Byte-Lane <
atching [
SO e

Figure 10.In chip select mode, an address selector decodes any read or write
transaction to the target address range.

The Triscend FastChip development system examines these settings from all of the Se-
lectors defined in the hardware design. It then allocates physical addresses to each Se-
lector. The assigned addresses are defined and specified in a header file, used during
software development.

Address Selector Modes

A Selector performs one of three potential functions as shown in Table 11.
Table 11. Address Selector Types.

Selector Modes Ports Function
RDSELO Read decode
Selector RDSEL1
WRSELO Write decode
WRSEL1
RDSELO R/W- control
. RDSELA1
Chip Select
SELO Chip select
SEL1 P

REQSEL DMA request

ACKSEL DMA acknowledge

DMASTAT | Early termination request
DMACTL Early termination acknowledge

DMA Control Register

Selector

A Selector separately decodes read and write operations to the target address range, as
shown in Figure 9. The RDSEL[1:0] output indicates a read operation, the WRSEL[1:0]
output indicates a write operation.

Chip Select

A Selector in chip select mode decodes any read or write transaction to the target address
range. Figure 10 shows a functional drawing of a chip select function. The SEL[1:0] per-
forms like a chip-select function, decoding both read and write transactions. The

TCH305-0001-002 21 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

RDSEL[1:0] output is asserted only during read operations and indicates the direction of a
data transfer.

DMA Control Register

A Selector provides a relocatable control register for CSL-based I/O devices requiring
DMA access. The DMA Control Register enables requests and steers the request and
acknowledge signals to the selected DMA channel. See the DMA Controller section for
more information.

Data Access and Selectors Required

In a 32-bit system, data is optionally accessed as a single 32-bit word, two 16-bit half-
words, or as four individual bytes. Each Selector provides two write-enable outputs and
two read-enable outputs to decode bus transactions to a specific address. The number of
Selectors to decode a CSL-based function depends on the data width of the function and
how it is accessed, as shown in Table 12.

For example, if the CSL-based function is a 32-bit wide register, then the CPU may ac-
cess it as a word, a half-word, or a byte. If the application always accesses the CSL reg-
ister as a word, never as a half-word or byte, then only half the Selector’s outputs are re-
quired to decode the register. However, if the CPU accesses the 32-bit register as four
bytes, then two Selectors are required.

Table 12. Number of Selectors required to access a CSL-based function of a given
data width, depending on data access type.

Function Data Access Type
Data Width Word Half-Word Byte
(3;Nb?trsd) & ! 2
8 brs) 72 72 72

CSI-to-CSL Bus Interface Design Example

Figure 11 illustrates how a 32-bit read/write register, implemented in the CSL logic, con-
nects to the CSI bus socket. Physically, the 32-bit register requires 32 CSL cells. Be-
cause a CSL bank is just 16 CSL cells high, a 32-bit register requires two CSL banks, but
is just one column wide. The actual physical implementation may be different, depending
on the application.

The CPU might access the 32-bit register as a 32-bit word, as two 16-bit half-words, or as
four individual bytes, as shown in Figure 12. Consequently, a 32-bit register may require
up to two address Selectors, which provide four separate read and write byte-enables.
The number of Selectors required depends on the data width of the CSL-based function
and the desired data access types, as shown in Table 12.

The signals shown in Figure 12 are relative to the CSL side of the CSI bus socket. In this
idealized series of transfers, the CPU performs various write and read transactions to the
CSL-based register.

® The CPU writes OxFFFFFFFF as a word-wide transfer to the data register. All four
byte-enables are asserted by their respective Selectors. The data register captures
the value OxFFFFFFFF on the next clock edge.

SUBJECT TO CHANGE 22 TCH305-0001-002

WMaTriscend

~
-~
CSI Bus
Socket
4
c
©
o
-
B et A Aty A I 0
. WRSEL2 . @)
: : o
@ WRSEL3 RDSEL3 - > g
S | ox <
= | D[31:24] D O Q[31:24] el oS S
@ . %4] o =
=M =0
c— | ! ENA © n
[a) ' [a) g
o E o
Zo | Te =
=4 [D[23:16] D O Q[23:16] N Za
c® | %4 oM
= =N =N
=) c— | ! ENA s
= [a) : [a)
» H [
é< ‘BCLK,: :
g CSI Bus
° Socket
2
|_
<
©
o]
-
B et A Al i i I 0
. WRSELO O
: o
@ WRSEL1 RDSEL1 = > g
. S <
[o°) . D[15:8 15:8 o
;L.n. [15:8] D Q Q[15:8] xz =)
SH | SH -
c— | ENA c— (4
[a) : [a) %
o E o
25 | D70 | o Q[7:0] ™ i4=)
o~ | v s,
o : ENA o
o : o
: o
‘ BCLK,: Y,
N~
g J
4

One column wide

A possible physical implementation of a 32-bit read/write data register
connected to the CSI bus.

Figure 11.

@ The CPU writes 0x0000 to the upper half-word of the data register. The CSI bus
automatically duplicates the upper half-word onto the lower half-word of the CSI Data
Write bus, making the bus value 0x00000000. Only the two byte-enables controlling
the upper 16 bits of the register are asserted. The data register captures the data and
the register output becomes 0xO000FFFF on the next clock edge.

The CPU writes 0x0000 to the lower half-word of the data register. As before, the CSI
bus automatically duplicates the half-word on the CSI Data Write bus. Only the two
byte-enables controlling the lower 16 bits of the register are asserted. The data regis-
ter captures the data and the register output becomes 0x0000000 on the next clock
edge.

TCH305-0001-002 23 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Write Write Write Write Write Write Write Read Read Lower Read
FFFFFFFF 0000xxxx xxxx0000 FFxxxxxx xxXFFxxxx xxxxFFxx xxxxxxFF Byte B2 Half-word Word

Bus Clock | | | | | | | | | | |
WRSEL3 _j@ @ _@_\
WRSEL2 | \ /@_\
WRSEL1 __/____/@_\ /@_\
WRSELO __/____/7_\ @_\

RDSEL3 /
RDSEL2 / \ j

\
\
RDSEL1 /@ \
\
)
)
)

RDSELO /

CSI Data Read ::X X X X X X X XOOFFOOOOXOOOOFFFFXFFFFFFFF

CsSI Data Write XFFFFFFFFX 00000000X00000000X|-|-|-|-|-|-|-|-X|-H—|—|—|—|—|—X|—|—|—|—|—|—|—|—X|—|—|—|—|—|—|—|—X X X

CSI Address :X Word X P WordX H;,?Vvvvord }Byte BSXByte BZXByte BlXByte BOXByte BZX Ha,?vvvvorrdx Word

A N A N k A N

CSL Register XFFFFFFFFXOOOOFFFFX00000000XFFOOOOOOXFFFFOOOOXFFFFFFOOX FFFFFFFF

Figure 12. Idealized data transfers to a 32-bit register shown in Eigure 11.

@ The CPU writes OxFF to the upper-most byte, byte B3, of the data register. The CSI
bus automatically duplicates the byte across all four byte lanes, making the CSI Data
Write bus OXFFFFFFFF. Only a single byte-enable is asserted, controlling the upper 8
bits of the register. The data register captures the data and the register output be-
comes OxFF000000 on the next clock edge.

® through @ are similar to @ except that different byte-enables are asserted. After @, the
register value becomes OxFFFFFFFF on the next clock edge.

The CPU reads from byte B2. Only the RDSEL2 byte-enable is asserted, placing bits
Q[23:16] onto the CSI Data Read bus. All other byte lanes are zero because they are
not selected in this transaction. The value 0xO0FFO0000 appears on the CSI Data
Read bus.

® The CPU reads the lower half-word from the data register. The two byte-enables con-
trolling the lower 16 bits of the register place bits Q[15:0] onto the CS| Data Read bus
and the value O0x0000FFFF is captured on the next rising clock edge. All other byte
lanes are zero.

® The CPU reads the entire 32-bit data register as a word-wide transaction. All four
byte-enables are active placing bits Q[31:0] onto the CSI Data Read bus. The
OxFFFFFFFF value is captured on the next rising clock edge.

SUBJECT TO CHANGE 24 TCH305-0001-002

WMaTriscend

Wait-State Monitor and Control Signals

The CSI socket interface includes signals to monitor and control wait-states on the internal
system bus.

WAITED (output from bus socket)

The WAITED signal indicates that a wait-state was asserted during the previous CSI bus
cycle. Though rarely used, this signal is typically used in FIFO control logic.

Initial Wait-State Insertion

Some CSL logic functions implemented in the CSL matrix may require wait-states, either
because the CSL logic function handshakes with another asynchronous device or if the
CSL logic function is too slow to respond in a single bus cycle.

If a CSL logic function requires any wait-states, then a Selector must assert the first wait-
state. The Selector only asserts a wait-state if the system is accessing the Selector's tar-
get address space.

Should a CSL logic function require additional wait-states beyond the first wait-state as-
serted by the selector, then the CSL logic function inserts additional wait-states by assert-
ing the WAITNEXT signal on the CSI socket interface.

NOTE:

If a CS.-based function requires any CS bus wait-states, then a Selector must
assert the first wait-state cycle.

WAITNEXT (input to bus socket)

If a CSL function requires more than one wait-state, then it inserts additional wait-states
by asserting the WAITNEXT signal before the next rising clock edge on Bus Clock. Again,
a Selector must always insert the first wait-state. When valid on a rising clock edge, the
WAITNEXT signal causes a wait-state on the next bus cycle.

A CSL-based function may insert any number of wait-states. There is not built-in time-out
mechanism. Functions that insert wait-states while waiting for an external event should
always consider the case where the external event never happens and release the bus.

Breakpoint Event Monitor and Control Signals

The CSI socket interface includes signals to monitor and control hardware breakpoint
events. These signals can be used to aid system-level debugging.

EVENT (output from bus socket)

CSL functions can monitor hardware breakpoint events using the EVENT signal. When
EVENT is asserted, a hardware breakpoint event has occurred, either caused by the built-
in hardware breakpoint unit or by another function in the CSL matrix that asserted the
BREAK signal.

The EVENT signal allows a CSL-based function to freeze in conjunction with the remain-
der of the system. A function that uses Bus Clock as its clock source is automatically fro-
zen during a breakpoint event.

BREAK (input to bus socket)

CSL functions can force a hardware breakpoint event by asserting the BREAK signal.
The built-in hardware breakpoint unit typically only monitors transactions on the CSI bus.
The BREAK signal allows CSL functions to interact with the hardware breakpoint unit.

TCH305-0001-002 25 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

For example, a CSL function could be monitoring a serial communications stream that
rarely interacts with the system bus. Upon detecting a particular pattern or error condition,
the CSL function could force a breakpoint event, stopping the system. The state of the
system or CSL functions could then be monitored through the JTAG port.

CSI Bus Transactions

The following section provides some example CSI bus transactions, demonstrating the in-
teraction of a CSL logic function and the CSI bus socket, including wait-states.

Data Write Transactions

During a data write transaction, the system sends data to a CSL logic function. The sys-
tem presents both write data and address.

Figure 13 shows a single-cycle write transaction to a CSL logic function. Write data and
address are presented on the CSI socket interface. The address is decoded using a Se-
lector. If the transaction is to the Selector's address range, then the Selector asserts its
WRSEL signal. The CSL function uses WRSEL to enable a register, as shown in Figure
11, and captures the write data on the next rising clock edge.

Bus Clock

Data Write
[31:0] DATA

wsel i\ 1

Figure 13. A single-cycle write transaction to a CSL logic function.

L

Figure 14 demonstrates a similar transaction, except that the CSL logic function requires
two clock cycles to capture the write data. The CSL logic function's Selector is configured
to assert the initial wait-state. When the Selector detects that the system is addressing it,
it asserts its WRSEL signal and automatically asserts the initial wait-state.

During the wait-state, the bus master continues presenting write data and address and the
Selector continues to assert its WRSEL output. The CSL function will capture the write
data during the second bus cycle so it does not assert WAITNEXT. The WAITED signal
indicates the wait-state inserted by the Selector during the first bus cycle. The transaction
ends after the second bus cycle and the Selector de-asserts its WRSEL output.

Bus Clock
Data Write
[31:0] DATA
WrSel /
i B
Waited Sele)étor _

Figure 14. A two-cycle write transaction to a CSL logic function.

Seethe* Designing with Triscend Selectors’ technical document within FastChip for
ﬂf‘ additional information on creating custom logic functions that connect to the CS
FastChip bus.

SUBJECT TO CHANGE 26 TCH305-0001-002

WMaTriscend

Data Read Transactions

During a data read transaction, the system presents the read address and the targeted
CSL function presents the data.

Figure 15 shows a single-cycle read transaction from a CSL function. The read address is
presented on the CSI socket interface. The address is decoded using a Selector. If ad-
dressed, then the Selector asserts its RDSEL signal. The CSL function uses RDSEL to
enable data onto the Data Read output port on the CSI socket, as shown in Figure 11.

Bus Clock B
RdSel / \

Data Read
B DATA\

Figure 15. A single-cycle read transaction from a CSL logic function.

Figure 16 demonstrates a similar transaction, except that the CSL logic function requires
two clock cycles to provide the read data. The CSL logic function's Selector is configured
to assert the initial wait-state. When the Selector detects that the system is addressing it,
it asserts its RDSEL signal and automatically asserts the initial wait-state.

During the wait-state, the bus master continues presenting address and the Selector con-
tinues to assert its RDSEL output. The CSL function will present valid read data during
the second bus cycle so it does not assert WAITNEXT. The WAITED signal indicates the
wait-state inserted by the Selector during the first bus cycle. The transaction ends after
the second bus cycle and the Selector de-asserts its RDSEL output.

Bus Clock

RdSel

ey

i B
Waited Sele)étor _

>z (IR

Figure 16. A two-cycle read transaction from a CSL logic function.

Using WAITNEXT during a transaction

There are four general rules for asserting a CSI bus wait-state, depending on the CSL
function's response time.

1. If the CSL logic function can respond within a single bus cycle, the no wait-states are
required.

2. If the CSL logic function can respond by the second bus cycle, then it associated Se-
lector must insert a single wait-state.

3. If three or more bus cycles are required before the CSL logic function can respond,
then the Selector is configured to insert the initial wait-state and the CSL function must
insert additional wait-states using the WAITNEXT signal.

TCH305-0001-002 27 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

4. If any wait-states are required on one side of a transaction, either read or write, then
the other side of the transaction requires at least one wait-state. The initial wait-state
inserted by a Selector occurs on both read and write transactions.

Figure 17 shows an example transaction where the selected CSL function insert wait-
states using the WAITNEXT signal. During the first bus cycle, the addressed CSL func-
tion's Selector asserts it RDSEL output. In this example, the function always requires at
least one wait-state, so the Selector inserts the initial wait-state. The CSL function is not
ready to respond in the first bus cycle, so the function asserts WAITNEXT, inserting a wait
state during the next bus cycle.

During the second bus cycle, the system continues providing address and the Selector
continues asserting RDSEL. The CSL function determines that it is ready to respond dur-
ing the next bus cycle and de-asserts WAITNEXT. The WAITED signal shows the wait-
state inserted by the Selector during the first bus cycle.

Finally, during the third bus cycle, the CSL logic function is ready to respond. The CSL
logic function provides data on the Read Data port on the CSI socket. The WAITED sig-
nal shows the wait-state inserted when the CSL function asserted WAITNEXT. The wait-
state occurred on the second bus cycle but WAITED reports the wait-state on the follow-
ing bus cycle.

Bus Clock

Rdsel i \
WaitNext J—_\\\

i B
Waited Sele)étor By CSL

owssers I o~

Figure 17. A multi-cycle transaction using WAITNEXT to insert wait-states.

CSI Bus Arbiter

The CSI bus arbiter schedules and manages traffic on the CSI bus.
Bus Masters

There are up to ten independent bus masters on the CSI bus, as shown below. Each
DMA channel separately requests read and write transactions because these requests
can sometimes be combined with other transfers on the CSI bus, as discussed below.

1. ARM7TDMICPU 7. DMA 2 Read

2. JTAG unit 8. DMA 2 Write
3. DMA 0 Read 9. DMA 3 Read
4. DMA 0 Write 10. DMA 3 Write
5. DMA 1 Read
6. DMA 1 Write

SUBJECT TO CHANGE 28 TCH305-0001-002

WMaTriscend

Arbitration Scheme

All active bus masters arbitrate for the bus using a round-robin arbitration scheme with
fixed prioritization. The arbitration priority rotates between the various active bus masters.
The bus arbiter attempts to fully utilize the CSI bus bandwidth by intermixing non-
conflicting transactions, as discussed below.

Simultaneous Transactions

The CSI bus arbiter can schedule two transactions during the same bus cycle provided
that ...

= Of the two bus requests, only one transfer is to a memory-mapped location. There is
only one address bus.

= The two transfer requests are in opposite directions. In other words, one must be a read
transfer, the other a write transfer. There are separate read and write busses.

Table 13 shows the type of traffic carried over the CSI bus and which portions of the CSI
bus are used during each type of transaction. The conditions outlined above allow a vari-
ety of simultaneous transactions. For example, the CPU can write to a memory location
while a DMA channel acknowledges a read request and gathers data from a CSL-based

device.
Table 13. CSI Bus Transaction Types.
CSI Bus
Transaction Type Address | Read Data | Write Data
CPU Read Cycle (over CSl-to-local bus v v
bridge)
CPU Write Cycle (over local-to-CSI bus v v
bridge)
DMA Acknowledge Read Cycle (read data v
from device to DMA FIFO)
DMA Acknowledge Write Cycle (write from v
DMA FIFO to device)
DMA Addressed Read Cycle (read from mem- v v
ory to DMA FIFO)
DMA Addressed Write Cycle (write from DMA v v
FIFO to memory)
JTAG Read Cycle v v
JTAG Write Cycle v v

Sideband Signals

All of the signals on the CSI socket interface are designed to be processor independent.
CSL logic functions designed using this interface can be re-used with future Triscend con-
figurable system-on-chip families.

NOTE: The SysRstN sideband signal is active-Low. All other sideband signals are active-

High.

The modem control sideband signals, DTR, RTS, CTS, DSR, DCD, and RI connect

to either UART_0 or UART _1, but not both simultaneously. The selection is con-
trolled by the UART' sMODEM _EN BIT.

However, some signals are processor specific. The signals are called "sideband" signals.
The sideband signals for the A7S family are shown in Table 14.

TCH305-0001-002 29 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

On most processors, these sideband signals would be assigned to dedicated pins. The
A7S CSoC is more flexible and these signals are optionally routed to any available PIO

pin or to logic in the CSL matrix.

Table 14. A7S Famil

Sideband Signals.

Active
A7S Function Direction Signal Polarity

Alternate clock,.output of the phase-locked PLL > CSL ACLK High
loop (PLL) multiplexer

Phase-locked loop (PLL) lock indicator PLL - CSL Plock High
System reset signal, actlve—l___ow. Active Reset > CSL SysRstN Low
upon any system reset condition

Serial port 0 transmit data CSL > UART 0 | SOUTO High
Serial port 1 transmit data CSL - UART 1 SOUT1 High
Serial port 0 baud rate clock UART 0> CSL | BDCLKO High
Serial port 1 baud rate clock UART 1> CSL | BDCLK1 High
Modem Data Terminal Ready (DTR) signal UART > CSL DTR High
Modem Request to Send (RTS) signal UART - CSL RTS High
Application reset from CSL matrix CSL > CPU AppRst High
ARMY Fast Interrupt (FIQ) signal CSL > CPU FIQ High
ARMY Interrupt Request 2 (IRQ2) CSL - CPU IRQ2 High
ARM?7 Interrupt Request 1 (IRQ1) CSL -> CPU IRQ1 High
ARM?7 Interrupt Request 0 (IRQO) CSL > CPU IRQO High
Serial port 0 receive data UART 0 > CSL SIN1 High
Serial port 1 receive data UART 1 > CSL SIN2 High
Modem Clear to Send (CTS) signal CSL > UART CTS High
Modem Data Set Ready (DSR) signal CSL > UART DSR High
Data Carrier Detect (DCD) CSL - UART DCD High
Modem Ring Indicator (RI) CSL > UART RI High

A

FastChip

The sideband signals are available as global signal hames within FastChip.

SUBJECT TO CHANGE

30

TCH305-0001-002

WMaTriscend

TA7S20 (4x4) |

TA7S04 (2x2)

- S,

Figure 18. The two members of the A7S CSoC device family range in density from four
CSL banks (448 CSL cells) up to 16 CSL banks (2,048 CSL cells).

Sideband Interface
[] «—
CSL CSL CSL
Bank Bank Bank
[| [| «—
CSL CSL CSL
Bank Bank Bank
[| [| «
CSL CSL CSL \— Vertical Breakers
Bank Bank Bank

Horizontal Breakers

Figure 19. Vertical and horizontal breakers separate the individual CSL banks with Con-
figurable System Interconnect (CSI) bus resources.

Configurable System Logic (CSL

The Configurable System Logic (CSL) matrix provides flexible, programmable resources
to build almost any digital logic function.
bus, the CSL matrix is ideal for building any custom peripherals or logic functions required
by the CPU. The matrix consists of multiple CSL banks. Each bank is a rectangular array

of individual CSL cells.

Because it is intimately connected to the CSI

TCH305-0001-002

31

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

e 00 00 UTTE
H BB E8B888HB
HEEEHEBEHBEEEBEB
H BB E8B888HB

-l | EBEEBEBB888
H BB E8B888HB
HEEEHEBEHBEEEBEB
H BB E8B888HB
|(EEHE BHHEHEHHEHHHB

Figure 20. A CSL bank consists of multiple columns, each with 16 rows of CSL cells.

The number of CSL banks varies by part number. The highest-density A7S family device,
the TA7S20, contains 16 CSL banks, arranged in a 4x4 array as shown in Figure 18 and
Figure 20. The smallest member, the TA7S04, has just four CSL banks, arranged in a

2x2 array.
Table 15. CSL Banks by Device.
CSL Cells Per Bank Banks Per Device
CSL Cells/ Total Total
Device | Columns | Rows Bank Columns | Rows | Banks | CSL Cells
TA7S04 7 16 112 2 2 4 448
TA7S20 8 16 128 4 4 16 2,048

Vertical and horizontal breakers separate the individual CSL banks on a device, as shown
in Figure 19. Vertical breakers appear at the top of every CSL bank. Horizontal breakers
appear between adjacent columns of CSL banks. The breakers contain Configurable
System Interconnect (CSI) bus resources. The horizontal breakers distribute CSI bus ad-
dress signals to the CSL banks. The vertical breakers distribute the Selector input and
output signals, breakpoint control signals, the global buffer signals, and the wait-state con-
trol signals. The CSI read data return path is also located in the vertical breakers.

Signals from one CSL bank can cross into other banks via the breakers, though crossing
a breaker adds delay to the signal.

Sideband signals originate and terminate in resources along the top edge of the device.

SUBJECT TO CHANGE 32 TCH305-0001-002

WMaTriscend

Bank Resources

Each CSL bank consists of multiple columns, each with 16 rows of CSL cells. Figure 20
shows the basic layout of the cells within a bank. Pairs of adjacent CSL cells share re-
sources to build more complex cell functions. The Selectors, located in the vertical
breaker above the bank, distribute any decoded address signals. There is one address
Selector per column of 16 CSL cells.

Programmable interconnect surrounds the CSL cells. These programmable "wires" allow
a signal originating from one CSL cell to communicate with one or more CSL cells, even
those in other CSL banks. Likewise, signals to and from the CSI bus are distributed to
and from individual CSL cells.

General-purpose Interconnect

The general-purpose interconnect, shown in Figure 22, distributes signals within a CSL
bank. Metal lines of various lengths and purposes connect to individual CSL cells, to the
horizontal and vertical breakers, and to the distributed array of routing matrices. Each
routing matrix provides connections between the various lines entering or exiting the seg-
ment. The various interconnect resources are described below.

= 8 Short Segment lines in each vertical and horizontal channel, connecting adjacent
routing matrices.

= 8 Long Lines in each vertical and horizontal channel. These long lines traverse the
width or breadth of the CSL bank. The vertical long lines optionally distribute the outputs
from the Selectors located in the vertical breaker. The horizontal long lines optionally
distribute address signals from CSI bus.

= Bus clock and 3 of 6 global buffer signal lines in every vertical channel, as shown in
Figure 21. The bus clock signal is distributed globally to all resources on an A7S CSoC
device. Within a CSL bank, any three of the six global buffer signals are available.

= A carry/cascade signal between adjacent pairs of CSL cells, for faster arithmetic func-
tions and for wide logic functions.

Figure 21. The bus clock signal and any 3 of the 6 global buffer signals are available
within a CSL bank.

TCH305-0001-002 33 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Selector outputs
from vertical breaker

Selector outputs
from vertical breaker

2

4 Clock/Global Buffer

N Carry, N
cascaded
wide function
path
|- 1
Routing Routing
. 8 Short Segments .
< Matrix < Matrix
2 2
2 2
5 0 = 0
= - CSL Cell 3| | £ /
I 2 8| = g
o c 5 o c 5 .
| 3 £ || 3 £
. 8 = 0 CSL Cell 8 = 0
g 3 2 3 2
n © < = < =
2o o o —
gs & A &
R o o
s 8 Long Lines
38
g2 T N
§ S S
= i i
Routing Routing
. 8 Short Segments .
< Matrix < Matrix
Carry,
cascaded
wide function
~_— path ~_—

Figure 22. The general-purpose interconnect surrounds a pair of adjacent CSL cells.

4 Clock/Global Buffer

m/\

Figure 23. CSl bus write data is available at each routing matrix. Read data returns to the

CSl bus.

L/\
.
Routing Routing
. 8 Short Segments .
Matrix d Matrix
- I I}]
» 4 Mux Chains /OR »
g N 2 [
2| s | B / 32| ¢ | (8 /_
5| | £ 2 CSL Cell c| || S S
= o & 2 RS o & k2]
R 5 8| & 8| o g 8| 5 |pb——
= 4 T €) = 4 T €
8 @ O e CSL Cell of|s @ 6} i
O 2 O 2
¥ S < 5 L
& A 5
[ee] [ce]
8 Long Lines
1 i
Routing Routing
. 8 Short Segments .
< Matrix 9 Matrix
I L7 N\
< _\ 4 Mux Chains /OR\
VA NN

SUBJECT TO CHANGE

34

TCH305-0001-002

WMaTriscend

CSI Bus Read and Write Data Distribution

Beyond the general-purpose signals, the programmable interconnect also distributed data
signals to and from the CSI bus, as shown in Figure 23.

= CSI| Write Data is accessible at every routing matrix, distributed throughout the CSL
bank.

= 4 Multiplexer Chains for distributing bi-directional data across a CSL bank. The multi-
plexer chains behave much like a bi-directional, three-state bus but avoids the potential
data-contention problems and associated power consumption of a three-state bus be-
cause all signals are unidirectional.

= CSI| Read Data paths gather the values of individual data lines from throughout the de-
vice. Ultimately, all the signals return to the CSI bus. The signals from individual bit
lines are gathered via an OR-chain.

Signal-Flow Directional Preferences

Though the interconnect was designed to minimize directionality, there are few inherent
preferences inspired by the architecture, as shown in Figure 24.

>
-

-
-

A

Clocks o

Enables, Control
Selector decodes
Carry, cascade o

CSI Address
Data

A A
Yy

Yyvy

Figure 24. The interconnect architecture inspires a few signal-flow biases.

Clock signals prefer the vertical channels, either to use the four clock buffers signals
available within a CSL bank or to use the direct connections between the vertical long
lines and the clock inputs on CSL cell.

Likewise, other control signals and enable signals prefer vertical channels. Addresses
decoded using Selectors also prefer vertical channels because vertical long lines distrib-
ute these signals from the vertical breakers.

Wide arithmetic functions or wide logic functions benefit from the built-in carry/wide inter-
connect, which prefers a vertical orientation, from bottom to top. Other orientations are
possible, though with decreased performance.

Individual CSI bus address signals are distributed using the horizontal long lines and con-
sequently prefer horizontal channels.

The multiplexer chains, designed to distribute bi-directional data, traverse a CSL bank
horizontally. Consequently, data flow prefers the horizontal channels.

TCH305-0001-002 35 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

8)

= LUT \‘ Flip-Flop
= 0 o>

o>

L
I
,
ﬁ
1

EN
11 — CARRY/
o | "WIDE ﬂj SIR
EN ‘5_:
CK<
ASYNC >

— Programmed b%/
5 — initialization data

Figure 25. A basic CSL cell of both combinatorial and sequential logic.

CSL Cell Capabilities

A CSL cell, as shown in Figure 25, consists of a flip-flop plus combinatorial functions ca-
pable of performing various logic, arithmetic, or memory operations. Both these resources
operate independently or in tandem, depending on the specific function implemented. An
individual CSL cell is capable of implementing the following types of functions.

= Logic

= Arithmetic
= Memory

= Bus

= Sequential

Most logic functions are implemented using the CSL cell's four-input look-up table (LUT4).
Any four-input, single-output function fits within a single four-input LUT, regardless of its
logical complexity. A special mode allows two adjacent CSL cells to implement a five-
input LUT (LUT5) and some logic functions of up to nine inputs.

The shaded multiplexers in Figure 25 represent static signal flow options, defined by the
initialization data loaded into the device at power-on or after a Configuration Reset.

Logic Functions

In logic mode, an individual CSL cell performs a variety of combinatorial functions of the
available inputs, as shown in Table 16. A single CSL cell performs any possible combina-
torial function of four or less inputs, regardless of complexity. Likewise, two CSL cells
working in tandem implement any possible function of five inputs. Two CSL cells also im-
plement some functions of between six to nine inputs, with limitations. A sequence of
four- or five-input functions, chained together, create wide gate functions of practically any
width.

SUBJECT TO CHANGE 36 TCH305-0001-002

WMaTriscend

Arithmetic Functions

In arithmetic mode, a CSL cell performs simple arithmetic functions such as add, subtract,
or multiply. Various functions, as shown in Table 17, provide common structures for build-
ing adders, subtracters, comparators, accumulators, incrementers, decrementers, binary
counters, multipliers, and other arithmetic-based operations.

Memory Functions

In memory mode, a CSL cell performs various memory functions, including single- and
dual-ported RAM, read-only memory (ROM), and an 8-bit serial-in/serial-out shift register.
The small amount of RAM inside each CSL cell is ideal for building small register files and
FIFOs. Should larger quantities of RAM be required, the A7S’s large scratchpad RAM
provides fast and efficient storage.

Single-Port RAM (RAM16X1, RAM32X1)
As a single-port RAM, a CSL cell provides

= Four address inputs for a 16x1 RAM block, five address inputs for a 32x1 block.
= A data input

= An active-High write enable input

= An invertible write clock input

The initial contents of the RAM can be pre-defined and loaded during initialization. How-
ever, the contents are not reloaded after a system reset. All write operations are syn-
chronized to the clock input, simplifying the timing relationship of the data, address, and
write-enable signal. Also, there are no hold time requirements for any of the RAM inputs
after the active clock edge.

Read operations are asynchronous and depend only on the address inputs.
NOTE:

The initial contents for RAMs, dual-port RAMs, and flip-flops are only loaded by
a power-on reset or configuration reset condition. A system reset preserves the
current state of these functions.

Dual-Port RAM (RAMDUAL)

In dual-port RAM mode, two CSL cells provide true dual-port capabilities, supporting si-
multaneous read and write operations from both ports. As a dual-port RAM, two CSL cells
offer

= Two, four-input address input ports

= Two data input ports

= Two active-High write enable input ports

= A single shared, invertible write clock input

= A daisy-chained error monitor that detects simultaneous write operations to the same
address with different data

The initial contents of the RAM can be pre-defined and loaded during initialization. How-
ever, the contents are not reloaded after a system reset. All write operations are syn-
chronized to the clock input, simplifying the timing relationship of the data, address, and
write-enable signal. Also, there are no hold time requirements for any of the RAM inputs
after the active clock edge.

Read operations are asynchronous and depend only on the address inputs.

TCH305-0001-002 37 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Table 16. Logic functions implemented in a CSL cell.

CSL
Class Function Cells Application
f(4) Any combinatorial logic function with four
—»{ ANy 1 or less inputs. Includes any mixture of
< 4[5’5?3‘ > AND, NAND, OR, NOR, XOR, XNOR, and
—» function INVERT.
f(5) Any combinatorial logic function with five
1 5iAnny . ° inputs. Includes any mixture of AND,
Logic > |og‘f(‘:‘ —> NAND, OR, NOR, XOR, XNOR, and
_p| function INVERT.
—»]
= Some Some combinatorial logic functions of be-
1 functions | > tween six to nine inputs. Includes a mix-
° C’ifngfjct’;’ ture of AND, NAND, OR, NOR, XOR,
. XNOR, and INVERT.
_>
Table 17. Arithmetic functions implemented in a CSL cell.
CSL
Class Function Cells Application
ADD
‘ACO A one-bit full adder where SUM=X+Y.
The output of the adder can be multi-

1 plexed with another input via the load (LD)
input. Useful for building adders, incre-
menters, accumulators, and binary up
counters.

A one-bit full subtracter where SUM=X-Y.
The output of the subtracter can be multi-

1 plexed with another input via the load (LD)

input. Useful for building subtracters,
. . decrementers, comparators, and binary
Arithmetic down counters.
A one-bit full adder/subtracter where
SUM=XzY, depending on the SUB con-
trol. The SUB input controls whether the
1 function is X+Y or X-Y. Useful for building
Y adder/subtracters, incre-
SuB menter/decrementers, and binary
¢ up/down counters.
MULT
X o A one-bit multiply function. By combining
1 MULT functions with ADD functions, large
:L/ multipliers can be created.
Cl

SUBJECT TO CHANGE

38

TCH305-0001-002

WMaTriscend

Table 18. Memory functions implemented in a CSL cell.

CSL
Class Function Cells Application

RAM16x1

£13
v

1YY g

16x1 1 A 16-deep by one-bit wide, clocked write,
RAM random-access memory (RAM).

RAM32x1

W
v

FIVITHE Y IYIVHY | 4PPEY §

aon1 > A 32-deep by one-bit wide, clocked write,
BAM random-access memory (RAM).

AMDUAL
_>

A 16-deep by one-bit wide, clocked write,
dual-port RAM supporting simultaneous
16x1 > read and write operations from both ports.
Dual-Port Also includes write contention circuitry to
RAM [.) .
detect simultaneous write operations to

Memory
the same location with different data.

Contention
Detection

ROM16x1

Loxl 1 A 16-deep by one-bit wide read-only
RoM memory (ROM).

PR

ROM32x1

aon1 > A 32-deep by one-bit wide read-only
RoM memory (ROM).

PR

SHIFT8

DO

e

. An 8-bit serial-in/serial-out shift register
1 with selectable output tap and shift/load
control.

¢£

Yy

>| >

SDI

TCH305-0001-002 39 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

ROM (ROM16X1, ROM32X1)

The ROM function is available in two versions; a 16-deep by 1-bit wide ROM (ROM16X1)
and a 32-deep by 1-bit ROM (ROM32X1)

A 16-deep ROM has four address lines to address the 16 memory locations. Likewise, a
32-deep ROM provides five address lines. The value on the address lines directly affects
the output value.

A 16x1 ROM consumes a single CSL cell while a 32x1 requires two CSL cells operating in
tandem.

The ROM's initial contents are specified in the user's design, loaded during initialization,
and cannot be changed during operation.

8-bit Shift Register (SHIFT8)

Another operating mode offered by a CSL cell is an 8-bit, serial-in/serial-out shift register.
Serial data arrives on the SDI input. When Low, the shift/load signal, SH, loads data on
DI into the shift register location specified by the address lines, A[2:0]. All other shifting
halts.

When SH is High, the SDI data is shifted in the first register location. Likewise, all subse-
quent register values are shifted one position toward the most-significant location (Loca-
tion 7). The value in location 7 appears on the SDO output. The address lines, A[2:0] se-
lect the register location presented on the asynchronous output, O.

The enable signal, EN, disables all shifting and loading operations when Low.
Sequential Functions

Each CSL cell contains a ‘D’-type flip-flop. The flip-flop provides the following controls
= An optional active-High clock enable input

= An invertible, edge-triggered clock input

= An optional asynchronous input to set or clear the flip-flop, defined at design time.

During the initialization process, each flip-flop is loaded with a ‘1’ or ‘0’ as defined in the
design. This value is protected against potential spurious writes until the end of the ini-
tialization process.

Table 19. Sequential Functionality
(no optional inversions used).

Inputs Output
D |EN | cK | ASYNC Q
During initialization INITV
X X X 1 ASYNCV
X 0 X 0* Q
D 1* N 0* D

INITV = Initial value loaded during initialization, defined at design time.
ASYNCV = Asynchronous preload value, defined at design time.

0* = Active Low, default value if left unconnected

1* = Active High, default value if left unconnected

SUBJECT TO CHANGE 40 TCH305-0001-002

WMaTriscend

Programmable Input/Output (PIO) Pins

Programmable input/output blocks (P1Os) interface external package pins to internal func-
tions such as the processor, its peripherals, and the CSL matrix. Each PIO connects to a
bonding pad, which may or may not attach to an external package pin, depending on the
packaging option used. Each PIO can be configured as an input, an output, or a bi-
directional signal, as shown in Figure 26.

The following list illustrates additional features available within each PIO pin.
= Weak pull-up or pull-down resistor, or bus follower

= Multiple voltage I/0O support, 2.5 or 3.3 volts

= 3.3-volt PCI compliance

= Selectable output drive current

= 3.3-volt I/O tolerance, even from a 2.5-volt supply

= Optional input switching hysteresis

= Slew rate control

VGCIO
T

Output Enable p

3.3V PCl,
Overshoot

=] Clamping Diode
EN Slew
_ﬂ I Rate
Driveh
Output P o Strengt|
v -
EN
.»E |—
¢—| PAD
-r_\l
Input Enable
5)
Input < /e)
Registered Input < i |
> Input
Hysteresis
T_\l
) Zero Hold -
I
-
Latch

EN D — Programmed b
— initialization data
i LE
[
Clock Enable A p—

Clock Enable B p——
Clock p——
Figure 26. Programmable Input/Output block (P10).

TCH305-0001-002 41 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Creating a P10 Port for the Processor

The Triscend A7S offers nearly unparalleled 1/O flexibility. Each of the configurable sys-
tem-on-chip's PIO pins optionally connects to the processor via the CSI bus or operates
independently in unassociated CSL logic functions.

Creating a memory-mapped I/O port for the processor requires CSI socket resources, in-
cluding connections to the Data Read and Data Write busses, plus one or two address se-
lectors.

Storage Elements

There are three storage elements in each PIO:

= An edge-triggered input flip-flop or a level-sensitive input latch
= An output flip-flop
= An output-enable flip-flop

The functionality of each storage element is defined in Table 20. Only the input register
provides the latch option. Each storage element is a 'D'-type element and all share a
common invertible clock control input. An individual flip-flop is either permanently enabled
or selectively enabled using one of the two common clock-enable inputs.

Table 20. Flip-Flop/Input Latch Operation
(no optional inversions used).

Inputs Output
CK
Mode D EN | LE Q
During initialization INITV
. D 1* ™ D
Flip-flop X M 0 Q
Input Latch X 1* 1 Q
(input only) D 1* 0 D
Both X 0 X Q

X =don’t care

1* = logic High (default value)

= rising clock edge (assuming no clock inversions)

INITV = preloaded initialization value defined in user’s design

The polarity of the common clock signal is individual controlled for each flip-flop within a P10.
A user-defined initial value of a register is loaded during initialization.

PIO Input Side

Input signals flow into the device through two possible paths. One path is a direct logical
input while the other is a registered input, programmed as either an edge-triggered flip-
flop or a level-sensitive latch.

Optional Input Switching Hysteresis

Each PIO input has optional input hysteresis. When enabled, 0.05¢VCCIO to 0.2¢VCCIO
of hysteresis, centered around the input switching voltage without hysteresis.

Registered Input

Unlike the other storage elements, the input register can be configured either as an edge-
triggered flip-flop or as a level-sensitive latch as shown in Table 20.

SUBJECT TO CHANGE 42 TCH305-0001-002

WMaTriscend

Guaranteed Zero Hold Time on Input Register

The data input to the input register is optionally delayed by several nanoseconds to guar-
antee that there is no positive hold time requirements. With the delay enabled, the setup
time of the input flip-flop is increased to negate the internal clock distribution delay. This
guarantees that the input register hold time is always zero or negative, never a positive
hold time.

The delay guarantees a zero hold-time with respect to the clock provides by the bus clock
buffer.

P10 Qutput Side

Output signals can be optionally inverted within the PIO, and can pass directly to the pad
or be stored in an edge-triggered output flip-flop.

A logical Low on the Output-Enable signal forces the output into a high-impedance (Hi-2)
state, as shown in Table 21. Consequently, a PIO functions as a three-state output or bi-
directional I/O. Conversely, a logical High enables the output buffer. Statically defined by
initialization, the Output and Output-Enable signals are optionally inverted. The polarity of
these signals is independently configured for each PIO. In addition, each can be internally
tied High or Low independently.

Table 21. Output Buffer Operation
(no optional inversions used).

Inputs Output

O | OE PAD

X 0* Hi-Z (floating)
0 1* 0

1 1* 1

X =don't care

O* = logic Low (default value)

1* = logic High (default value, if OE is unconnected but O is connected)
The polarity of the O and OE ports is individual controlled within each PIO.

The outputs on each PIO are full CMOS outputs. The switching threshold is a product of
the 1/0O supply voltage (VCCIO).

An output can be configured as open-drain (open-collector), as shown in Figure 27, by ty-
ing the output path to ground and driving the output-enabled signal, OE. However, the
voltage applied to the pin should never exceed the maximum values defined for VCCIO.

DO PIO Pin
OE

e’

Figure 27. On open-drain (open-collector) output using a PIO pin.

Selectable Slew Rate Control

Each output buffer has an optional slew-rate control, which reduces noise generation and
ground bounce. The slew-rate control provides a tradeoff between low-noise and maxi-
mum performance. The fast slew-rate should be used for speed critical outputs in sys-
tems that are adequately protected against noise.

TCH305-0001-002 43 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Selectable Output Drive Current

Each PIO has selectable output drive current, independent of the slew-rate control. The
output drive options are shown in Table 22. Reduced drive current results in lower power
consumption, lower EMI emissions, and lower ground bounce.

Table 22. PIO Output Drive Current.

Drive Low Drive High
Drive Strength (loL) (loH)
Low Current 4 mA 2 mA
High Current 16 mA 8 mA

For even higher drive current, two or more PIO pins can be ganged together. However,
watch out for differences in routing delays between the pins as this may cause contention.

Other PIO Options

There are a number of other programmable options available for PIO blocks.
BusMinder™
The BusMinder feature allows each PIO to have an optional

= Pull-up resistor (pulls un-driven inputs High)
= Pull-down resistor (pulls un-driven inputs Low)
= Weak follower (forces un-driven inputs to the last value that appeared on the bus)

Triscend A7S configurable system-on-chip devices are fabricated on leading-edge CMOS
processes. Like all CMOS devices, input pins should never be left floating. An unused
input might float unless tied to High or Low. In addition, an input connected to a bi-
directional bus might float if the bus is three-stated (high impedance).

Set the electrical properties on one or more PIO pins using FastChip’s I/O Editor.
Fromthe I/O Editor, you can specify the power-down characteristics of each pin, its
drive strength, and other options.

[&)zet Constrairts... ‘

] Pacl .

S rans | System Pads Set Constraints | x|
............................. : S (2

QUFind || =Find target= || [Buzhiinder INONE vI

Pad Hame BusMindi I
I= Input L P FaL=E -
I} 01 SEGA one = Imput Loy Powver I _I
) 1. # none -
r'd D1 SEGC opapeps ls Output Loy Power [TRUE d
FastChip

O1.5EGD none N TRLIE

D1.5EGE none JEIETESE FaLSE [

L1.5EGF nane ;

01 SEGE nane Drive ISTHONG

TOGGLER BEAT|+ none

=
Slew Rate (EN =]
=

s Clamped IFALSE

,QH ‘ xgancel ‘ ? Help ‘

SUBJECT TO CHANGE 44 TCH305-0001-002

WMaTriscend

The BusMinder's programmable pull-up/pull-down resistor and weak follower are useful
for tying unused or floating pins High or Low to minimize power consumption and reduce
noise sensitivity.

The configurable pull-up resistor is a p-channel transistor that pulls to VCC. The configur-
able pull-down resistor is an n-channel transistor that pulls to Ground. The value of these
resistors is between 25 kQ to 100 kQ. This high resistance value makes them unsuitable
as wired-AND pull-up resistors, so an external resistor is required in these cases.

The pull-up resistors for PIOs are active during the initialization process. This pulls all as-
yet-unprogrammed PIOs High, preventing them from floating. Devices connected to the
PIO see a logic High. Other devices driving into the PIO can easily overdrive the weak
pull-up resistor.

After initialization, voltage levels of unused pads—both bonded or unbonded—must be
valid logic levels to reduce noise sensitivity and avoid excess current. Therefore, by de-
fault, unused pads are configured with the internal pull-up resistor active.

The weak follower is used on PIOs that connect to a bi-directional bus. Instead of pulling
the floating input High or Low, the weak follower remembers the last value that appeared
on the bus before the bus signal was three-stated.

3.3-Volt PCI Clamping Diode

3.3V PCI compliance requires a clamping diode to VCC, which is optionally available in-
side every PIO pin. In other low voltage applications where 3.3V-tolerance is not required,
the VCC clamping diode can be used to limit the overshoot. During configuration, the
VCC clamping diode is disabled to avoid any inadvertent current flow from pad to the
power supply providing VCCIO.

Low-Power Mode

The Triscend A7S device supports a low-power mode that dramatically reduces system
power consumption. While in power-down mode, each PIO pin can optionally be config-
ured for low-power operation or to remain active during power-down. The PD_|IO_EN_BIT
must be set in the Power Down Control Register before entering power-down mode,
which allows all PIOs to enter their assigned low-power configuration.

Output Options

If enabled for low-power operation, a PIO output is forced into a high-impedance state
(disabled) during power-down mode. The BusMinder function switches to weak follower
mode, regardless if configured for a pull-up or pull-down resistor or left floating. The weak
follower function keeps the PIO at the voltage level last applied to the pin. This helps to
reduce overall power consumption.

Input Options

Likewise, a PIO input can be enabled for low-power operation. A PIO input is optionally
forced High during power-down mode.

JTAG Support

Embedded logic attached to the PIOs contains test structures compatible with IEEE Stan-
dard 1149.1 for boundary-scan testing, permitting easy chip and board-level testing.

Default, Unconfigured State

During device configuration, both the output buffer and input buffer are disabled to reduce
power consumption and inadvertent switching. The input data is pulled high and the VCC

TCH305-0001-002 45 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

clamping diode is disabled. The weak pull-up stays active during configuration to prevent
the pin from floating.

Before configuration, all PIO pins function via the JTAG interface but with the following de-
fault conditions:

= The input hysteresis is turned on

= The output drive is 4 mA

= The BusMinder is a pull-up resistor
= The clamping diode is disabled

Default, Configured State

All unused but configured PI1O blocks are programmed as inputs with the soft BusMinder’s
pull-up resistor enabled. This prevents unused PIO pins from floating.

Electro-static Discharge (ESD) Protection

Each PIO has built-in ESD protection capable of protecting against a minimum discharge
of 2,000 volts, using the human body model.

Multi-Voltage Support

Each A7S 1/O buffer is 3.3-volt tolerant for multiple-voltage applications with a mixture of
3.3-volt devices and 2.5-volt devices. Independent of the power supply voltage to VCCIO,
each 1/O pin sustains up to 3.6 volts without reliability concerns. Special circuit techniques
prevent the 3.3-volt voltage from forcing excessive current into the 2.5-volt VCCIO.

Table 23 shows the voltage standards supported when VCCIO is connected to 3.3 volts or
2.5 volts. When connected to 3.3 volts, each PIO supports a variety of standards, includ-
ing TTL. At 2.5 volts, each PIO supports only 2.5V CMOS signaling levels.

Table 23. /O Signaling Standard Compliance.
VCC | VCCIO | Compatible Standards
TTL, LVTTL

3.3V |3.3VPCI

3.3V CMOS

25V | 2.5V CMOS

25V

SUBJECT TO CHANGE 46 TCH305-0001-002

WMaTriscend

0xD104_0000 ——p»

Configuration
Memory

0xD103_0000 ——p»=
0xD102_0000 ——p»
0xD101_0000 —p»
0xD100_0000 ——p»

0xD0O00_0000 ——

Internal SRAM

Control Registers

External
SDRAM

0xC000_0000 ——p»

0x1010_0000

256K

16K
64K
64K
64K

16M

256M

Configuration
Memory

Internal SRAM

Control Registers

External
SDRAM

Default location
set by FastChip,
relocatable,

0x1000_0000 ——m

0x0F00_0000 ——»

SRAM alias

—

0x0000_0000 ——p»

and
Start of Application

External
SDRAM

Secondary
Initialization

resizeable

o] -

External
SDRAM

| Internal SRAM I

oTypic'al
perating
Mode

Figure 28. A7S System Memory Map.

System Memory Map

An A7S-based system supports a 32-bit or 4G byte address space. Some of the 4G bytes
are already allocated to A7S internal resources. Table 24 summarizes all those resources
and their respective memory space allocation.

All of the resources are mapped to the bottom of the memory space. The Flash, the inter-
nal scratchpad SRAM and the SDRAM spaces have one possible additional alias at ad-
dress 0. These aliases are present by default following a Configuration Reset. They
overlay each other with the Flash having the highest priority, followed by the internal
scratchpad SRAM and finally the SDRAM.

TCH305-0001-002

47

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Table 24. A7S Memory-Mapped Resources.

Allocated

Resource Space Base Address
Control Registers (CRU) 64K bytes | Fixed
Configuration Memory 256K bytes | Fixed
Memory-mapped CSL Functions 1M bytes Relocatable, resizable in FastChip
Scratch Pad 16K bytes | Re-locatable with alias at 0
External Flash 16M bytes | Fixed with alias at 0
External Dynamic Memory 256M bytes | Fixed with alias at 0

Figure 28 illustrates the memory map in two different phases of operation—just after sec-
ondary initialization completes and a more typical normal operating mode, where the
Flash alias is disabled.

The external Flash alias, starting at address 0, can be disabled by the RTOS via the Clear
Reset Memory Map Register. However, before the RTOS disables the Flash, it must
branch to the Flash image at the top of memory. The internal scratchpad SRAM alias is
now available at the bottom of memory. The user application can copy all timing critical
code to the scratchpad RAM including functions such as the interrupt vector table and the
fast interrupt service routine.

For some applications where the Flash must reside at the bottom of memory, the scratch-
pad RAM can be overlaid over the Flash alias at the bottom of memory by changing its
overlay priority.

All the re-mapping control is performed through registers and is explained in the Remap
and Pause Registers section.

A complete memory map, minus any user-created functions, is available in Appendix A.

Memory-Mapped CSL Functions

This region is where CSL functions containing memory-mapped registers are located.
The region is defined in the FastChip address allocation file. By default, the region is 1M
byte in size, starting at address 0x1000_0000, and allocated down toward the bottom of
memory. This region in resizable and relocatable elsewhere in the system memory map.
The default address allocation settings are shown below.

ALLOCATE START=0x1000_0000 S1ZE=1M DIRECTION=DOWN;

Cache and Memory Protection Support

The cache, cache controller, and protection unit provide increased system performance as
well as provide basic memory protection capabilities.

The cache controller/protection unit includes eight control registers. The control registers
are normally accessed through the coprocessor interface, using MCR and MRC instructions
to CP15. The processor must be in privileged mode to access these registers.

Cache Description

The cache is an 8Kbyte mixed instruction/data 4-way set associative cache. It holds 2K
words, divided into 512 lines, with 4 words per line. The cache is transparent to software.

The cache is a write-through cache. During write operations, data is always written to its
destination. If the data is present in the cache, then the cache is updated as well. The
CPU interface unit provides a write buffer for increased performance.

SUBJECT TO CHANGE 48 TCH305-0001-002

WMaTriscend

There are two write buffers from the CPU, one to external memory, the other to
the CS bus. Every CPU write operation is buffered. When clearing interrupts
and leaving an interrupt service routing (1SR), flush the write buffer by reading
fromany CS location.

The Triscend driver library already handles this situation.

NOTE:

The cache is setup through the protection unit registers by defining cacheable regions.

The cache is not recoverable as regular SRAM, although 16K bytes of extra on-chip
scratchpad are available for that purpose. All applications should use the cache because
it increases overall performance and decreases power consumption.

Only code residing in the external Flash or SDRAM, as defined by the memory map
shown in Figure 28, can be cached by the system. The content of any additional external
memories connected to additional chip select lines generated in the CSL cannot be
cached. However, if the contents of the auxiliary memory are copied to SDRAM, then the
contents can be cached.

Using the Cache

The cache is enabled through the coprocessor #15. The following sequence of
ARM7TDMI assembly language instruction gives an example of how to enable the cache.
The example below defines the first 4K of Flash as cacheable.

Example:

; Value for memory area definition (base pointer + size)
LDR RO, 0xd0000017

; Value for cacheable area #0 enable
LDR R1, 0Ox00000001

; Value for cache enable
LDR R2, 0x00000004

; Setup first 4K of Flash as cacheable
MCR p15, RO, c6, cO, O

: Enable cacheable area #0
MCR p15, R1, c2, cO, O

: Enable cache
MCR p15, R2, cl1, c0O, O

Clearing the cache enable bit is not enough to disable the cache. It first must be invali-
dated. The next sequence of instruction shows the proper procedure to disable the cache.

Example:

; Value for cache disable
LDR RO, 0x00000000

: Enable cache
MCR p15, RO, cl1, cO, O

; Invalidate cache
MCR p15, RO, c7, cO, O

Protection Unit

The Protection Unit controls all ARM7TDMI memory accesses with up to eight separate
memory areas, as shown in Figure 29. These memory areas are named in order of prior-
ity with Area 7 having the highest priority, and Area 0 having the lowest priority. The Pro-

TCH305-0001-002 49 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

tection Unit allows the memory to be partitioned and individual attributes to be set for each
region. With the Protection Unit enabled, any memory access that falls outside the range
of all eight memory areas is aborted.

NOTE:
Program the Protection Unit with valid protection regions before enabling the
Protection Unit.

If the memory regions are not defined prior to enabling the Protection Unit, the ARM proc-
essor can enter a state that is recoverable only through a reset. When the Protection Unit
is disabled, all accesses—instruction fetches or data reads and writes—are non-

cacheable.

The instruction and data address space may be partitioned into a maximum of eight re-
gions. Each region is specified by the following attributes:

= Base address

= Region size

= Cache configuration (cacheable or not)

= Access permissions

If two or more regions overlap, then any attributes conflicts are resolved through a priority
scheme; memory area 7 has the highest priority and area 0 has the lowest.

NOTE:
/ Only the contents of external Flash or SDRAM memory are cacheable. There is

no need to cache internal SRAM because the CPU can execute directly from in-
ternal SRAM without wait-states.

SUBJECT TO CHANGE 50 TCH305-0001-002

WMaTriscend

A[31:0
[] Protection Area Register Cacheable Area Register
32 (PU_PROTECTION_AREA_REG) (PU_CACHEABLE_AREA_REG)
Memory Area Definition 7 (PU AREA DEF7 REQG)
Base Address . Area - Correct ™ \Y - \4
- (A[31:12]) Area Size Enable »<_Privilege? < Cacheable? >4To cache
QN [N Direct to
memor’
Memory Area Definition 6 (PU AREA DEF6 REQG) y
Base Address . Area . Correct Y. - Y:
- (A[31:12]) Area Size Enable »<_Privilege? < Cacheable? >4—To cache
. C” Dl
Memory Area Definition 5(PU_AREA DEF5 REQG) v
Base Address » Area . Correct Y - \4
P (A[31:12]) Area Size | gnanie »<_Privilege? p-< Cacheable? > To cache
N \ﬁ Direct to
memor’
Memory Area Definition 4 (PU AREA DEF4 REQG) y
Base Address : Area - Correct Y. - \4
- (A[31:12]) Area Size Enable »<_Privilege? p-<Cacheable? >=—To cache
| R
Memory Area Definition 3(PU _AREA DEF3 REQG) y
Base Address . Area o Correct Y. - \4
- (A[31:12]) Area Size Enable »<_Privilege? p-<_Cacheable? >+—To cache
QN [A Direct to
memo
Memory Area Definition 2 (PU_AREA DEF2 REQG) v
Base Address : Area o Correct™\Y - Y:
- (A[31:12]) Area Size Enable »<_Privilege? p-< Cacheable? >4—To cache
o« " - R
Memory Area Definition 1 (PU_AREA DEF1 REG) y
Base Address . Area - Correct Y - Y
- (A[31:12]) Area Size Enable »<_Privilege? p-< Cacheable? >4—To cache
N \(Direct to
memo
Memory Area Definition 0 (PU_AREA DEFO REG) v
Base Address . Area . Correct Y. - Y!
» (A[31:12]) Areasize | gnaple L Privilege?: »<_Cacheable? >=—-To cache
i [A Direct to
\ memory
Y
»(Abort

Figure 29. The A7S Memory Protection Unit supports up to eight separate protected
memory areas. Each area has a user-definable base address, size, enable,
privilege level, and cache enable.

Protection Unit Register Map, CP15 Register Map

Register No. Function Access
0 Reserved -
1 Control R/W
2 Cacheable Area R/W
3 Reserved =
4 Reserved =
5 Protection R/W
6 Memory Area Definition R/W
7 Cache Invalidate W

TCH305-0001-002

51

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Register 1. Protection Unit Control register (PU_CONTROL_REG)

Bit Description/Function

31:3 Reserved

2 Cache Enable (CACHE_EN_BIT):
0: Disable
1: Enable

Reserved

(@] ==Y

Protection Enable (PROT_EN_BIT):
0: Disable
1: Enable

Default reset value: 0 (cache and protection unit disabled)

Register 2. Cacheable Area Register (PU_CACHEABLE_AREA_REG)

Bit Description/Function

31:8 Reserved

7 Cacheable Area 7 Enable (C_7_BIT):
0: Non-cacheable area
1: Cacheable area

6 Cacheable Area 6 Enable (C_6_BIT):
0: Non-cacheable area
1: Cacheable area

5 Cacheable Area 5 Enable (C_5_BIT):
0: Non-cacheable area
1: Cacheable area

4 Cacheable Area 4 Enable (C_4_BIT):
0: Non-cacheable area
1: Cacheable area

3 Cacheable Area 3 Enable (C_3_BIT):
0: Non-cacheable area
1: Cacheable area

2 Cacheable Area 2 Enable (C_2_BIT):
0: Non-cacheable area
1: Cacheable area

1 Cacheable Area 1 Enable (C_1_BIT):
0: Non-cacheable area
1: Cacheable area

0 Cacheable Area 0 Enable (C_0_BIT):
0: Non-cacheable area
1. Cacheable area

Default reset value: Undefined

SUBJECT TO CHANGE 52

TCH305-0001-002

WMaTriscend

Register 5: Protection Area Register (PU_PROTECTION_AREA_REG)

Bit Description/Function

31:16 | Reserved

15:14 Memory Area 7 Access Permission (AP_7 FIELD): (see Table 25)

13:12 | Memory Area 6 Access Permission (AP_6_FIELD): (see Table 25)

11:10 | Memory Area 5 Access Permission (AP_5 FIELD): (see Table 25)
9:8 Memory Area 4 Access Permission (AP_4 FIELD): (see Table 25)
7.6 Memory Area 3 Access Permission (AP_3 FIELD): (see Table 25)
5:4 Memory Area 2 Access Permission (AP_2 FIELD): (see Table 25)
3:2 Memory Area 1 Access Permission (AP_1_FIELD): (see Table 25)
1:0 Memory Area 0 Access Permission (AP_0 FIELD): (see Table 25)

Default reset value: Undefined

Table 25. Memory Area Access Permission Settings.

Function Setting
No access to Supervisor and User 00
Full access to Supervisor, no access to User 01
Full access to Supervisor, read only access to User 10
Full access to Supervisor and User 11

Register 7: Cache Invalidate register (PU_CACHE_INVALIDATE_REG)

Writing any value to this register invalidates all lines of the cache.

Bit Description/Function
31:0 Reserved

Register 6: Memory Area Definition Register (PU_AREA_DEFx_REG)

These registers define up to eight separate programmable regions in memory. To access
the individual area registers, the CRm field selects the region number when using the
MCR or MRC ARM instruction.

Example:
MCR/MRC p15,0,Rd,c6,cO accesses register #6 sub-register #0.

Bit Description/Function
31:12 | Memory Area Base Address (AREA_BASE_ADR_FIELD[19:0]):
11:6 Reserved
5:1 Memory Area Size (AREA_SIZE_FIELD[4:0]):
(see Table 26)
0 Memory Area Enable (AREA_EN_BIT):
0: Disable
1: Enable

Default reset value: Bit 0=0, all others undefined (disabled).

TCH305-0001-002 53 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Table 26. Memory Area Size Settings.

Area Size Setting
4KB 01011
8KB 01100
16KB 01101
32KB 01110
64KB 01111
128KB 10000
256KB 10001
512KB 10010
1MB 10011
2MB 10100
4MB 10101
8MB 10110
16MB 10111
32MB 11000
64MB 11001
128MB 11010
256MB 11011
512MB 11100
1GB 11101
2GB 11110
4GB 11111
00000

Reserved to

01010

SUBJECT TO CHANGE 54 TCH305-0001-002

WMaTriscend

Scratchpad RAM

A 16Kbyte static RAM memory connects to both the CPU local bus and the CSI bus, as
shown in Figure 65. On the local CPU bus, the scratchpad serves as a zero wait-state
memory for the CPU. Critical code and data stored in the scratchpad have fast, guaran-
teed performance. The scratchpad is also accessible over the CSI bus by any CSI master
(JTAG or DMA controller). DMA transfers to or from the scratchpad through the CSI bus
incur no wait states.

Simultaneous accesses by both the CPU and DMA to the same half of the scratchpad
memory are arbitrated in an equal manner. A basic round-robin arbitration results in half
of the total scratchpad bandwidth being allocated to each the CPU and DMA. The band-
width allocation is performed in two bus-cycle increments. Some dead cycles might be
present if the CPU does not use the scratchpad memory after it has been granted access.

For increased performance, the scratchpad is separated into two halves, a lower 8Kbyte
block and an upper 8Kbyte block. Each half is simultaneously accessible without wait
states. While the CPU accesses the bottom half of the scratchpad, a DMA transfer to the
upper half happens without performance loss. The application can use the two portions of
the scratchpad as a ping-pong memory. While the DMA transfers data to one half, the
CPU can process the data in the other half of the scratchpad at full speed.

The scratchpad base address is also programmable in 16K byte increments. Although not
necessary in most cases, this option provides more flexibility to the system. However, the
scratchpad is not relocatable over an already-defined region, though aliasing to address 0
is the exception because it is activated by other means (see Alias Enable Register).

Basic memory protection is available within the scratchpad to protect the contents from
being corrupted by CSI accesses. CSI writes to the scratchpad can be selectively dis-
abled, into four independent 4Kbyte areas. This feature protects critical code or data
from errant CSI writes.

During debugging, the scratchpad optionally serves as a trace buffer. When enable dur-
ing debugging, only the lower 8Kbyte regions is accessible by the application while the
upper 8Kbyte region captures real-time bus traces, controlled by the breakpoint unit.

Scratchpad Control Registers

Scratchpad Memory Map

Address
Base Offset Register Name Access
+ 0x44 Scratchpad Configuration Register R/W
REMAP BASE
_BAS + 0x48 Scratchgad Base Address Register R/W

TCH305-0001-002 55 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Scratchpad Configuration Register (REMAP_SRAM_CONFIG_REG)
This register enables to configure the internal SRAM.

Bit Description/Function

31:6 Reserved

5:2 SRAM Area Write Protect (SRAM_PROTECT_FIELD[3:0]):

This field defines 4K areas in the scratchpad that can be protected from
any CSI write accesses. (see Table 27)

1 SRAM Size (SRAM_SIZE_BIT):

0: SRAMis 16K

1: SRAM is 8K, upper 8Kbytes used as trace buffer by breakpoint unit
0 SRAM Alias Priority (SRAM_PRIO_BIT):

0: Flash alias has priority over SRAM alias

1: SRAM alias has priority over Flash alias

Default reset value: 0x00000000 (SRAM alias has lower priority than Flash alias)
Table 27. Protected SRAM Area Settings.

Protected SRAM Area Setting
Scratchpad is open for CSI writes 0000
Protect lower 4K XXX 1
Protect second 4K XX1X
Protect third 4K X1XX
Protect upper 4K XXX

Scratchpad Base Address Register (REMAP_SRAM_BASE_ADR_REG)
The internal SRAM can be relocated through this register.

Bit Description/Function

31:14 | SRAM Base Address (SRAM BASE ADR FIELD [17:0]):
13:0 Reserved

Default reset value: 0xD1030000

SUBJECT TO CHANGE 56 TCH305-0001-002

WMaTriscend

External Flash, SDRAM Memory Support

The A7S architecture provides support for external static and dynamic memories through
the MSSIU (Memory Subsystem Interface Unit) unit. All memory subsystem configura-
tions share a common set of pins—address, data, and control. The Flash and SDRAM
memory configurations are programmed using the MSS Configuration Register. The
width of the Flash and SDRAM memory subsystems can be defined independently.

Configure the external memory interface using FastChip’s 1/0O Editor. Fromthel/O
Editor, you can specify the width and density of the external static memory and
SORAM memory attached to the A7.

Static: Memary | SDRAM hemory |
CEM pinz (reservedy, | CEH[0] | CENM] [CEM[2] [CEM[3] |
EGangIElank Oy e L o
— ﬁMIU
Qﬁind m Static Memory SDRAM Mamory |
} m Depth x W Mumber of external banks: 0 &4 2 u
Mone
j_f‘. 66 KKE SDRAM Subsystem connected to the MIU
FastChip 2ABKx1EB QFind | <Fin target= |
256Kx32
51 2Kub Depth x Width (in bits) Required System Pins (including non-recoverable pins)
512Kx16 256Mx8 W20:0], Da[7:0], WEM, SDCLK, 3DCKE, SDCE[1:0] d
512Kx32 m TMx16 W[Z0:0], D[5:0), WEM, BDCLK, SDCKE, SDCE[1:0]
2Mx1 6 W[20:0], DQ[15:0], WEM, SDCLK, SDCKE, SDCE[1:0]
TMx16 A1 6 W[20:0], DQ[15:0], WEM, SDCLK, SDCKE, SDCE[1:0]
— | M1 6 W[20:0], DQ[15:0], WEM, SDCLK, SDCKE, SDCE[1:0]
161 & W[Z0:0], D[t 5:0], WEM, EDCLK, SDCKE, SDCE[1:0]
AL20:0], DQ[1 5:0], WERM, SDCLE, SDCKE, SDCE[:0]
G i B k W[20:0], Da[5:0), WEM, EDCLEK, SDCKE, SDCE[1:0]
128MK16 W[Z0:0], D[5:0), WEM, BDCLK, SDCKE, SDCE[1:0]
a1 2ku3z2 W[Z0:0], Da[31:0], WEM, EDCLK, SDCKE, SDCE[1:0] j
/QK J xgancel J ‘? Help J

NOTE: . .
° To operate the memory subsystem at frequencies greater than 40MHz, an addi-

tional internal memory interface pipeline is activated by the FastChip develop-
ment software.

Flash or Static Memory Organization

The external memory interface seamlessly connects an A7S CSoC device to standard
static memories such as Flash, EEPROM or SRAM. The external static memory subsys-
tem is configurable as an 8-, 16-, or 32-bit system, built from byte-wide or 16-bit static
memories. The external interface responds to internal byte, half-word, or word transac-
tions regardless of the width of the external memory subsystem. The memory subsystem
is byte addressable and efficiently bridges the 32-bit CSI bus or local CPU buses to the
external memory bus. In an 8-bit subsystem, the external interface generates four exter-
nal transactions to provide the correct data for a word read. In response to a byte write on
a 32-bit external memory subsystem, the memory interface masks the unwanted bytes
and writes the correct byte. To expand the memory subsystem from an 8-bit to 16-bit or
32-bit, the correct number of chip-enable pins—one additional for 16-bit, three additional
for 32-bit—must be reclaimed for system use. The optional chip-enable pins include CE3-
/P10, CE2-/P10O, and CE1-/PIQ. Each chip-enable pin drives a one-byte slice of the mem-

TCH305-0001-002 57 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

ory subsystem (see Table 28). FastChip automatically reclaims the pins as user-defined
P10 pins if not used as chip-enable signals.

NOTE:

v

The amount of addressable external static memory (i.e., not SDRAM) begins at a default
minimum of 1M bytes, or 20 address lines. Up to four additional PIO pins can be re-
claimed as address lines to expand to amount of external memory, up to 16M bytes
maximum.

The memory interface only supports external interfaces built using byte- wide and
16-bit wide memory devices. If using 16-bit wide memories, be sure to set the
MSS FLASH_X16 bit in the MSSU Configuration Register.

If less than the maximum external static memory is attached, then multiple copies of the
attached memory appear, duplicated at every multiple of the size of the memory. Exam-
ples are shown in Figure 30. For instance, if only 8Mbytes of Flash are attached, then two
copies of the memory appear in the Flash address region. One copy appears at
0xD0000_0000, another at 0xD080_0000. The same applies if the static memory is ali-
ased into the bottom of memory (see Alias Enable Reaqister).

OXDOFF_FFFF —p

0xD0O00_0000 —»

Figure 30.

2 MB Flash 1 MB (copy)

4 MB Flash (copy) 1 MB (copy)

(copy) 2 MB Flash 1 MB (copy)

8 MB Flash (copy) 1 MB (copy)

(copy) 2 MB Flash 1 MB (copy)

4 MB Flash (copy) 1 MB (copy)

(copy) 2 MB Flash 1 MB (copy)

16 MB (copy) 1 MB (copy)
Flash 2 MB Flash 1 MB (copy)
4 MB Flash (copy) 1 MB (copy)

(copy) 2 MB Flash 1 MB (copy)

(copy) 1 MB (copy)

8 MB Flash 2 MB Flash 1 MB (copy)

4 MB Flash (copy) i m: Eiﬁﬁﬁ

2 MB Flash 1 MB Flash

If less than the maximum static memory is attached, copies of the

memory appear at every boundary of the attached memory size.

The external memory is mapped linearly in the system memory map starting at the pre-
defined base address (see Figure 28).

The external memory content follows the little endian format. Figure 31, Figure 32, and
Figure 33 illustrate the external memory content for each of the possible data-width or-
ganizations.

NOTE: If executing directly from an 8-bit or 16-bit wide external memory, the
ARM7TMDI’s Thumb mode offers improved performance. By using a 16-bit in-
struction instead of a 32-bit instruction, Thumb mode reduces the number of

fetches required from external memory.

SUBJECT TO CHANGE 58 TCH305-0001-002

WMaTriscend

(msb) (Isb)
31 0
AdbPe [Byte n | Byte n-1| Byte n-2 | Byte n-3
Byte7 | Byte6 | Byte5 | Byte4
AdOwer " Byte 3 | Byte 2 | Byte 1 | Byte O
Figure 31. 32-bit Memory Organization.
(msb) (Isb)
15 0
(msb) (Isb)
15 0 Addross | Byte n
addrbss| Byte n | Byte n-1 Byte n-1
Byte 7 | Byte 6 Byte 3
Byte 5 | Byte 4 Byte 2
Byte 3 | Byte 2 Byte 1
address|_Byte 1 | Byte 0 Address |_Byte 0

Figure 32. 16-bit memory Organization. Figure 33. 8-bit Memory Organization.

Using Thumb mode in narrow memory systems

By default, the ARM7TDMI CPU executes 32-bit ARM instructions. ARM instructions offer
the highest execution performance when the A7S connects to a 32-bit wide instruction
memory. When operating with an 8-bit wide or 16-bit wide instruction memory, each in-
struction fetch involves multiple memory accesses.

To enhance performance in narrow memory systems, the ARM7TDMI CPU offers Thumb
mode, which compresses a subset commonly used instructions into a 16-bit op-code. The
benefits are even higher code density, reducing the cost of the instruction memory, but
also offering higher performance in narrower memory systems. Figure 34 shows the rela-
tive performance of an ARM mode application versus a Thumb mode application, execut-
ing directly from external memory, i.e., no cache. The width of the external memory af-
fects ARM mode performance more dramatically than for Thumb mode.

TCH305-0001-002 59 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

1.0-
] |
(&)
S
2 o
5 - -
= =
EE 0 5" _::
o - —
>
FE -
a
TR

0 3o bit

16-bit

Thumb

Execution Data Width

Thumb

8-bit

Figure 34. Relative performance of ARM mode versus Thumb mode executing
from 32, 16, and 8 bit wide external memory.

The A7S’s cache memory and internal SRAM are both 32 bits wide, which benefits ARM

mode instructions.

into a 32-bit SDRAM memory and executed from SDRAM.

Interface timing

Likewise, code can be copied from an 8-bit or 16-bit Flash memory

The interface timing of the memory signals is programmable to accommodate memories
with different access times. The MSSIU Control Timing Register defines the timing of

each portion of the static memory read and write cycles. The basic external-memory read
and write waveforms are illustrated in Figure 35 and Figure 36.

BUSCLK

CE-

\

OE-

a
\ I

WE-

& »
< »

A

SETUP

A4

ACTIVE PART
OF CYCLE

Figure 35. Generalized read cycle using the static memory interface.

SUBJECT TO CHANGE

60

TCH305-0001-002

WMaTriscend

FastChip Device Link (FDL) automatically configures the MSSIU Control Timing
Register whenever you create a configuration image and specify an external memory
device. FDL usesthe memory'sinterface timing information and your operating fre-
guency to determine the proper values.

—Target Memary Device SDRAM Fart
Type Part Fart
hﬂ* [Fiash Memory =] |am2a01 165120 =l |sURaM-G2M0G-8E =]
FastChip User Defined Part... J
Device
Link 25| Bus Clock Source

" Internal Ring Oscillatar ...
"~ External clock on CLK ...

(o PLL output symthesizing 32 kHz crystal between XIN and XOUT
Fresuency (MHZ) Settling Time (maec)

| 59.9654a| | 100

During a read cycle, the output enable (OE-) signal is asserted at the falling edge of the
system clock and is de-asserted at the rising edge of the system clock. The read cycle is
divided between a setup and an active portion. Each of them is controlled independently
and can have values between 2 and 15.5 times the system clock, by increments of one.
At lower system-clock frequencies, one-cycle read operations are possible.

BUSCLK _,__,__,__,__,__,_l
CE- —\ r

OE-

WE- |

S G

; SETUP i STROBE : HOLD :

Figure 36. Generalized write cycle using the static memory interface.

During a write cycle, the write enable (WE-) signal is asserted at the falling edge of the
system clock and is de-asserted at the rising edge of the system clock. The write cycle is
divided between a setup, an active, and a hold portion. The setup and active portions are
controlled independently and can have values between %2 and 15.5 times the system
clock, by increments of one. The hold portion can have a value between 0 and 15 times
the system clock. At lower system-clock frequencies, one-cycle write operations are pos-
sible.

It is possible to execute from external memory with zero wait-states by setting all the ex-
ternal memory timing values to zero. If hold time is set to zero, i.e.—a one-cycle write,
watch the timing of the WE- signal at the board level. Be sure to set the electrical charac-
teristics of the WE- pin to high current drive and fast slew rate.

TCH305-0001-002 61 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

SDRAM Memory Controller

The A7S CSoC device provides an optional interface supporting up to 256Mbytes of syn-
chronous DRAM (SDRAM). A variety of SDRAM types are supported—64M-bit, 128M-bit
and 256M-bit—in their most common configuration (x8 and x16) as well as 100-pin
SDRAM modules with 4M to 64MBytes configurations. The SDRAM controller supports
an external SDRAM subsystem with an 8-, 16- or 32-bit data path, operating as a single or
dual bank. The 100-pin SDRAM modules are configured as a 32-bit system. The
SDRAM interface allows up to four SDRAM chips per banks in single or dual bank mode,
or one 100-pin module to be connected to the external memory bus. In any of these con-
figurations, the SDRAM interface accepts byte, half-word, and word transactions. It gen-
erates the appropriate external cycles to serve these requests. For example, if the exter-
nal dynamic memory is configured as an 8-bit system, the SDRAM controller generates
four equivalent SDRAM read cycles in response to a word transaction. For a 32-bit mem-
ory subsystem, byte and half-word transactions are supported through byte masking.

If less than the maximum external SDRAM memory is attached, then multiple copies of
the attached memory appear, duplicated at every multiple of the size of the memory. Ex-
amples are shown in Figure 37. For instance, if only 64Mbytes of SDRAM are attached,
then four copies of the memory appear in the SDRAM address region. Copies appear at
0xC0000_0000, 0xC400_0000, 0xC800_0000, and 0xCCO0O0_0000. The same applies if
the static memory is aliased into the bottom of memory (see Alias Enable Register).

OXCFFF_FFFF —

0xC000_0000 —»

32 MB SDRAM | | 16 MB (copy)

SGSR“E\/I (copy) 16 MB (copy)

(copy) 32 MB SDRAM 16 MB (copy)

S (copy) 16 MB (copy)

(copy) 32 MB SDRAM | | 16 MB (copy)

SoRAM (copy) 16 MB (copy)

(copy) 32 MB SDRAM 16 MB (copy)

256 MB (copy) 16 MB (copy)
SDRAM 32 MB SDRAM | | 16 MB (copy)
SDRAM (copy) 16 MB (copy)

(copy) 32 MB SDRAM 16 MB (copy)

128 MB (copy) 16 MB (copy)

SDRAM 32 MB SDRAM | | 16 MB (copy)

64 MB (copy) 16 MB (copy)

SDRAM 32 MB 16 MB (copy)

SDRAM 16 MB SDRAM

Figure 37. If less than the maximum SDRAM memory is attached, copies of the
memory appear at every boundary of the attached memory size.

The SDRAM interface operates up to 60 MHz, requiring SDRAMs with a 8 ns or less ac-
cess time. The SDRAM timing parameters—CAS latency, precharge cycles, etc.—are
controlled by the interface and are transparent to the user.

The auto-refresh feature retains the data inside the SDRAM external memory. An internal
12-bit counter generates refresh requests at regular intervals. The count is programmable
in multiples of the system clock period. To achieve a refresh every 15.625 ps—a typical
requirement for 64M-bit parts— set the count value to 1,031 when operating at 60 MHz
(15.625us x 60MHz). The self-refresh feature of the SDRAM is used during power-down
to retain memory content.

SUBJECT TO CHANGE 62

TCH305-0001-002

WMaTriscend

SDRAM Organization

The SDRAM address space is organized into columns, rows and banks and different
types of SDRAM have varying numbers of each. The linear and contiguous address gen-
erated by the system must be mapped to the column, row, and bank address lines appro-
priate for the specific type of SDRAM. Figure 38 through Figure 40 show the relation be-
tween the A7S’s linear addresses lines and the columns, rows, banks addresses for
SDRAM memory subsystems with bus widths of 8, 16, and 32 bits.

The upper four address bits, A[31:28] are always 1100’b because the external SDRAM is
mapped starting at 0xC000_0000 in the system memory map (see Figure 28). The
SDRAM chip-select inputs connect to the A7S’s SDCE[1:0]- chip-select signals. Two ex-
ternal banks must be defined in the MSS Configuration Register and the appropriate
settings made in the FastChip I/O Editor for SDCE1- to be valid.

Optimized Performance

The SDRAM controller is optimized for DMA transfers and Cache fills. DMA packets and
Cache lines are four words deep. When using DMA, the DMA transfer buffers should be
enabled for best system performance (see DMA SDRAM Transfers).

To maximize performance when accessing SDRAM, it is important to understand the
memory organization. For a particular bank, accessing a row that is different than the ac-
tive row results in precharge and activation cycles, followed later by the actual access.
For maximum performance, avoid accessing different rows within the same internal bank.
For example, placing the application code into the first SDRAM bank, and performing
DMA transfers to or from the other bank allows cache fills without the memory precharge
penalty, except at page boundaries.

Power-up Sequence

Regardless of the physical presence of external SDRAM, the A7S device automatically
performs a SDRAM power-up sequence during its power-on initialization cycle. The
SDCLK, SDCKE, and SDCE[1:0]- all toggle during initialization.

If physically connected, the external SDRAMs are powered-up every time the A7S exe-
cutes its initialization sequence. The A7S configures the MODE REGISTER within the
SDRAM devices using the values specified in the SDRAM Mode Register. In a typical
application, the initialization sequence switches the SDRAM from the disabled state to the
active state. Application code then specifies the correct refresh requirements and then ei-
ther has the SDRAM remain in active mode or places the SDRAM subsystem in stand-by
mode to reduce power consumption.

SDRAM Timing Parameters

The basic SDRAM timing parameters are programmable and can be optimized corre-
sponding to the system clock frequency. Each of the following options controls an
SDRAM timing parameter as a multiple of the system clock period. An example waveform
is shown in Figure 44.

= Precharge period (TRP_FIELD)

= Activate to read/write command (TRCD_FIELD)

= CAS latency, although CAS=2 should work for all applications (MODE_REG_FIELD[6:4])
= Write recovery time (TWR_FIELD)

= Refresh to Active period (TRC_FIELD)

All other SDRAM parameters are hard-coded within the SDRAM controller hardware.

TCH305-0001-002 63 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Memory Address lines
Organization [27]26[25[24]23]22]21]20[19[18[17]16]15]14][13[12[11]10] 9] 8] 7[6]5]4]3]2]1]0
(4Xif'('\)f;1’i2txs) CS|(B[1:0] R[11:0] C[8:2] C[1:0]|M[1:0]
(4xf|21>':g-5b€i>§< 16) CS|B[1:0] R[11:0] C[7:2] C[1:0]|M[1:0]
(4)1(2%\(/'1'?;8) CS|B[1:0] R[11:0] C[9:2] C[1:0]|M[1:0]
(4x4112K?(’\5A1-gi(t16) CS|[B[1:0] R[11:0] C[8:2] C[1:0]|M[1:0]
(4)2(2%("1'%:8) cs|B[1:0] R[12:0] C[9:2] C[1:0][M[1:0]
(4X§f<?('\5/'1't2’;t16) Cs|B[1:0] R[12:0] C[8:2] C[1:0]|M[1:0]
1Mx32 DIMM CS(BO R[10:0] C[7:2] C[1:0]1{M[1:0]
2Mx32 DIMM CS(BO R[10:0] C[7:2] C[1:0]1{M[1:0]
4Mx32 DIMM CS|B[1:0] R[11:0] C[7:2] C[1:0]1{M[1:0]
8Mx32 DIMM CS|B[1:0] R[11:0] C[7:2] C[1:0]1{M[1:0]
16Mx32 DIMM CS|B[1:0] R[11:0] C[8:2] C[1:0]1{M[1:0]

Figure 38. SDRAM Address Mapping for 32-bit External Memory Subsystems.

Memory Address lines
Organization [27[26[25[24[23]22]21]20[19]18[17]16]15]14]13]12[11]10] 9] 8] 7]6]5]4[3]2]1]0
(4Xif'<'\)f;1’i2tx8) CS|(B[1:0] R[11:0] C[8:3] C[2:0] MO
(4Xf|2‘)':g'5bé; 16) CS|B[1:0] R[11:0] C[7:3] C[2:0] |Mo
(4i‘21ﬁ')\(ﬂ1_téi;8) CS|B[1:0] R[11:0] C[9:3] C[2:0] |MO
(4x12K?<,;A1-221 6) CS|B[1:0] R[11:0] C[8:3] C[2:0] MO
(4)2(2%(/'1-?):8) CS|B[1:0] R[12:0] C[9:3] C[2:0] |MO
(4X§5KE)3(I\5A{t2)i)(t1 6) CS|B[1:0] R[12:0] C[8:3] C[2:0] |MO

Figure 39. SDRAM Address Mapping for 16-bit External Memory Subsystems.

Memory Address lines
Organization [27]26]25[24]23[22]21]20[19]18]17]16[15[14[13[12[11[10[9[8[7[6][5]4[3]2]1]0
(4X2é'>\(/'5'$gxs) CS|B[1:0] R[11:0] C[8:4] C[3:0]
(43(2&,:?1-&28) CS|[B[1:0] R[12:0] C[9:4] C[3:0]

Figure 40. SDRAM Address Mapping for 8-bit External Memory Subsystems.

In Figure 38 through Figure 40:
M = byte mask, C = column, R = row, B = internal bank, CS = external bank select
Memory Organization = Banks x Rows x Columns x Data Width = M-bits

SUBJECT TO CHANGE 64 TCH305-0001-002

WMaTriscend

Refresh

SDRAM must be refreshed periodically to retain its data content. The refresh rate is
specified in the SDRAM Control Reqgister as the number of bus clock cycles between re-
fresh cycles. During normal or stand-by operation, the SDRAM controller issues an auto-
refresh command, which cycles the refresh address counter inside the SDRAM. Long
burst refresh sequences are avoided. An example waveform is shown in Figure 45.

In full power-down mode, the SDRAMs use their self-refresh feature where the SDRAM
device generates its own clock.

Power Management

The A7S provides the following SDRAM modes. Writing to the Power Management field
of the SDRAM Control Register transfers the SDRAM memory from one level to another.

1. Disable state. Writing 000 (default value) disables the SDRAM controller. No read or
write accesses or refresh cycles are possible. In this mode, the SDRAM does not re-
tain data.

2. Active state. Writing 010’b activates the SDRAM controller. Activating the controller
from the disabled state causes the controller to apply a PRECHARGE ALL command
to the SDRAM memory, followed by eight AUTO REFRESH cycles. The SDRAM con-
troller then programs the MODE REGISTER in the SDRAM using the values specified
in the SDRAM Mode Register. The SDRAM is ready for full-speed access.

3. Stand-by. Writing 011’b activates the stand-by mode. This state is similar to the ac-
tive state, except that the SDRAM clock enable pin (SDCKE) is forced Low as soon as
no SDRAM accesses are required. By doing so, the SDRAM enters a power-saving
mode without being de-activated. The SDRAM leaves the power-saving mode auto-
matically upon a refresh or a read or write request. The performance loss is minimal
because only one NOP command is inserted when exiting power saving mode.

4. Power-down. Writing 100’b causes the SDRAM controller to generate a self-refresh
sequence. The SDRAM device retains its content by generating refresh cycles inter-
nally without the A7S’s SDRAM controller. To exit this mode, return to the active or
stand-by states.

TCH305-0001-002 65 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Connecting Flash and SDRAM to the A7

Table 28 lists how the A7S’s pins connect to different memory configurations. Both Flash
and SDRAM can be connected simultaneously, although SDRAM is optional.

Addresses are shifted internally to the A7S for 16-bit and 32-bit Flash configurations.
Consequently, in the 16-bit configuration, address pins A[22:0] represent a half-word ad-
dress. Similarly, in 32-bit configuration, address pins A[21:0] represent a word address.
There is a total of 16M bytes of external Flash or static memory address space.

When using 16-bit Flash devices, watch out for differencesin terminology used
between various Flash suppliers. 1n a 16-bit wide memory subsystem, the A7S
internally shifts the address presented to the memory interface. The A7Ss A0
address line must connect to the half-word address input on the Flash device. On
some Flash devices, the half-word address input is labeled AO, with a separate
input labeled D15/A-1 for byte addressing. Other vendors label their half-word
addressinput as Al and the byte address input as AQ.

For example, the diagram below shows how to connect the A7S device to an Intel
SrataFlash or an AMD Am29F800B Flash. Tie the Flash BYTE# input to select
16-bit or byte-wide mode.

Intel AMD
StrataFlash™ Am29F800B
NOTE: Q_T O_T
CEO0- ———(] CE- BYTE- CEO- ———(CE- BYTE-
WE- ———(WE- WE- ——— WE-
OE- ——(OE- x16 OE-—Q OE-512KX16
A[N-1:0)] emm— Aln:1] A[18:0] m A[18:0]
¥— A0 DQ15/A-1
D[15: ()] em— D[15:0] D[15:0] —D% DQ[14:0]

CEO0- ———(] CE- BYTE- CEO- ——(CE- BYTE-
WE- ———(C WE- 037 WE- ———Q WE- 037
OE- ——(OE- OE- ——(OE-

A[N:0] e Afn:1] x8 A[19:0] et A[18:0]1MX8
A% a0 A0l pa1sia-1
D[7:0] D[7:0] D[7:0Q] DQ[14:0]

Figure 41 through Figure 42 illustrate the possible Flash configurations and connections,
ranging from a byte-wide interface to a 32-bit wide interface, built using byte-wide and 16-
bit wide memories.

SUBJECT TO CHANGE 66 TCH305-0001-002

WMaTriscend

Table 28. External Memory Connectivity.

Static Memory (Flash) SDRAM
De_vice 8 bits 8 bits 16 bits 32 bits
Pins wide 16 bits wide 32 bits wide wide wide wide
{)"ﬁé{‘ﬁry 8-bit 8-bit 16-bit 8-bit 16-bit
CE- Lower
CEO- CE- CE-Byte 0 | CE- CE-Byte 0 | 1 it
CE1- CE- Byte 1 CE- Byte 1
CE- Upper
CE2- CE- Byte 2 Half-Word
CE3- CE- Byte 3
WE- WE- WE- WE- WE- WE- WE WE WE
OE- OE- OE- OE- OE- OE-
SDCLK CLK CLK CLK
SDCKE CKE CKE CKE
SDCE[1:0]- CS[1:0] CS[1:0] CS[1:0]
A[0] A[0] A[0] A[0] A[0] A[0] RAS RAS RAS
Al1] Al1] Al1] Al1] Al1] Al1] CAS CAS CAS
Al2] Al2] Al2] Al2] Al2] Al2] DQMI0] DQMI0] DQMI0]
Al3] Al3] Al3] Al3] Al3] Al3] DQM[1] DQM[1]
A[5:4] A[5:4] A[5:4] A[5:4] A[5:4] A[5:4] DQM[3:2]
A[7:6] A[7:6] A[7:6] A[7:6] A[7:6] A[7:6] BS[1:0] BS[1:0] BS[1:0]
A[20:8] A[20:8] A[20:8] A[20:8] A[20:8] A[20:8] A[12:0] A[12:0] A[12:0]
A[21] A[21] A[21] A[21] A[21] A[21]
Al22] Al22] Al22] Al22]
A[23] A[23]
A[31:24]
D[7:0] D[7:0] D[7:0] D[7:0] D[7:0] D[7:0] DQ[7:0] DQ[7:0] DQ[7:0]
D[15:8] D[15:8] D[15:8] D[15:8] D[15:8] DQ[15:8] DQ[15:8]
D[31:16] D[31:16] D[31:16] DQ[31:16]
CEO-D Q) CE-
CE1-[D— — () WE-
1Mx8
CE2- —() OE-
i Flash
CE3-[D— A[19:0]
O .
c?) we-b D[7:0]
O D
N~
<
T An90]
(D]
O A[23:20] fm
0
=
D[7:0]
D[15:8)] jemmm
D[23:16] fmmm
D[31:24] frmmme

Figure 41. An 8-bit Flash memory interface.

TCH305-0001-002

67

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Triscend A7 CSoC

a.) 32-bit Subsystem using four 8-bit Flash devices.

Triscend A7 CSoC

CEO-

CE1-
CE2-
CE3-

WE-
OE-

A[19:0]
A[23:20]

D[7:0]
D[15:8]
D[23:16]
D[31:24]

CEO-

CE2-

WE-
OE-

A[19:0]
A[23:20]

D[7:0]

D[15:8]
D[23:16]
D[31:24]

O () CE-
O QWE- 512Kx8
o— —() OE- Flash
oO— Ans:0] (byte 0)
N D[7:0]
N
O
Ol CE-
QWE- 512Kx8
- +—() OE- Flash
Ans:0] (byte 1)
| D[7:0]
Q| CE-
CQWE- 512Kx8
¢—(] OE- Flash
Ans:0] (byte 2)
D[7:0]
Q)| CE-
QWE- 512Kx8
—(OE- Flash

Ans:0] (byte 3)

D[7:0]

0 Q ce-
O— —CWE- 256KXx16
o —) oE- Flash
— A17:0] (Lower
D[15:05—|alf-Word)
O ce-
QWE- 256Kx16
— L_oe- Flash
A7:0) (Upper
D[15:05-|alf-Word)

b.) 32-bit Subsystem using two 16-bit Flash devices. Set MSS FLASH X16 bit.

Figure 42. A 32-bit Flash memory interface.

SUBJECT TO CHANGE

68

TCH305-0001-002

WMaTriscend

CEO-
CE1-
CE2-
CES-

WE-

OE-

A[19:0]
A[23:20]

Triscend A7 CSoC

III_ I

D[7:0]

D[15:8]
D[23:16]
D[31:24]

a.) 16-bit Subsystem using two 8-bit Flash memories.

CEO-
CE2-
CE3-
WE-

OE-

A[19:0]
A[23:20]

Triscend A7 CSoC

D[7:0]

D[15:8]
D[23:16]
D[31:24]

Q| CE-
J WE- 1Mx8
—(OE- Flash

Ane9:0] (byte 0)

[ON®) ﬂ)ﬂ)()()

D[7:0]

Q) ce-
(] WE- 1Mx8
—(C OE- Flash

Ane:0] (byte 1)

D[7:0]

O (J CE-
O— —gw
1Mx16
— () OE-
i Flash
H— A[19:0]
el D[15:0]
NS

b.) 16-bit Subsystem using a 16-bit Flash memory. Set MSS FLASH X16 bit.

Figure 43. A 16-bit Flash memory interface (1Mx16).

TCH305-0001-002

69

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Memory Subsystem Arbitration

The memory subsystem serves requests from different sources including the CPU, the
DMA buffers, the CSI bus (JTAG or non-buffered DMA transactions) and internal SDRAM
refresh request. The arbitration is round-robin style where the arbitration priority rotates
between the various sources, except for the internal SDRAM refresh request. The internal
refresh is a low priority request and usually gives way to any other request. However, af-
ter accumulating too many un-serviced refresh requests, the refresh priority is promoted to
the same level as the other sources, guaranteeing service after a few cycles of latency.

In a heavily loaded application, where DMA transfers use the full CSI bus bandwidth and
where the cache requests fills, half the memory interface bandwidth is allocated to cache
fills while the other half is allocated to the DMA transfers. The cache fills cannot use the
full memory bandwidth anyway because there is a minimum of three clock cycles between
the end of a cache fill and the next cache fill request. These three cycles can be used by
any other sources without impacting on the cache fill rate.

DMA Data Transfers to and from External Memory

DMA SDRAM Transfers

The SDRAM subsystem is designed and optimized for four-cycle burst transfers on the
memory bus.

Transferring just one piece of data at a time to or from SDRAM is inefficient. In addition to
the CAS latency, which is typically two cycles, the burst is aborted for every piece of data.
Therefore, every single data transfer incurs several clock cycles of overhead.

The A7S includes FIFOs within the SDRAM interface to maximize the burst nature of
SDRAM. Each DMA channel has a 8x32 buffer, which is individually enabled in the
DMA BUFFER EN FIELD in the Memory Subsystem Confiquration Reqister.

When writing to memory, the DMA FIFO accumulates four words and then transfers these
four words to SDRAM efficiently. Upon receiving the last piece of write data, the FIFO
automatically writes out all the FIFO contents to the SDRAM, flushing the FIFO.

When reading, data is burst from SDRAM (prefetched) and stored in the FIFO until the
DMA requests the data. When the transfer is completed, the FIFO is automatically
cleared by hardware to discard any unused pre-fetched data.

There are no data coherency issues because, upon receiving the last piece of data of a
particular DMA transfer, the FIFO receives the highest priority for flushing itself to external
SDRAM memory.

DMA Flash Transfers

The DMA FIFOs also marginally improve data transfers to and from external Flash. As
with SDRAM, the individual buffers are enabled in the DMA BUFFER EN FIELD.

Additional Latency at Higher Frequencies

To guarantee performance at higher bus clock frequencies, an additional pipeline is in-
serted between the CPU memory requests and the memory interface when operating at
frequencies over 40 MHz.

This pipeline increases latency during cache fills and code execution from external mem-
ory.

Setting PIPE_BIT enables the bus pipeline.

SUBJECT TO CHANGE 70 TCH305-0001-002

WMaTriscend

Memory Subsystem Control Registers Description

Memory Map
Address
Base Offset Register Name Access

+ 0x00 Memory Subsystem Configuration R/W
+ 0x04 Static Memory Interface Timing Control R/W
+ 0x08 SDRAM Mode R/W

MSS_BASE + 0x0C SDRAM Control R/W
+ 0x10 Status R
+ 0x14 Status Clear W

oy

FastChip
Device
Link

FastChip Device Link (FDL) automatically configures the memory interface control
registers whenever you create a configuration image and specify an external memory
device. FDL usesthe memory’sinterface timing information and your operating fre-
guency to determine the proper values.

—Target Memary Device SDRAM Fart
Type Part Fart
[Fiash Memory =] |am2a01 165120 =l |sURaM-G2M0G-8E =]
zer Defined Part .. J

~CSl1Bus Clock Source
" Internal Ring Oscillatar ...
"~ External clock on CLK ...

(o PLL output symthesizing 32 kHz crystal between XIN and XOUT
Fresuency (MHZ) Settling Time (maec)

| 59.9654a| | 100

Memory Subsystem Configuration Register (MSS_CONFIG_REG)

FastChip Device Link automatically configures most options. The DMA Buffer Enables
must be configured by application software.

Bit Description/Function
31:25 Reserved
24 Flash Devices are x16 (MSS_FLASH_X16):
This bit identifies the data width of individual static memory devices in or-
der to generate the correct chip enable sequence for byte accesses.
0: Byte-wide Flash devices
1: 16-bit-wide Flash devices
23:16 | DMA Buffer Enables (DMA_BUF_EN_FIELD [7:0]):

This field enables DMA channel buffers independently of each other.
0: Disable channel
1: Enable channel
Flash Buffer Enables
Bit 23 22 21 20
Channel | DMA3 | DMA2 | DMA1 | DMAO

SDRAM Buffer Enables
Bit 19 18 17 16
Channel DMA3 | DMA2 | DMA 1 DMAO

TCH305-0001-002

71 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Bit Description/Function

15 CPU Interface Pipeline Enable (PIPE_BIT):

This bit enables the CPU interface pipeline. This bit should be set under
most conditions. The bit should be cleared if the system clock is low fre-
quency.

0: Disable pipeline

1: Enable pipeline (required if operating at 40 MHz or faster)

14 Number of External SDRAM Banks (NE_BANK_BIT):

This field indicates how many external banks are present in the SDRAM
memory subsystem.

0: One external bank

1: Two external banks

13 Number of Banks within SDRAM Device (N_BANK_BIT):

This field indicates how many internal banks are present within each
SDRAM device. The 16M-bit SDRAM devices have 2 banks while 64M-bit
devices and larger have 4 banks.

0: Two internal banks

1: Four internal banks (default)

12:10 | SDRAM Memory Subsystem Bank Mapping (B_MAP_FIELD [2:0]):
This field indicates how the linear address is mapped onto the bank select
lines. The number of rows, columns and the bus-width determines the shift-
ing of the bank select lines (Bank) relative to the system address (Addr).
(see Table 29)

9:8 SDRAM Memory Subsystem Row Mapping (R_MAP_FIELD [1:0]):

This register indicates how the linear address is mapped onto the row ad-
dress, R. The number of columns and the bus-width determines the shifting
of the row address (Row) relative to the system address (Addr). (see Table
30)

7:6 SDRAM Memory Subsystem Datapath Width
(SDIU_DEV_WIDTH_FIELD [1:0]):

See Figure 38, Figure 39, and Figure 40.

5:4 Static Memory Subsystem Datapath Width
(MIU_DEV_WIDTH_FIELD [1:0]):

See Figure 38, Figure 39, and Figure 40.

3:0 Bus Mode (BUS_MODE_FIELD [3:0]):

This field indicates the major bus modes of the memory subsystem as it
appears to the internal CSI Bus (see Table 32).

Configuration reset value: 0x00004002
Table 29. SDRAM Memory Subsystem Bank Mapping Settings.

SDRAM Memory
Subsystem Bank Mapping | Settings
Bank[1:0] = Addr[22:21] 000
Bank[1:0] = Addr[23:22] 001
Bank[1:0] = Addr[24:23] 010
Bank[1:0] = Addr[25:24] 011
Bank[1:0] = Addr[26:25] 100

See Figure 38, Figure 39, and Figure 40.

SUBJECT TO CHANGE 72 TCH305-0001-002

WMaTriscend

Table 30. SDRAM Memory Subsystem Row Mapping Settings.

Row Mapping Setting
Row = Addr[l+9] 00
Row = Addr[l+10] 01
Row = Addr[l+11] 10
Row = Addr[l+12] 11

See Figure 38, Figure 39, and Figure 40.

Table 31. Memory Subsystem Datapath Width Settings.

Datapath Width Setting
Byte -- 8-bit 00
Half-Word -- 16-bit 01
Word -- 32-bit 10
Reserved All Others

Table 32. CSI Bus Mode Settings.

CSl Bus Mode Setting
Slave — CSI Slave Mode 0001
Master — CS| Master Mode 0010
Reserved All Others

Static Memory Interface Timing Control Register (MSS_TIM_CTRL_REG)

This register specifies the read and write timing values of the static memory subsystem.
FastChip Device Link automatically configures these options. However, the timing values
may be modified when changing operating frequency or when entering or existing power-

down mode.
Bit Description/Function
31:20 | Reserved
19:16 | Read Cycle Pulse Width (RC_WIDTH_FIELD [3:0]):

This field specifies the pulse width of OE- when generating a memory read
sequence. The pulse width is calculated using the following formula:
Trew = (RCWidth[3:0] + 0.5) * Tcik

15:12

Read Cycle Setup Time (RC_SETUP_FIELD [3:0]):

This field specifies the width of the set-up portion of a read cycle in addition
to the half-cycle mandatory width of OE-. The setup time is calculated us-
ing the following formula:

Trsu = (RCSetup[30] + 05) *Tok

Write Cycle Hold Time (WC_HOLD_FIELD [3:0]):

This field specifies the width of the hold portion of a write cycle. The hold
time is calculated using the following formula:

TWHD = WCHO'd[30] * TCLK

7:4

Write Cycle Pulse Width (WC_WIDTH_FIELD [3:0]):

This field specifies the pulse width of WE- when generating a memory write
sequence. The pulse width is calculated using the following formula:

Twew = (WcWidth[3:0] + 0.5) * Tcik

3:0

Write Cycle Setup Time (WC_SETUP_FIELD [3:0]):

This field specifies the WE- assertion setup time for a memory write cycle.
The setup time is calculated using the following formula:

Twsu = (WCSGtUp[30] + 05) * TC'iK

Configuration reset value: 0x00077777

TCH305-0001-002

73 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

"WI0JOARAN USa1lay-01nY NVYHAS 9|dwex3 ‘G ainbi4

A

(T +@1314 24L) g
polad puewwo) aAnoy/ysaljay 0Ny

-l
%

(T+ o._m__u_ln_mb
pollad puewuwo) @

Y

leyodald

N V’Am_wm,&m._om_mn_V‘

(T +a71314 umL
auil] A19A09ay 911IM

_

|

LI

]

rleq
Nueg
ssalppy
noa

puewwo)

| M10as

"WI0JOABAN 1M 1SINg NVYHAS ajdwex3 v ainbi4

H
[

-l

-

i)

ca

i (T + 1314 aoMl)
i poliad Aejag puewwo)

Lt

|

(T+a13nrd ayy)

polad puewwo) abreyosaid

mmov‘A

v‘AHmo

_

|

|

|

|

MNVE

i

[

V‘AmtmEV‘A dON V‘Am_>_“5<V‘A dON V’Am_om,qfn_om_mn_V‘
_

]

eleq
Queg
ssalppy
noa

puewwo)d

| M10as

TCH305-0001-002

74

SUBJECT TO CHANGE

WMaTriscend

SDRAM Mode Register (MSS_SDR_MODE_REG)

This register configures the different operating modes and timing of the SDRAM subsys-
tem. FastChip Device Link automatically configures these options. However, the timing
values may be modified when changing operating frequency or when entering or existing
power-down mode. See Figure 44 and_Figure 45 for waveforms showing timing values.

Bit Description/Function
31:30 | Reserved
29:23 | SDRAM Mode Register (MODE_REG_FIELD [13:7]):
Set these bits to 0000100’b to program the external SDRAM for single
location write access.
This field defines the content of the SDRAM mode register loaded into
each external SDRAM device at power-on or device reset.
The mapping to pins is as follows:
MODE_REG_FIELDI[13:0] = {BS[1:0], A[11:0]}
The SDRAM controller expects a pre-defined mode of operation (sequen-
tial bursts of 4 and single writes). The only programmable value is the
CAS latency. This field is applied to the pins during the LOAD MODE
REGISTER command.
22:20 | SDRAM Mode Register, CAS Latency (MODE_REG_FIELD [6:4]):
These bits control the CAS latency. The legal values are shown below.
010: 2-cycle latency (most applications use this value)
011: 3-cycle latency
19:16 | SDRAM Mode Register (MODE_REG_FIELD [3:0]):
Set these bits to 0010’b.
These bits define the SDRAM burst access. The SDRAM must always be
configured for sequential bursts of four.
15 Reserved
14:12 | Refresh/Active Period (TRC_FIELD [2:0]):
This field defines the refresh period to be applied by the SDRAM controller.
The number of clock cycles applied to the refresh cycle is (TRC_FIELD+1).
This value also represents the active cycle. However, it is only used for re-
fresh. The active cycle is a function of the minimum SDRAM cycle (pre-
charge + activate + command ~ 5 clock cycles).
11 Reserved
10:8 Write Recovery Time (TWR_FIELD [2:0]):
This field defines the write recovery time applied by the SDRAM controller.
The number of clock cycles applied is equal to (TWR_FIELD+1). The write
recovery time is applied between a write and a precharge command.
7 Reserved
6:4 Command Delay Period (TRCD_FIELD [2:0]):
This field defines the number of clocks to be applied between an active
command and a read/write command. The period, measured in clock cy-
cles, is equal to (TRCD_FIELD+1).
3 Reserved
2.0 Precharge Period (TRP_FIELD [2:0]):
This field defines the precharge period to be applied by the SDRAM con-
troller. The number of clock cycles applied to the precharge cycle is
(TRP_FIELD+1).

Configuration reset value: 0x02223222

TCH305-0001-002

75 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

SDRAM Control Register (MSS_SDR_CTRL_REG)
This register controls and configures the SDRAM controller state and the refresh mecha-

nism.
Bit Description/Function
31:28 | Refresh Burst Size (RFSH_BURST_FIELD [3:0]):
This field specifies the number of auto refresh bursts, minus one, to gener-
ate per refresh request. Load burst size minus 1 in this field.
27:16 Refresh Rate (RFSH_RATE_FIELD [11:0]):
The refresh rate specifies the desired number of clock periods between two
refreshes. This field is loaded into the Refresh Interval Counter. Loading O
in this field disables the SDRAM refresh.
15:3 Reserved
2:0 SDRAM Power Management (PWR_MAN_FIELD [2:0]: (see Table 33)

System reset value: 0

Table 33. SDRAM Power Management Mode Settings.

SDRAM Power
Management Mode Setting
SDRAM disable 000
SDRAM normal operation 010
SDRAM normal operation with stand-by 011
Power down (self-refresh) mode. In this 100
mode, the SDRAM retains its data.

MSSIU Status Register (MSS_STATUS_REG)

This register is read only.

Bit Description/Function
31:4 Reserved
3 Refresh Request Counter Overflow (RFSH_OVF_BIT):
The refresh request counter is limited to seven pending requests. How-
ever, an overflow condition is very unlikely, possibly resulting from an ex-
cessively high refresh rate.
2:0 SDRAM Controller Status (SD_STATUS FIELD [2:0]: (see Table 34)

System reset value: 1

Table 34. SDRAM Controller Status.

Setting SDRAM Controller Status
001 SDRAM controller is disabled
010 SDRAM controller is in self-refresh mode
100 SDRAM controller is in stand-by mode
000 SDRAM controller is in normal operation

SUBJECT TO CHANGE 76

TCH305-0001-002

WMaTriscend

MSSIU Status Clear Register (MSS_STATUS CLEAR_REG)

This register is write only.

Bit Description/Function
31:4 Reserved
3 Clear Refresh Request Counter Overflow (RFSH_OVF_CLR_BIT):
Write a ‘1’ to this bit to clear the refresh request overflow bit in the status
reqister.
2:0 Reserved

TCH305-0001-002

77

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

System Performance

Maximizing System Performance

The techniques outlined in Table 35 guarantee maximum system using an A7S CSoC de-
vice. Some techniques incur a cost penalty, such as requiring SDRAM. Others use fea-
tures already available on every A7S device.

In general, wider external memory data paths boost perform by reducing the number of
access per each instruction fetch or data transfer.

Table 35. A7S Performance Optimization Techniques.

Feature
Code Execution

Cache

Performance Enhancement

When enabled, cached instructions are
fetched in a single clock cycle.

Cost Penalty/Benefit

None. Cache available
on every A7S device.

Internal SRAM

Copy and execute critical code from inter-
nal SRAM. Instructions are fetched in a
single clock cycle.

Reduces available in-
ternal SRAM for data
storage.

SDRAM, Cache

Copy code from Flash to SDRAM and exe-
cute from SDRAM. Performance en-
hancement is greatest for a 32 bit wide
SDRAM interface. SDRAM interface opti-
mized for cache fills.

Requires external
SDRAM but reduces the
cost of external Flash.
Use a slow, cheap, 8-bit
Flash to store code.

CPU-to-external
memory pipeline

Guarantees system performance when op-
erating above 40 MHz.

None.

Thumb mode

DMA

If system cost goals requires executing di-
rectly from a byte-wide or 16-bit wide

Flash, Thumb mode instructions improve
system performance by reducing number of
memory accesses for each instruction
fetch.

Use DMA to transfer blocks of memory,
offloading the CPU. DMA descriptor mode
allows DMA to execute complex transfers.
Ideal for transfers between memory and
device functions implemented in CSL logic.

May reduce overall sys-
tem cost while maintain-
ing moderately high per-
formance.

Data Transfers

Each DMA channel
competes for bandwidth
on the CSI bus.

DMA, Internal
SRAM

Use half of internal SRAM as a DMA data
buffer. DMA accesses to internal SRAM
are zero wait-state. CPU accesses other
half of internal SRAM without wait-states.
Ideal for “ping-pong” data buffers.

Reduces available in-
ternal SRAM for data or
code storage.

DMA, SDRAM

The SDRAM interface is optimized for DMA
transfers. Enable transfer buffer for best
performance.

SUBJECT TO CHANGE

TCH305-0001-002

WMaTriscend

CPU Code Execution

The ARM7TDMI CPU can execute code from any of the following resources.
= Scratchpad RAM

= Cache

= External Static Memory (Flash)

= External SDRAM

= Over the CSI bus

Code execution is optimized when fetching from the Scratchpad RAM, the cache, or the
Flash subsystem operating at lower speeds. Code execution implies code fetch and data
read or write transactions by the CPU.

Executing from Scratchpad RAM or Cache

The CPU executes from the Scratchpad RAM and Cache at full speed, without any wait
states, regardless of sequential or non-sequential (branching) accesses.

This is true for code fetching and data read or write accesses.
Additional Pipeline Delay at Higher Frequencies

To guarantee performance when operating at higher frequencies, an additional pipeline
delay is inserted between the CPU memory requests and the external memory interface
when operating at 40 MHz or more.

This pipeline only increases latency during cache fills from external memory and when
executing code from external memory.

Executing from External Flash or SRAM

Executing code from external static memory, typically Flash or SRAM, is optimized for
lower operating frequencies. Table 36 shows the number of bus cycles required when
executing from external Flash or SRAM, by access or instruction type. Values are shown
when executing with and without the additional high-performance pipeline delay. The val-
ues shown in Table 36 assume a 32-bit static memory interface with Flash or SRAM
memory capable of operating with single-cycle accesses.

Table 36. Bus Cycles When Executing from External Flash or SRAM.

Pipeline

Access Type No Pipeline | Enabled
Non-sequential 2 3
Sequential 1 2
Load/store multiple 1 2

Table 40 presents similar data, but for other static memory interface data widths and
memory speeds.

Executing from External SDRAM

Table 37 shows the number of bus cycles required when executing from external SDRAM,
by access or instruction type. Values are shown when executing with and without the ad-
ditional high-performance pipeline delay. The values shown in Table 37 assume a 32-bit
SDRAM interface, a CAS latency of 2, and that all accesses are to the same SDRAM
page—no pre-charge and activation required.

Table 37 shows that four bus cycles are required when reading from external SDRAM,
without the pipeline enabled. This number includes one cycle for request generation, one
cycle for the SDRAM command generation, and two cycles for SDRAM read data latency.

TCH305-0001-002 79 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Table 37. Bus Cycles When Executing from External SDRAM.

Pipeline
Access Type | No Pipeline | Enabled
Read 4 5
Write 2 3

Table 41 presents similar data, but for other SDRAM memory interface data widths.

Cache Fills

The cache can only be filled from external memory, and not from internal SRAM or CSI
memory locations. Only memory located in the SDRAM and External Flash address re-
gions between 0xC000 0000 and 0xD100_0000, or their aliases, can be cached.

Memories connected through the CSL or external memory request mechanism cannot be
used to fill the Cache.

Each cache line is four words.

Cache Fills from External Static Memory

Table 38 shows the number of bus cycles required to fill a cache line from external static
memory. Values are shown with and without the additional high-performance pipeline de-
lay. The values shown in Table 38 assume a 32-bit static memory interface with Flash or
SRAM memory capable of operating with single-cycle accesses.

Table 38. Bus Cycles When Filling Cache Line from External Static Memory
(Flash, SRAM).

Pipeline
No Pipeline | Enabled
7 8

Table 42 presents similar data, but for other memory interface data widths and static
memory speeds.

Cache Fills from External SDRAM

Table 39 shows the number of bus cycles required to fill a cache line from external
SDRAM memory. Values are shown with and without the additional high-performance
pipeline delay. The values shown in Table 39 assume a 32-bit SDRAM interface, a CAS
latency of 2, and that all accesses are to the same SDRAM page—no pre-charge and ac-
tivation required.

Table 39. Bus Cycles When Filling Cache Line from External SDRAM.

Pipeline
No Pipeline | Enabled
9 10

DMA Transfers

DMA transfers are performed over the Configurable System Interconnect (CSl) bus.

Un-buffered DMA transactions to or from the external static memory or SDRAM memory
subsystems incur one wait state per transaction.

Buffered DMA transactions provide efficient transfers with the SDRAM subsystem.

SUBJECT TO CHANGE 80 TCH305-0001-002

WMaTriscend

DMA Transfer to/from Scratchpad RAM
DMA transfers to or from the Scratchpad occur without wait states.

Because each transaction occurs in a single cycle, the A7S is capable up supporting 228
Mbytes per second data rates to or from Scratchpad while operating at 60 MHz.

DMA Transfer to/from External Static Memory

DMA transfers to or from external memory are optimal, assuming a 32-bit, single-cycle ex-
ternal Flash or SRAM memory and buffered DMA transactions.

A single-channel or four-channel DMA write occurs in a single bus cycle.

A single-channel or four-channel DMA read also occurs in a single bus cycle, but with
some initial latency for each channel.

DMA Transfer to/from External SDRAM

DMA transfers to or from external SDRAM memory are nearly optimal, assuming a 32-bit
interface to external SDRAM memory with a CAS latency of two cycles, with all transac-
tions to the same SDRAM page, and buffered DMA transactions.

A single-channel or four-channel DMA write occurs in a single bus cycle, with some initial
latency.

Optimizing SDRAM Performance

When partitioning SDRAM memory between the CPU code and transfer buffers for the
various DMA channels, place the data in different SDRAM banks to avoid the overhead of
constant pre-charge and activate cycles.

For example, place the CPU code within in the first SDRAM internal bank, while DMA
channels 0 and 1 transfer data to or from SDRAM internal Bank 1 and Bank 2 respec-
tively.

External Memory Turn-Around Cycles

A read transaction to external memory followed by a write transaction to the same exter-
nal memory incurs one dead cycle to avoid contention on the A7S’s data lines.

TCH305-0001-002 81 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Table 40. CPU Code Fetch Performance by Static Memory Interface Type.
Flash/SRAM Memory Subsystem Data Width

8-bit 16-bit 32-bit
Pipeline | Pipeline | Pipeline | Pipeline | Pipeline | Pipeline
disabled | enabled | disabled | enabled | disabled | enabled
Byte Sequential'
Non-sequential 1+t 2+t 1+t 2+t 1+t 2+t
Half- Sequential 2t 1+ 2t t 1+t t 1+t
word Non-sequential 1+2t 2+2t 1+t 2+t 1+t 2+t
Word Sequential 4t 1+4t 2t 1+ 2t t 1+t
Non-sequential 1+ 4t 2+ 4t 1+ 2t 2+ 2t 1+t 2+t

t = Flash or SRAM access time in clock cycles.

Table 41. CPU Code Fetch Performance by SDRAM Memory Interface Type
(CAS Latency 2).

SDRAM Memory Subsystem Data Width

8-bit 16-bit 32-bit

Pipeline | Pipeline | Pipeline | Pipeline | Pipeline | Pipeline

disabled | enabled | disabled | enabled | disabled | Enabled
Read 4 5 4 5 4 5
Byte Write 2 3 2 3 2 3
Half- Read 5 6 4 5 4 5
word Write 2 3 2 3 2 3
Read 7 8 5 6 4 5
el Write 2 3 2 3 2 3

Table 42. Cache Fill Performance by Memory Interface Type.

Memory Subsystem Data Width

8-bit 16-bit 32-bit
Pipeline | Pipeline | Pipeline | Pipeline | Pipeline | Pipeline
disabled | enabled | disabled | enabled | disabled | Enabled
Cache fill from Flash 3+16t | 4+ 16t 3+ 8t 4 + 8t 3+ 4t 4 + 4t

Cache fill from SDRAM 21 22 13 14 9 10

t = Flash or SRAM access time in clock cycles.
SDRAM CAS latency 2.

SUBJECT TO CHANGE 82 TCH305-0001-002

WMaTriscend

On Reset [>] Start-up
ounter Glitch-free
Multiplexer
@ o s
Internal Ring Oscillator Bus
(~15 MHz to 30 MHz) Clock
CLK CLK_SEL_BIT
XTAL_EN_BIT
XIN PLL_EN_BIT
Connect to PLL SCALE EIELD[4:0 PLL_SEL_BIT
32,768 kHz PLL Enablel _ _ [4:0]
watch crystal »| 5-bit Pre-scaler |—
XOuT » »| Phase Locked Loop
e PLL PLL @
32 MHz to 96 MHz | PLL Lock Locked o 110ck ® x
> Detect »ploc o5
PLL_DIV_FIELD[11:0] ns
12-bit PLL | CSL °
Divider) Alternate S 8
Clock csiaclkl T o
10 T+
CSL_SEL_BIT n

Figure 46. A7S clock control circuit, including PLL clock synthesizer, crystal oscillator
amplifier, and internal ring oscillator.

Clocking

Clock Operation

The system clock, which drives most of the system, has three possible sources. The

clock source is selectable through the Clock Control Register.

1. Internal ring oscillator
2. External clock source
3. Phase-Locked Loop (PLL) output

The internal ring oscillator the default clock source at power-up. The ring oscillator gener-
ates a clock with a typical frequency of 20 MHz. However, due to process variations as
well as varying operating conditions, the frequency will vary between 15 MHz to 30 MHz.

The system clock frequency can also be synthesized from an external 32.768 kHz watch
crystal, shown in Figure 47, using the phase-locked loop (PLL) circuit.

TCH305-0001-002 83 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

21pF 57ka |XIN

—F AN

32.768
’kHz —

iy A=

I

Fe—AAAA—H
27 pF 2.7 kQ XOUT

Figure 47. Crystal oscillator circuit.

Optionally, an external clock source can be applied to the dedicated external clock pin,
CLK.

When not used, the PLL and crystal oscillator should be shut down so that they consume
no power. Likewise, the six CSL global buffers can be shutdown to save power or to
freeze functions during debugging.

Finally, an additional clock is provided to the CSL by a sideband signal. This signal origi-
nates either from the output of the PLL or the output of the 32.768 kHz crystal oscillator.

FastChip Device Link (FDL) automatically configures the clock source and the PLL

based on your settings when you create a configuration image. The specified settings

are applied when the device powers up or isre-initialized. However, application

code can change the values dynamically as potentially required when entering or
g exiting power-down mode.

1+
—C8l Bus Clock Source

FastChip o~ : :
Device Internal Ring Cscillstor ...
Link " External clock on CLK ...
[PLL output symthesizing 32 kHz crystal between XIH and X0UT
Freguency (MHZ) Settling Time (msec)

|| 59.96544 | ’|= 100

PLL

The phase-locked loop receives a 32.768-kHz input from the crystal oscillator and gener-
ates a frequency-programmable clock output in steps of 32.768 kHz, as shown in Equa-
tion 1. The output frequency from the PLL ranges from 32 MHz to 96 MHz at 2.5V. The
PLL output must be divided down by the pre-scaler before driving the bus clock input to
the CSoC device. It acquires lock from a dead start within a few milliseconds.

PLL_DIV_FIELD e32.768kHz
PLL_SCALE_FIELD

Bus Clock Frequency = (1)

where:
PLL DIV FIELD

PLL divider count, defined in the Clock Control Register.
This value must be between 1,000 and 3,000, inclusive.

PLL_SCALE_FIELD

PLL pre-scaler value, defined in the Clock Control Register,
either 1, 2, 4, 8, 16, or 32.

The output of the PLL (VCO output) is divided down, and the output of the divider is con-
nected to the PLL feedback input. The divider provides 12-bits of divide count. To pro-
vide a wider range of system clock frequencies, the PLL output can be further divided

SUBJECT TO CHANGE 84 TCH305-0001-002

WMaTriscend

down by a 5-bit pre-scaler. The pre-scaler provides the following set of scaling values: 1,
2, 4, 8, 16 and 32. The resulting range of frequency that can be synthesized from a
32.768 kHz crystal is 1 MHz to 60 MHz—the maximum operating frequency of the device.

A lock detector indicates when the PLL achieves phase lock. Anytime the frequency di-
vide count is changed or the PLL output is selected, the application code must first switch
to the internal ring oscillator, as described below. Then, the application must wait for the
PLL re-acquire lock by monitoring the PLL status register. The status register contains
both a “not locked” flag and “locked” flag. The “not locked” flag is set when the PLL circuit
loses phase lock. The “locked” flag is set whenever the PLL circuit locks to the specified
frequency. The user application program can clear these flags.

The output of the PLL can drive the system clock and can separately drive the CSL matrix
through the alternate clock sideband signal, ACLK. When an external clock source on the
CLK drives the bus clock, the PLL is bypassed completely.

The PLL consumes no power when shut down.

Changing PLL Clock Frequency or Switching Clocks

Some applications might dynamically change the PLL clock frequency to reduce system
power or to use another base clock frequency.

The A7S’s clock structure allows for this by providing a glitch-free clock multiplexer as
shown in Figure 46. The procedures below describe how to switch PLL frequencies.

1. If the PLL is operating slower than 30 MHz, modify the memory interface timing val-
ues to operate from the internal ring oscillator at the maximum oscillator frequency of
30 MHz.

2. If using SDRAM and the PLL is operating faster than 15 MHz, modify the SDRAM re-
fresh timer for the internal ring oscillator’'s minimum frequency of 15 MHz.

Write the CLK_SEL_BIT with ‘0’, switching to internal ring oscillator.
Modify the PLL parameters for the new desired frequency.
Write a ‘1’ to the PLL_LOCK_CLEAR_BIT to reset the PLL Locked Flag.

Monitor the PLL_LOCK BIT and wait for it to be set, indicating that the PLL is locked
to the specified frequency.

7. Once the PLL_LOCK BIT is set, write the CLK_SEL_BIT with ‘1’, switching back to
the PLL clock synthesizer.

o a koW

8. Modify the memory interface and SDRAM timing values for the new PLL clock fre-
quency.

Changing Clock Sources

There are three potential clock sources including the internal ring oscillator, the PLL clock
synthesizer, and an external clock source. The following procedure describes how to
change from one source to another.

Switching to the Internal Ring Oscillator

1. Modify the memory interface timing values to operate from the internal ring oscillator
at the maximum oscillator frequency of 30 MHz.

2. Modify the SDRAM refresh timer for the internal ring oscillator's minimum frequency
of 15 MHz.

3. Write the CLK_SEL_BIT with ‘0’, switching to internal ring oscillator.

TCH305-0001-002 85 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Switching Between the PLL and the CLK Input Pin

1.

If the current clock source is slower than 30 MHz, modify the memory interface timing
values to operate from the internal ring oscillator at the maximum oscillator frequency
of 30 MHz.

If using SDRAM and the current clock sources is faster than 15 MHz, modify the
SDRAM refresh timer for the internal ring oscillator's minimum frequency of 15 MHz.

3. Write the CLK_SEL_BIT with ‘0’, switching temporarily to the internal ring oscillator.

6.
7.

If the CLK pin is the desired clock source, write a ‘0’ to the PLL_SEL BIT. If the PLL
is the desired clock source, write a ‘1’ to the PLL_SEL_BIT.

If the new clock source is the PLL, modify the PLL parameters for the new desired
frequency.

a. Writea ‘1’ tothe PLL_LOCK CLEAR BIT to reset the PLL Locked Flag.

b. Monitor the PLL_LOCK BIT and wait for it to be set, indicating that the PLL is
locked to the specified frequency.

Switch back to the PLL or CLK input pin by writing a ‘1’ to the CLK_SEL_BIT.

Modify the memory interface and SDRAM timing values for the new clock source.

Alternate Clock Sideband Signal

The alternate clock sideband signal, ACLK, is only available to the CSL matrix and provides
the direct output from the 32.786 kHz crystal oscillator or the output from the PLL pre-scaler,
as shown in Figure 46.

The alternate clock signal, shown in Figure 48, is typically used during power-down mode
where a small “time-keeper” function in the CSL matrix operates directly from the 32.687 kHz
crystal oscillator and wakes the A7S device periodically.

CSL
Alternate | ACLK
Clock

Figure 48. The ACLK sideband signal drives directly and only into the CSL matrix.

Clock and PLL Control Registers Description

System control Memory Map

Address
Base Offset Register Name Access
+ 0x00 Clock Control R/W
SYS_BASE + 0x04 PLL Status R
+ 0x08 PLL Status Clear W

SUBJECT TO CHANGE 86 TCH305-0001-002

WMaTriscend

Clock Control Register (SYS_CLOCK_CONTROL_REG)

This register controls the PLL frequency and other clock-related options. FastChip Device
Link automatically configures most of these options.

Bit

Description/Function

31:29

Reserved

28:24

PLL Pre-Scaler Value (PLL_SCALE_FIELD [4:0]):
00000: PLL output (no divider)

00001: PLL output +2

00010: PLL output + 4

00100: PLL output + 8

01000: PLL output + 16

10000: PLL output + 32

23:20

Reserved

19:8

PLL Divider Count (PLL_DIV_FIELD [11:0]):

This field holds the divide count for the PLL divider. The PLL output fre-
quency is determined as follow. The recommended range for this value is
between 1,000 and 3,000, inclusive.

PLL Frequency = PLL_DIV_FIELD x 32.768 kHz

Reserved. Must be 0

Reserved. Must be 0.

OO (N

PLL Enable (PLL_EN_BIT):

The PLL consumes no power when disabled.
0: Disable PLL

1: Enable PLL

Crystal Oscillator Enable (XTAL_EN_BIT):

The crystal oscillator consumes no power when disabled.
0: Disable

1: Enable

CSL Global Clocks Enable (CK_EN_BIT):
0: Disable all six global buffers, GBUF5:0
1: Enable all six global buffers, GBUF5:0, into the CSL

CSL Clock Source Select (CSL_SEL_BIT):

This bit selects which clock drives the CSL alternate clock sideband signal.
0: Output of crystal oscillator

1: PLL pre-scaler output

PLL Output Mux Select (PLL_SEL_BIT):

This bit selects the clock source for PLL output multiplexer.
0: External clock source on the CLK pin

1: PLL pre-scaler output

Clock Source Select (CLK_SEL_BIT):

This bit selects the clock source for the internal system clock.
0: Internal ring oscillator

1: PLL output multiplexer

Configuration reset value: 0x00040000

TCH305-0001-002

87 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

PLL Status Register (SYS_PLL_STATUS_REG)

This register is read-only.

Bit Description/Function
31:2 Reserved
1 PLL Locked Flag (PLL_LOCK_BIT):
A “1” indicates that the PLL achieved lock permanently or temporarily.
0 PLL Not Locked Flag (PLL_NOT_LOCK_BIT):
A “1” indicates that the PLL has lost lock permanently or temporarily.

Configuration reset value: 1
PLL Status Clear Register (SYS_PLL_STATUS_CLEAR_REG)

This register is write only.

Bit

Description/Function

31:2

Reserved

1

Clear PLL Locked Flag (PLL_LOCK_CLEAR_BIT):
Writing a ‘1’ to this bit clears the Lock bit in the PLL Status Register. Writ-
ing ‘0’ has no effect.

Clear PLL Not Locked Flag (PLL_NOT_LOCK_CLEAR_BIT):
Writing a ‘1’ to this bit clears the NotLock bit in the PLL Status Register.
Writing ‘0’ has no effect.

SUBJECT TO CHANGE 88 TCH305-0001-002

WMaTriscend

The A7S is reset to a pre-defined state via four potential reset types.

1. Power-on reset

2. Configuration reset by asserting the RST- pin

3. System reset by asserting the AppRst sideband signal or by a watchdog timer reset.
4. CPU reset, which is only generated from the JTAG interface during debugging.

Reset Hierarchy

Not all reset conditions are equal in an A7S system. There is a hierarchy within the differ-
ent reset types as highlighted in Figure 49. For example, any condition that causes a
Configuration Reset, also generates a System Reset and a CPU Reset. The various con-
ditions that cause a reset event are shown on the left-hand side of the diagram. A reset
event also sets specific bits within the Reset Status Register, as indicated in the dia-
gram..

JTAG CPU Reset
IE, CPU Reset

CSL Application Reset—_

JTAG System Reset

Watchdog Reset@,_. —p System/Application Reset

Software Reset

JTAG Configuration Reset

— Configuration/Device Reset

RST- Pin

Internal Power-On

Reset (POR) . » Power-On Reset

= Bit location in Reset Status Register

Figure 49. A7S Reset Hierarchy.

Power-On Reset (POR)

The power-on reset is the ultimate reset condition that asynchronously places the entire
device, including the JTAG port, into a known state. At power-up, a status bit in the Reset
Status Register is set indicating that a power-on condition occurred. Following a power-
on reset, the device will initialize itself. The secondary initialization code, created by the
FastChip development system, resets this bit during the initialization process. After
power-up, software can disable the power-on logic to save power.

At power-on, the system begins operating from the internal ring oscillator. To allow the
CSoC system to stabilize, the ring oscillator is temporarily blocked to the remainder of the
system for 16 ring oscillator cycles. At the end of 16 cycles, the ring oscillator clock is
supplied to the remainder of the system.

TCH305-0001-002 89 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Configuration Reset

Next in the hierarchy is the configuration reset. It forces a system configuration by reset-
ting everything except the JTAG unit. A configuration reset forces the internal ring oscilla-
tor as the active clock source, resets the memory interface timing values, and causes the
A7S device to re-initialize. The configuration reset is activated directly through the RST-
reset pin or via a JTAG Configuration Reset during debugging. Following a configuration
reset, the memory map is reset with all aliases at address 0.

System Reset

Next in the hierarchy is the system reset, which only resets the user application and does
not affect configuration information such as the CSL matrix, PIO pins, clock settings, and
static settings in the memory subsystem. It resets the CPU, the CSI bus, and all the pe-
ripherals. This reset is activated through the CSL application reset sideband signal, by
the watchdog reset, or through software (SYS_RESET BIT). Following a system reset,
the memory map is reset with all aliases at address 0, except for internal primary initializa-
tion ROM alias, which is disabled.

CPU Reset

Finally, the CPU reset generates an ARM reset exception, which forces the ARM7TDMI
processor to clear itself and start executing from address 0. A CPU Reset is only applied
through the JTAG interface for debugging purposes.

Reset Sideband Signals

Logic in the CSL matrix can observe when a System Reset occurs or force a System Re-
set condition via the AppRst and SysRstN sideband signals, shown in Figure 50. A CSL
function generates a System Reset by asserting the AppRst signal High.

When a System Reset occurs, for any reason, the SysRstN signal is asserted Low. The
SysRstN signal is typically used to clear CSL-based registers, along with the remainder of
the system.

System

AppRst —»» Reset

O SysRstN

Figure 50. System Reset sideband signal connections.

During initialization, a System Reset occurs just before the system begins executing the
application program.

Reset Control Registers Description

Reset Control Memory Map

Address
Base Offset Register Name Access
+ 0x30 Reset Status R
REMAP_ BASE
_BAS + 0x34 Reset Status Clear W
SYS BASE + 0x0C Reset Control R/W

SUBJECT TO CHANGE 90 TCH305-0001-002

WMaTriscend

Reset Control Register (SYS_RESET_CONTROL_REG)

Bit Description/Function
31:3 Reserved

2 System Reset Enable (SYS_RESET_BIT):
This bit is used by application software to generate a System Reset. It re-
sets the CPU, the bus, and all the peripherals without affecting the configu-
ration of the device. The bit is self-clearing.

0: No effect.

1: Generate a system reset.
1 Slave Pin Reset Disable (SLAVE_DIS_BIT):

This function is used only for testing. Set this bit to 0.
0 Reserved

Configuration reset value: 0
Reset Status Register (REMAP_RESET _STATUS_REG)
This register indicates the cause of the most-recent reset. This register is read-only.

Once a status bit is set, it remains set until cleared by software.

Bit Description/Function
31:11 Reserved
10 Software System Reset Flag (SOFT_RST_BIT):
This bit is set whenever system software generates an A7S system reset
by setting the SYS RESET BIT.
9 JTAG System Reset Flag (J_SYS_RST_BIT):
This bit is set whenever the JTAG controller issues a system reset.
8 System Reset Flag (SYS_RST_BIT):
This bit is set whenever an A7S system reset occurs, for any reason, in-
cluding a configuration reset.
7 CSL Application Reset Flag (APP_RST_BIT):
This bit is set whenever the system is reset via the application reset side-
band signal, AppRst, from the CSL logic.
6 Watchdog Reset Flag (WD_RST_BIT):
This bit is set whenever a watchdog timer reset occurs.
5 JTAG CPU Reset Flag (J_CPU_RST_BIT):
This bit is set whenever the JTAG controller generates a CPU reset.
4 CPU Reset Flag (CPU_RST_BIT):
This bit is set whenever an ARM processor reset occurs, for any reason,
including a configuration or system reset.
3 JTAG Configuration Reset Flag (J_CFG_RST_BIT):
This bit is set whenever a JTAG configuration reset command occurs.
2 RST- Pin Flag (RST_PIN_BIT):
This bit is set whenever the device reset pin, RST-, is asserted.

1 Configuration Reset Flag (CFG_RST_BIT):
This bit is set whenever a configuration reset condition occurs.
0 Power-On Reset Flag (POR_BIT):

This bit is set whenever a power on reset occurs.
Default reset value: Depends on reset source.

TCH305-0001-002 91 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Reset Status Clear Register (REMAP_RESET _STATUS CLEAR_REG)

This register is used to clear the bits from the Reset Status Reqgister. This register is
write only. Software can clear any bits of the Reset Status Register by writing to the corre-
sponding Reset Status Clear Register location. Writing a 1 in to a corresponding bit clears
the status. Writing 0 has no effect.

Bit Description/Function
31:11 Reserved
10 Clear Software System Reset Flag (SOFT_RST_CLR_BIT):
0: No effect
1: Clear bit location
9 Clear JTAG System Reset Flag (J_SYS_RST_CLR_BIT):
0: No effect
1: Clear bit location
8 Clear System Reset Flag (SYS_RST_CLR_BIT):
0: No effect
1: Clear bit location
7 Clear CSL Application Reset Flag (APP_RST_CLR_BIT):
0: No effect
1: Clear bit location
6 Clear Watchdog Reset Flag (WD_RST_CLR_BIT):
0: No effect
1: Clear bit location
5 Clear JTAG CPU Reset Flag (J_CPU_RST_CLR_BIT):
0: No effect
1: Clear bit location
4 Clear CPU Reset Flag (CPU_RST_CLR_BIT):
0: No effect
1: Clear bit location
3 Clear JTAG Configuration Reset Flag (J_CFG_RST_CLR_BIT):
0: No effect
1: Clear bit location
2 Clear RST- Pin Flag (RST_PIN_CLR_BIT):
0: No effect
1: Clear bit location
1 Clear Configuration Reset Flag (CFG_RST_CLR_BIT):
0: No effect
1: Clear bit location
0 Clear Power-On Reset Flag (POR_CLR_BIT):
0: No effect
1: Clear bit location

SUBJECT TO CHANGE 92 TCH305-0001-002

WMaTriscend

Power Down Mode

A power saving mode allows an application to selectively shut down portions of the de-
vice. Different power-saving levels are possible, all the way to complete power down.
Application code shuts down selected functions via the Power Down Control Register,
choosing which feature to turn off before the actual power-down event. Other portions of
the system are turned-off dynamically through hardware upon a power down command.
Because the device is a fully static CMOS integrated circuit, the only power consumed in
the lowest-power mode is from substrate leakage, which is about 100 pA.

Table 43 summarizes the different functions that can be independently shut down. The
items marked as “Software Shut Down” are selectively disabled by application code prior
to setting the PD_BIT. When the PD_BIT is set, the items marked as “Dynamic Shut
Down” take effect. For example, the power-down behavior for each PIO pin can be indi-
vidually configured. Likewise, the system clock can be shut off to the system bus or the

CSL logic.

Table 43. Functions with Independent Power-Down Control.
Feature Software Shut Down | Dynamic Shut Down

Power-On Reset (POR) v

PLL v

Crystal Oscillator Amplifier v

Internal Ring Oscillator v

PIO pins v

System clock v

CSL user system clock v

CSL clocks (ENCK) v

SDRAM v

If an application uses an external crystal to drive the system clock and wants to shut down
the crystal oscillator amplifier, then the application software must first switch to the internal
ring oscillator and then disable the crystal oscillator. When exiting power down mode, the
internal ring oscillator drives the system clock and the application code must re-enable the
crystal oscillator and wait for it to stabilize before switching the clock source back to the
crystal oscillator.

In most applications, the crystal oscillator feeds the PLL clock synthesizer circuitry, as
shown in Figure 46. If the PLL is the primary clock source, shutting down the crystal oscil-
lator also affects the PLL. Similarly, if the application shuts down the PLL prior to entering
power-down mode, application software must first switch to the internal ring oscillator,
then disable the PLL circuit.

Some applications may decide to leave the 32.768 kHz crystal oscillator active during
power down. The output of the crystal oscillator is available to the CSL matrix on the al-
ternate clock sideband signal, ACLK. This alternate clock signal can drive a counter that,
after a pre-determined amount of time, wakes the A7S CSoC device from power-down by
generating an interrupt using one of the CSL IRQ sideband signals. Because this counter
operates are a relatively low frequency and uses only a few CSL cells, it consumes very
little power while active.

The standard ARM Pause Register shuts down the ARM7TDMI processor only. If sys-
tem level shutdown is required, the Pause Register can be ignored because the processor
also enters a low power state when the system clock is shutdown.

TCH305-0001-002 93 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Entering power down mode

Power down mode is initiated by writing a '1' to the power down bit (PD_BIT) of the Power
Down Control Register. Depending on the portions of the device selected for shut down,
the effect is immediate. One case, however, requires additional application code.

When the external crystal drives the internal system clock, merely shutting it down is not
sufficient. If the application expects to fetch instructions from external memory when exit-
ing power down, there are potential timing problems if the frequency of the internal ring
oscillator is greater than the frequency of the external crystal. Before switching to the in-
ternal ring oscillator, the application code should ensure that the external-memory timing
settings are correct by reprogramming the memory interfaces to more conservative val-
ues. Likewise, if using SDRAM and if the minimum internal ring oscillator frequency is
slower than the external crystal, then modify the SDRAM refresh rate accordingly.

The following steps illustrate the complete power down sequence.
1. Shut-off or wait for any DMA transfers to complete
2. If executing from the SDRAM, branch to either internal SRAM or external Flash

3. Turn-off the SDRAM memory subsystem if there is no need to retain data. This forces
the SDRAM self-refresh command and powers it down

Slow down external static memory timing if necessary

Switch to the internal ring oscillator

Turn-off the POR logic by writing a ‘1’ to the POR_DIS BIT

Turn-off the PLL by writing a ‘0’ to the PLL_EN_BIT

Turn-off the crystal oscillator by writing a ‘0’ to the XTAL_EN_BIT

If desired, turn-off global buffers to the CSL matrix by writing a ‘1’ to CK_EN_BIT.

0. Select the following features for automatic shut-down during power-down mode when
the PD_BIT is set. Select the internal ring oscillator for shut-down by writing a ‘1’ to
PD_OSC _EN BIT. Select the PIOs for shut-down by writing a ‘1’ to PD_1O_EN_BIT.
Shut down the bus clock to the CSL matrix by writing a ‘1’ to PD_CSL_BCK_EN_BIT.
Shut down bus clock to the CPU and the CSI bus by writing a ‘1’ to PD_BCK_EN_BIT.

11. Write a ‘1’ to the power-down bit (PD_BIT) to shut-down the features selected in Step
10.

= © © N o 0 &

Exiting power down mode

There are two different application methods to exit of power down mode. The first method
is to cause a system reset by asserting the application reset sideband signal, AppRst. In
this case, the Power Control Register and the entire system are reset, but initialization
data remains intact. The CPU starts executing from external Flash, and the application
starts again.

The second method to exit power down mode is via an interrupt on one of the CSL inter-
rupt sideband signals, IRQ2, IRQ1, or IRQO0. Actually, any interrupt causes the device to
exit power down. Upon receiving an interrupt, the power down bit is asynchronously reset
to “0”. In turn, and enables all the circuits that were selected for power down.

SUBJECT TO CHANGE 94 TCH305-0001-002

WMaTriscend

Power-Down Control Registers Description

System control Memory Map

Address
Base Offset Register Name Access
SYS BASE + 0x10 Power Down Control R/W

Power Down Control Register (SYS_POWER_CONTROL_REG)

Application code defines which portions of the device are turned off or that are to remain
active during power-down mode. If a particular bit is set, then the corresponding circuit is
turned off during power down mode. A ‘0’ keeps the circuit active at all times.

Bit Description/Function
31:6 Reserved
5 Power-On Reset Disabled during Power Down (POR_DIS_BIT):

0: Power-on reset (POR) circuit active

1: POR circuit disabled. The circuit consumes no power in this mode.

4 Power Down Mode Enable (PD_BIT):

0: Device is fully active

1: Force device into power down mode

3 Selected PIOs Disabled during Power Down (PD_IO_EN_BIT):

0: All PIOs active during power down

1: Selectively disables PIOs during power down. Individual PIO controls
set during design time

2 Internal Ring Oscillator Disabled during Power Down

(PD_OSC_EN_BIT):

0: Active during power down

1: Disabled during power down

1 Block BusClock Signal to CSL Matrix during Power Down

(PD_CSL_BCK_EN_BIT):

0: BusClock distributed to CSL matrix

1: BusClock blocked to CSL during power down

0 Block BusClock to CPU and CSI Bus during Power Down

(PD_BCK_EN_BIT):

0: Bus Clock drives CPU and CSI bus

1: Bus Clock blocked to CPU and CSI bus during power down

System reset value: 0

TCH305-0001-002 95 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

System Initialization

Like most processors and SRAM-based programmable logic devices, the Triscend A7S
requires initialization data to configure programmable options within the device before it
becomes functional. The Triscend A7S offers two different system initialization options to
best fit various target applications, as shown in Table 44. Both active and passive initiali-
zation methods are available.

In active initialization modes, the Triscend A7S provides the control signals, directing data
transfers and controlling external devices.

In passive modes, an external controller directs data transfers.
Table 44. Initialization Modes.

Initialization
Mode Method Data Source
. Parallel static memory
Parallel Active (typically Flash)
. Downloaded by intelligent
JTAG Passive host through JTAG port

System Initialization

System Initialization Overview
Figure 51 outlines the general parallel mode initialization procedure.

® Upon power-up, unless the chip is held in reset or the SLAVE- pin held Low, the CPU
starts executing from the internal primary initialization boot ROM. The purpose of the
primary initialization boot ROM is to locate the application's initialization data and code
stored in the secondary boot device, usually held in external non-volatile memory.

Within A7 @ External Memory
Ox...F_FFFF
Primary A Header B
Initialization | »—0u—" Ox...F_FF0O
@ Boot Program \ Secondary

—v Initialization
/' @ Program and
CSL Initialization
Power-On Reset Image

@ Initialized Data

RTOS and
User Application
@ Program

\g Reset Vector

Figure 51. Parallel Mode Initialization Flow.

0x0

SUBJECT TO CHANGE 96 TCH305-0001-002

WMaTriscend

@ A four-word header, located in the top 64 words of memory marks valid secondary ini-
tialization data.

® After locating a valid header in external memory, the boot ROM program branches to
the associated secondary initialization program.

The secondary initialization code configures the device by programming the CSL and
PIO memory cells, and defines the basic control registers controlling the clock and
memory subsystem static settings.

Once secondary initialization is complete, the initialization code enables the CSL ma-
trix and disables the configuration mode.

@ The secondary initialization program then issues a System Reset, which causes the
CPU to execute code located at its reset vector, location 0x0.

® At this point, the program branches to the application code and begins executing.

b
‘h&& FastChip Device Link (FDL) automatically creates a secondary initialization pro-
FastChip gramwhenever you create a configuration image. This information on initialization

Device isprovided asreference.
Link

The initialization process is triggered at power-up or whenever the RST- pin is asserted
Low. The JTAG controller can also issue a JTAG Configuration Reset command during
debugging.

During the initialization procedure, any un-initialized PIO pins are forced into a high-
impedance state with a weak pull-up resistor. Even the system pins, when not driven, are
in this weak pull-up mode.

During the initialization process, heavy activity occurs on the system pins such as the
Flash control, address and data pins. One of the first operations performed by the boot
ROM is to initialize the external SDRAM memories, regardless if any are actually at-
tached. This initialization step is done to avoid possible contention on the external mem-
ory data bus. During the SDRAM setup procedure, the A7S actively drives the SDCLK,
SDCKE, SDCE-[1:0] and A[20:19] pins. Although these pins are potentially reclaimable
as user-defined PIO pins, the behavior of these pins at reset and start-up should be care-
fully considered.

Primary Initialization Procedure

Figure 52 illustrates the complete primary initialization process. When the A7S devices
leaves the reset state, either after a power-on event or when the RST- pin is released, the
embedded ARM7TDMI processor branches to the internal, primary initialization boot
ROM. The internal ROM contains a small ARM7TDMI application program that guaran-
tees an orderly device start-up and searches for an external, secondary initialization
memory, typically an external Flash memory device.

The ARM7TDMI CPU programs each of the PIO pins so that they are high-impedance
(i.e., floating) but with soft pull-up resistors. This causes the PIO pins to drift High.

Then, the CPU programs the external memory interface and sets all timing values to their
slowest, default settings.

TCH305-0001-002 97 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

(Out of Reset >

| Jump to boot ROM |

!

Program all PIO memory cells
(low drive, slow slew rate)

Setup MSSIU in slave mode |
|

h 4

Sample VSYS pin |
I

VSYS
stable ?

Y

Increment
trial count

Trial count
reached ?

A 4

(Power down device)

Compare VSYS sample
with original sample

T

Sample VSYS pin

A

Initialize SDRAMs

De-activate SDRAM controller in case it
was activated

Wait a minimum of 200us (the SDRAM
clock pin is enabled at reset)

Activate SDRAM controller

]

v

\ 4

Setup external FLASH memory sub-system
width, recovering appropriate number of
data pins. Increment from 8-bit, to 16-bit, to
32-bit data width.

VSYS Loop
Trial Loop
Memory Interface Width Loop
Header Search Loop

h 4

Increment
width

A

Header search

Search the top 64 words of FLASH for a
valid header. Headers are 4 words long and
are aligned to a 4-word boundaries. The
search ends after exhaustively detecting 16
incorrect headers. A valid header is found
if it has been successfullly found 16
consecutive times.

D —

Increment success
count

uccess coun
reached ?

Search
successful ?

| Disable ROM alias |

A 4

Jump to secondary
initialization code

Figure 52. The A7S executes its primary initialization boot procedure from internal ROM
at power-up or after a configuration reset.

SUBJECT TO CHANGE

98 TCH305-0001-002

WMaTriscend

The CPU then samples the VSYS pin to see if the power supply to any external devices is
stable. The external devices may be operating at a different voltage level or from a sepa-
rate power supply. If the external supply is not stable before VSYS reaches its limit of tri-
als (about 300 ms), the device automatically enters the power-down mode to minimize
power consumption. If VSYS is tied to Ground, then the A7S retries the initialization loop
until it succeeds.

The CPU performs an initialization sequence for external SDRAMs, even if none are con-
nected to the A7. The CPU first de-activates the SDRAM controller, in case it was acti-
vated during a previous initialization attempt. After waiting 1.2 ms, the CPU activates the
SDRAM controller.

The CPU then configures the external static memory interface to access various data
widths. On the first attempt, the initialization procedure attempts to find a valid header in
an 8-bit external device. If a valid header is not found using an 8-bit interface, the initiali-
zation procedure then tries a 16-bit interface. If the 16-bit interface is unsuccessful, then a
32-bit interface is tried.

To determine if external memory is correctly accessed, the primary initialization routine at-
tempts to locate a valid header within the top 64 words of external static memory. A valid
header is four words long and aligned to a four-word boundary. The search ends either
when the CPU detects a valid header or when the CPU unsuccessfully tested all 16 po-
tential header locations. Once a valid header is found, the CPU retests the header 16
consecutive times to guarantee that the first successful search was not caused by a tran-
sient state on the power supply.

If the header search was unsuccessful, the CPU then increments the width on the external
static memory interface—first 8 bits wide, then 16, and finally 32 bits wide.

If a valid header is still not found after trying every data width, the CPU re-samples the
VSYS pin and compares it against the value captured at the start of the process, in case
there might have been a transient on the power supply. If the two VSYS samples do not
match, the CPU restarts the entire process again. If the two VSYS samples do match,
then the CPU increments a counter that tracks the number of attempts.

If no valid header is found after about 300 ms, and VSYS is sampled High, then the de-
vice automatically enters power-down mode to conserve power. If VSYS is Low, the de-
vice continues to search for initialization data.

If a valid header is found, then the CPU disables the alias to the internal ROM and
branches to the secondary initialization code stored in external static memory.

Secondary Initialization Procedure

For most applications, FastChip generates the secondary initialization code automatically.
No coding is required unless an application has some very special requirements.

The following describes the FastChip-created secondary initialization procedure. The
ARM7TDMI CPU begins executing instructions located at the top of the external memory
device, typically Flash.

After performing some initial set up, the CPU configures one of the A7S’s DMA channels
to copy configuration data from the external static memory to internal memory cells that
control the Configurable System Logic matrix, within the A7.

After copying the CSL configuration image, the CPU uses a DMA channel to program the
A78S’s Configuration Register Unit.

The CPU then reclaims any unused system pins and user-PlO pins, as per the final appli-
cation. Then, the CPU configures the A7S’s clock control and external memory interface

TCH305-0001-002 99 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

timing values, and enables the CSL logic matrix. The application code then resets the
Reset Status Reqgister. As its final initialization act, the CPU sets the SYS RESET BIT
in the Reset Control Register. This action resets the ARM7TDMI, which branches to lo-
cation 0x0. Because of the default settings in the Alias Enable Register, location 0x0
points to external memory, where the user application program resides and the CPU
starts executing the code there.

Post Initialization Options

After initialization, the application program typically performs a variety of system optimiza-
tion setup steps. For example, code stored in external Flash can be copied to and exe-
cuted from SDRAM. Executing from SDRAM offers higher system performance.

Likewise, the CPU can enable the cache, set up the memory protection mechanism, and
enable additional pipelining.

Parallel Mode

Using parallel mode initialization, shown in Figure 53, the A7S’s initialization data and the
application program are stored in external static memory, typically Flash. The CPU can
fetch and execute instructions directly from external memory or, for increased perform-
ance, copy the application code to SDRAM and execute from there.

The external memory interface signals are:
D[n:0] — the 8-, 16-, or 32-bit data bus from the external memory.

A[19:0] — the lower 20 bits of the address bus. If additional address bits are required, the
upper address lines—A20 and beyond—can be enabled using the FastChip 1/O Editor.

WE- - write enable signal provided to writeable memories such as Flash, EEPROM, and
SRAM

OE- - enables the data output from the external memory during a read or fetch operation.

CE- - chip enable to the external memory.

External Static Memory Sub-system
(8-, 16-, or 32-bit Flash)
A[x:0] D[n:0] E- OE-
] i 1 * i Z z
[S
%lg A[19:0] D[n:0] WE- OE-
< g2
6"5 .Memory. Sub-system Interface Unit (MSSIU). | €
o_|9, g
Sem o A[x:20] Triscend A7 g
\Velo] CSoC g
L {sLAvE- VSYs|—2
:
2
Q
<

Figure 53. Parallel-mode initialization from external Flash.

Address lines A[19:0] sufficiently address up to 1M byte of external memory. With a larger
memory subsystem, additional optional PIO pins serve as high-order address lines.

SUBJECT TO CHANGE 100 TCH305-0001-002

WMaTriscend

Once system initialization is complete, the CPU starts executing application code from lo-
cation 0, which is aliased to external memory. Parallel mode requires that at least some
application code reside in external static memory. At the beginning of application program
execution, the contents of the external static memory can be copied into and executed
from SDRAM.

During the parallel initialization phase, all PIO and MIU pins that do not participate in the
parallel memory interface, are pulled High by weak pull-up resistors. These pins are
properly initialized to their user-defined configurations at the end of initialization.

JTAG Initialization

The JTAG mode initializes the Triscend A7S using an external tester, personal computer
(PC), or other intelligent host. The external host performs the secondary-initialization
process, loading the A7S device. The initialization image downloaded directly into an
A7S device does not include the secondary initialization code or headers.

The JTAG port is also used for debugging application code or to program external mem-
ory devices via the external static memory interface. When a PC acts as a host, the JTAG
unit is controlled by a series of commands entered from the Triscend FastChip develop-
ment system or third-party hardware debugger, such as the WindRiver visionPROBE II.

External memories are not required in JTAG configuration mode. The JTAG link can di-
rectly initialize the CSL matrix, download the necessary application code into the internal
RAM, and direct the CPU to execute code from the internal system RAM. However, the
entire application program must fit within the 16K bytes of internal RAM.

Figure 54 depicts a typical JTAG interface to a Triscend A7. In the figure, the CSoC de-
vice already connects to an external parallel memory. The JTAG port is compliant with
IEEE standard 1149.1. The four JTAG pins are dedicated only to the JTAG function.

(Optional)
External Static Memory Sub-system
(8-, 16-, or 32- bit Flash)

A[x:0] DIn: 0] OE-
9_":
SIS | A[19:0] D[n:0] WE- OE-
9.2
g:‘é _Memory Sub-system Interface Unit (MSSIU) | &
— (]
Se = A[x:20] Triscend A7 E
L siLAvE- VSYS —¢
g
a
<

L+ 11

External Tester or
Host PC

Figure 54. A JTAG interface to the Triscend A7.

TCH305-0001-002 101 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

The external memory interface signals are:

TCK — Test clock input. If unused should be tied high.

TMS — Test mode select input. If unused should be tied high.
TDI — Test data input. If unused should be tied high.

TDO - Test data output.

The JTAG unit also serves as a master on the CSI bus and can read and write every ad-
dressable entity in the system.

The JTAG port optionally controls the ARM7TDMI processor by setting breakpoint events
that freeze the CPU. Once the processor is frozen, the JTAG unit can single-step the
processor, examine the internal registers of the processor, and then resume the processor
operation.

With the help of the CPU, the JTAG port can programs external Flash memory. In the
Flash programming mode, the JTAG unit downloads program / erase / verify algorithms
into the internal RAM. The new Flash programming data is also buffered in the internal
RAM. The ARM7TDMI CPU executes the programming algorithms required to write new
data into an external Flash memory device. The Flash is programmed with a parallel-
mode initialization image. The processor interacts with the JTAG unit through flags and
shared variables or via interrupts.

Size of Initialization Data

The size of the initialization data file depends on the specific A7S family device used and
the initialization method. Most applications use parallel mode.

Table 45 provides details on the size of the secondary initialization image for an A7S fam-
ily device by its various components. The size of the data is independent of the size of
the logic function loaded into the CSL matrix. A blank CSL matrix requires the same
amount of data as a fully utilized matrix. The size of the secondary initialization program
may vary in future versions of the Triscend FastChip development system.

Table 45. Size of Secondary Initialization Image for A7S Family.

Initialization Data Size (Bytes)
CSL initialization data structure 85,792
Secondary initialization program* 8,084
Header, system register start-up values, various data structures 160
TOTAL 89,036

* created using FastChip 2.2.0

VSYS Control and Affects on Initialization

A power-on reset or configuration reset causes the Triscend A7S to start the initialization
process as shown in Figure 52. The VSYS input pin directs the system initialization state
machine how to behave should the initialization process fail to find valid external initializa-
tion data.

If the VSYS pin is held High through the initialization phase and no valid configuration pat-
tern is found, then the CSoC device automatically powers down to conserve power. An-
other Power-On Reset or System Reset event is required to restart the initialization proc-
ess.

However, if VSYS is sampled Low during the initialization process, the A7S CSoC device
attempts to re-start the initialization process following a failed initialization attempt. If

SUBJECT TO CHANGE 102 TCH305-0001-002

WMaTriscend

VSYS is tied to GND, the CSoC device attempts to initialize itself indefinitely until it finds
valid data. This option is useful when the external memory operates from a separate sup-
ply or the system operates in noisy environments.

NOTE:

VSYS must connect to a valid logic level. Do not leave VSYS unconnected or
floating!

In applications using a system supervisory chip, connect the “VCC good” output from the
supervisory device to the A7S’s VSYS input, ensuring that initialization only takes place
when VCC is within the proper operating voltage range.

If using a non-Triscend supplied JTAG debugger, allow provisions on the A7S target so
that VSYS can optionally be strapped Low. This will prevent the A7S device from power-
ing down during debugging. Many non-Triscend JTAG debuggers are unable to wake the
A7S device from power-down mode.

What If Initialization Fails?

If properly connected, an A7S CSoC device always correctly initializes. However, should
initialization fail during development, use this debugging checklist to diagnose the prob-
lem.

Parallel Mode Initialization Checklist

O Are all VCC and VCCIO pins connected to their proper values? VCC must be
connected to +2.5 volts. VCCIO may be connected either to +2.5 volts or +3.3
volts. If initializing from an external memory device, check that the correct voltage
is applied.

O Are all GND and GNDIO pins connected?

O Is the VSYS pin connected to a valid logic level? Do not leave VSYS unconnected
or floating.

O Is the SLAVE- pin connected to VCCIO?

O Is the RST- pin connected to a valid logic level? Do not leave RST- unconnected

or floating. Is RST- a logic High? RST- must be High before initialization can be-
gin.

TCH305-0001-002 103 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

O If using the crystal oscillator or an external clock as the source for bus clock, tem-
porarily use the internal ring oscillator as the clock source. Create a new configu-
ration image in FastChip Device Link (FDL) using the internal ring oscillator.
Download the design to the A7. Does the device initialize from the internal ring
oscillator? If so, then verify that the crystal oscillator or external clock is operating.
Verify that the crystal oscillator is externally configured correctly (see Figure 47).

O Try downloading an application with a small amount of code that executes from
internal SRAM. Does it function correctly? If so, this indicates that the external
memory is either incorrectly connected or misconfigured.

O If executing from external Flash or if copying to and executing code from external
SDRAM, verify that the connections are correct between the A7S and the external
memory. Also, verify that the correct memory types and speed grades were speci-
fied when creating the configuration image in FastChip Device Link (FDL).

O Temporarily pull-down the RST- pin to ground using a 4.7kQ resistor. Re-apply
power to the board and wait a few seconds. Disconnect the pull-up resistor. Does
the system initialize correctly? If so, this indicates a possible power-supply ramp-
rate or supply stability problem in the system.

JTAG Initialization Checklist

The items listed under Parallel Mode Initialization Checklist also apply to JTAG initiali-
zation. Here are additional items unique to JTAG initialization.

O Check that all four JTAG pins are correctly connected to the intelligent host.

O Is there activity on the JTAG pins during the initialization process? If not, then the
A7S device is not receiving initialization data.

O If using FastChip Device Link (FDL) or the command-line csoc download utility,
then the download software should indicate whether it could successfully connect
to the A7S device. If not, the software displays further debugging information.

O If using the WindRiver visionPROBE Il JTAG download/debug cable, be sure that
the cable is properly installed on your computer, including setting your parallel port
in Enhanced Capabilities Port (ECP) mode.

Additional Initialization Debugging Support

Additional details and information is available on the Triscend SupportCenter web site at
http://support._triscend.com.

SUBJECT TO CHANGE 104 TCH305-0001-002

http://support.triscend.com/

WMaTriscend

FIQ
FIQCcSL —»{ Interrupt > FIQ
Controller

Steered IRQ Interrupts \:k IVVYVYYY

Programmed IRQ —
Serial Channel 0 —»]
Timer 0 —»

Timer 1 —p» ARM7TDMI

Serial Channel 1 — CPU
Watchdog Timer —»
DMA Channel 0 —» IRQ
DMA Channel 1 —m{ Interrupt »{ IRQ
DMA Channel 2— Controller
DMA Channel 3 —»»
IRQ CSL 0 —

IRQ CSL 1 —»]

IRQ CSL 2 —»]

JTAG —
Breakpoint Unit —»|

Figure 55. Interrupt Control Structure for the A7S Family.

Interrupts

The interrupt controller consolidates all the system interrupts into the two standard ARM
interrupts, FIQ (Fast Interrupt Request) and IRQ (Interrupt Request), as shown in Figure
55. The interrupt controller provides a simple software interface to the interrupt system.
All interrupt sources are active High and level sensitive. Priority and interrupt vectoring is
handled by software.

Each interrupt is identically implemented. A status bit is available to monitor the source
status regardless if the specific interrupt is enabled. An enable bit for each source selec-
tively masks a source independently of the others.

Interrupt Control

The interrupt controller provides both a raw interrupt source status and a masked interrupt
request status, which is individually controlled via an interrupt enable register. The inter-
rupt control structure is shown in Figure 56. The control logic for the FIQ interrupt is simi-
lar, but there is no associated steering logic. FIQ interrupt requests always appear in the
associated FIQ status registers.

The enable bit permits an active interrupt source to generate an interrupt request to the
ARM7TDMI processor. Prior to masking, the interrupt source status indicates if a particu-
lar interrupt source is active, regardless if the interrupt is enabled or not.

The enable register allows an individual bit to be set or cleared by software without prior
knowledge of the state of the other bits in the register. When writing to the FIQ or IRQ in-
terrupt enable register, each data bit that is ‘1’ in the register sets the corresponding bit in
the enable register—all other bits are unaffected. The FIQ or IRQ clear interrupt register
similarly clears individual bits of the enable register.

For debugging or performance reasons, any of the IRQ interrupts can be steered to the
FIQ interrupts using the IRQ Steering Register. Once an IRQ interrupt is steered to the
FIQ interrupt, its raw and masked status appear in the corresponding FIQ status registers
and no longer in the IRQ status registers.

TCH305-0001-002 105 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Interrupt Source
____________ Raw Interrupt

: 1
T i Ot INT_FIQ_RAW_STATUS_REGIX]
Enable Interrupt —{ENABLE Q|—e Lo

l

10
O——» INT_IRQ_RAW_STATUS_REG[X]

CLEAR

Clear Interrupt

INT_IRQ_ENABLE_REG[x] MaskedInterrupt

SET 'o—> INT_FIQ_STATUS_REGIX]
Q : 0
. O—— INT_IRQ_STATUS_REG[x]

CLEAR Lo

JL

INT_IRQ_ENABLE_CLEAR_REG[X]

INT_IRQ_STEER_REG[x] —{D Q

Figure 56. The Triscend A7S interrupt control logic selectively enables inputs to
the FIQ and IRQ interrupt controller. IRQ interrupt requests can also be
steered to the FIQ interrupt input.

Interrupt Sources

The FIQ interrupt typically originates from the CSL as a sideband signal. However, any
IRQ interrupt source can be steered to the FIQ interrupt via the |IRQ Steering Reqister.

The IRQ interrupt has 15 potential sources as listed below. Table 46 shows the source,
source enable control, and source clear control for each IRQ interrupt.

= 4 interrupts from the DMA unit (one per channel)
= 2 timer interrupts

= 2 serial port interrupts

= Watchdog timer

= JTAG unit

= Breakpoint unit

= Software interrupt (ARM7TDMI instruction SWI)

= 3 user-defined interrupt inputs, IRQ2, IRQ1, and IRQO, that originate in the CSL matrix
as sideband signals

NOTE:

A CSoC design practically supports an unlimited number of interrupts. Each
user-defined interrupt input—RQ2, IRQ1, IRQ0—can be expanded in the CSL
matrix. FastChip provides a soft module for this function.

ARM FIQ and IRQ Interrupts

The ARM7TDMI processor supports two levels of interrupts, FIQ and IRQ. Separate inter-
rupt controllers are used between FIQ and IRQ.

The FIQ interrupt is used for handling fast, low-latency interrupts. The IRQ interrupt han-
dles general interrupts. Typically, a single source for FIQ should be used at any particular
time to ensure low latency interrupt handling. All IRQ interrupts are also available as FIQ
interrupts. They can be steered individually by programming the IRQ Steering Register.

SUBJECT TO CHANGE 106 TCH305-0001-002

WMaTriscend

When an IRQ is steered, its status appears in the FIQ Status Reqgister and not the IRQ
register anymore. However, the associated interrupt is still enabled using the IRQ Enable
Register.

A fast interrupt request (FIQ) has higher priority than an IRQ request because is it ser-
viced first when multiple interrupts occur and servicing an FIQ interrupt disables an IRQ
requests, thereby preventing any IRQ requests from being serviced until the FIQ interrupt
handler has re-enabled them.

The FIQ interrupt structure is designed to service interrupt requests as quickly as possi-
ble. The FIQ vector address is the last in the vector table, which allows the FIQ interrupt
handles to be located at the vector address, avoiding an additional jump. Furthermore,
the FIQ exception has five additional banked registers, which reduces the number of reg-
isters that must be preserved by the handler.

Finally, for best performance, there should be just one source for the FIQ interrupt, reduc-
ing software overhead in the interrupt handler.

The worst-case interrupt latency for FIQ is 28 processor cycles or 420 ns at 60 MHz, as-
suming that the processor is executing from internal scratchpad RAM or cache.

Interrupt Controller Sideband Signals

There are four sideband input signals to the interrupt controller, as shown in Figure 57.
The fast interrupt input, FIQ, and the three external interrupt inputs IRQ2, IRQ1, and IRQO
all originate from logic in the CSL matrix or directly from a PIO pin.

All the interrupt inputs are active High. If unused, connect these sideband signals Low.

FI1Q —»

IRQ2 — |nterrupt
1rRQ1 —»| Controller

TRQO —»»

Figure 57. Interrupt Controller sideband inputs.

TCH305-0001-002 107 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Control Registers Description

For the interrupt registers, the individual bit correspondence is described in Table 46. The
FIQ interrupt is also available in the IRQ registers at the same bit position.

Table 46. Interrupt Register Bit Declarations.

Bit
Interrupt Location Interrupt Source Enable Interrupt Clear Interrupt
Breakpoint 15 Breakpoint unit Controlled by Fast- Controlled by FastChip
IRQ_BREAKPOINT_BIT Chip Device Link Device Link
JTAG 14 JTAG unit Controlled by Fast- Controlled by FastChip
IRQ JTAG BIT Chip Device Link Device Link
IRQ 2 (from CSL) 13 CSL application Controlled via CSL Controlled via CSL
IRQ CSL USER 2 BIT application application
IRQ 1 (from CSL) 12 CSL application Controlled via CSL Controlled via CSL
IRQ CSL USER 1 BIT application application
IRQ O (from CSL) 11 CSL application Controlled via CSL Controlled via CSL
IRQ CSL USER 0 BIT application application
DMA Channel 3 10 Various sources Set appropriate bits in | Write ‘1’ to appropriate
IRQ DMA 3 BIT recorded in DMA3_INT bit in DMA3 _INT
B - DMA3 INT REG ENABLE REG CLEAR REG
DMA Channel 2 9 Various sources Set appropriate bits in | Write ‘1’ to appropriate
IRQ DMA 2 BIT recorded in DMA2 INT bitin DMA2 INT
B - DMA2 INT REG ENABLE REG CLEAR REG
DMA Channel 1 8 Various sources Set appropriate bits in | Write ‘1’ to appropriate
IRQ DMA 1 BIT recorded in DMA1_INT bitin DMA1_INT
B - DMA1 INT REG ENABLE REG CLEAR REG
DMA Channel 0 7 Various sources Set appropriate bits in | Write ‘1’ to appropriate
IRQ DMA 0 BIT recorded in DMAO INT bit in DMAO _INT
B - DMAO INT REG ENABLE REG CLEAR REG
Watchdog Timer 6 Watchdog timer Set Write ‘1’ to
IRQ_WATCHDOG_BIT decrements to 0 WD _ENABLE BIT in | WATCHDOG
B h WATCHDOG CLEAR REG
CONTROL REG
Serial Channel 1 5 Various sources Set appropriate bits in | Various actions, as de-
IRQ SERIAL 1 BIT recorded in UART1 INT fined in Table 50
B I UART1 INT ID REG | ENABLE REG
Timer 1 4 Timer 1 Set Write ‘1’ to
IRQ TIMER 1 BIT decrements to 0 TIM_ENABLE BITin | TIMER1 CLEAR
- - TIMER1 REG
CONTROL REG
Timer 0 3 Timer 0 Set Write ‘1’ to
IRQ TIMER 0 BIT decrements to 0 TIM_ENABLE BITin | TIMERO CLEAR
- - TIMERO REG
CONTROL REG
Serial Channel 0 2 Various sources re- Set appropriate bits in | Various actions, as de-
IRQ SERIAL 0 BIT corded in UARTO INT fined in Table 50
B - UARTO INT ID REG | ENABLE REG
Programmed IRQ 1 Write ‘1’ to N/A. Always enabled. | Write ‘0’ to
IRQ SOFTWARE BIT INT _IRQ SOFT_REG INT_IRQ _SOFT REG
FIQ (from CSL) 0 CSL application Controlled via CSL Controlled via CSL
FIQ BIT application application
NOTE: Every CPU write to the CS bus is buffered. When clearing interrupts and leaving

an interrupt service routing (I1SR), flush the write buffer by reading from any CS
location that it unaffected by a read.

The Triscend driver library already handles this situation.

SUBJECT TO CHANGE

108

TCH305-0001-002

WMaTriscend

Interrupt Controller Memory Map

Address
Base Offset Register Name Access
+ 0x00 IRQ Status R
+ 0x04 IRQ Raw Status R
+ 0x08 IRQ Enable R/W

+ 0x0C IRQ Enable Clear
+ 0x10 IRQ Soft Request
+ 0x100 | FIQ Status

+ 0x104 | FIQ Raw Status
+ 0x108 | FIQ Enable R/W
+ 0x10C | FIQ Enable Clear
+0x110 | IRQ Steering

INT_BASE

o=

2|2

IRQ Status Register (INT_IRQ_STATUS_REG)

This register provides the status of the interrupt sources after masking by the interrupt en-
able register. It is a read-only register.

Bit Description/Function
31:16 | Reserved
15:1 General Interrupt Requests Status:
0: No request.
1: An active and enabled IRQ request from the associated interrupt
source. (See Table 46)
0 Fast Interrupt Request Status:
0: No active FIQ interrupt request.
1: FIQ interrupt request.

System reset value: 0
IRQ Raw Status Register (INT_IRQ_RAW_STATUS_REG)

This register provides the status of the interrupt sources before masking, regardless of the
interrupt enable register. It is a read-only register.

Bit Description/Function
31:16 | Reserved
15:1 General Interrupts Source Status:
0: No request.
1: An active IRQ request from the associated interrupt source. (See Table
46)
0 Fast Interrupt Source Status:
0: No active FIQ interrupt request.
1: FIQ interrupt request.

System reset value: 0

TCH305-0001-002 109 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

IRQ Enable Register (INT_IRQ_ENABLE_REG)

This register selectively allows individual interrupt sources to generate an IRQ interrupt to
the ARM7TDMI processor.

Bit Description/Function
31:16 | Reserved
15:1 General Interrupts Enable:
0: No effect.
1: Enable associated interrupt request. When source generates an inter-
rupt, the request is recorded in either the IRQ or FIQ status register,
depending on the IRQ steering register. (See Table 46)
0 Reserved

System reset value: 0
IRQ Enable Clear Register (INT_IRQ_ENABLE_CLEAR_REG)
This register provides the control to clear the interrupt enables. This register is write-only.

Bit

Description/Function

31:16

Reserved

15:1

Clear General Interrupts Enable:

0: No effect.

1: Disable associated interrupt request. When source generates an inter-
rupt, the request is not recorded. However, the raw, unmasked status
appears in either the IRQ or FIQ raw status register, depending on the
IRQ steering register. (See Table 46)

Reserved

Software Interrupt Request Register (INT_IRQ_SOFT_REG)

This register provides a software mechanism to generate an interrupt.

This register is

write-only.
Bit Description/Function
31:2 Reserved
1 Software Interrupt Request:
0: Clear software interrupt.
1: Generate a software interrupt request.
0 Reserved

SUBJECT TO CHANGE

110 TCH305-0001-002

WMaTriscend

FIQ Status Register (INT_FIQ_STATUS_REG)

This register provides the status of the fast interrupt sources (FIQ or “steered” IRQ) after
masking via the appropriate interrupt enable register. This register is read-only.

Bit Description/Function

31:16 | Reserved

15:1 Steered IRQ Status:

0: No request.

1: An active and enabled IRQ request from the associated interrupt
source, if the associated bit is set in the IRQ steering register. (See
Table 46)

0 Fast Interrupt Request Status (FigStat):

0: No active FIQ interrupt request.

1: FIQ interrupt request.

System reset value: 0
FIQ Raw Status Register (INT_FIQ_RAW_STATUS_REG)

This register provides the status of the interrupt sources (FIQ or “steered” IRQ) before
masking via the appropriate interrupt enable register. This register is read-only.

Bit Description/Function
31:16 | Reserved
15:1 Steered IRQ Source Status:
0: No request.
1: An active IRQ request from the associated interrupt source, if the asso-
ciated bit is set in the IRQ steering register. (See Table 46)
0 Fast Interrupt Source Status:
0: No active FIQ interrupt request.
1: FIQ interrupt request.

System reset value: 0
FIQ Enable Register (INT_FIQ_ENABLE_REG)

This register provides the status and partial control for the fast interrupt enable.

Bit Description/Function
31:1 Reserved
0 Fast Interrupt Enable:
0: No effect.

1: Enable the FIQ interrupt request. When the source generates an inter-
rupt, either via the FIQ interrupt input or a steered IRQ request, the re-
quest is recorded in the FIQ status register.

System reset value: 0

TCH305-0001-002 111 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

FIQ Enable Clear Register (INT_FIQ_ENABLE_CLEAR_REG)
This register provides the control to clear the fast interrupt enable. This register is write-

only.
Bit Description/Function
31:1 Reserved
0 Clear Fast Interrupt Enable:
0: No effect.

1: Disable the FIQ interrupt request. When the source generates an inter-
rupt, the request is not recorded. However, the raw, unmasked status
appears in FIQ raw status register.

IRQ Steering Register (INT_IRQ_STEER_REG)

This register enables any individual IRQ to be steered to the FlQ.

Bit Description/Function
31:16 | Reserved
15:1 IRQ Steer Enable:
0: The associated IRQ interrupt request appears in the IRQ status regis-
ters (See Table 46)
1: The associated IRQ interrupt request is steered to the FIQ interrupt and
appears in the FIQ status registers (See Table 46)
0 Reserved

System reset value: 0

SUBJECT TO CHANGE 112 TCH305-0001-002

WMaTriscend

System Control Registers

Remap and Pause Registers

The remap and pause control registers provide general system control. Some of these
registers are required for minimum ARM7TDMI real-time operating system (RTOS) sup-

port.
Address
Base Offset Register Name Access

+ 0x00 Pause W
+ 0x10 Identification R
+ 0x14 Revision R
+ 0x20 Clear Reset Map W
+ 0x38 Pin Status R

RMAP_BASE + 0x3C Pin Status Clear W
+ 0x40 Alias Enable R/W
+ 0x44 Scratchpad Configuration R/W
+ 0x48 Scratchpad Base Address R/W
+ 0x4C Access Protection R/W

Pause Register (REMAP_PAUSE_REG)

The Pause Register places only the ARM7TDMI in a low-power state. Use the Power
Down Control Register to place other portions of the system into a lower-power state.

Writing any value to the Pause register causes the ARM processor, and only the proces-
sor, to enter the low-power state. The processor remains in this mode until it receives an

IRQ interrupt or a system reset.

Bit Description/Function

31:0 Reserved

Identification Register (REMAP_IDENTIFICATION_REG)

This register identifies the specific A7S CSoC family member. This register is read-only.

Bit Description/Function

31:0 Device ldentification Type:
A 32-bit constant identifying an A7S family member.

Not reset. Value = 0x1803_D2FF.

TCH305-0001-002 113

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Revision Register (REMAP_REVISION_REG)

This register identifies the mask revision for the A7S device. This register is read-only.

Bit

Description/Function

31:0

Mask Revision Number:

A 32-bit constant identifying the mask revision for the device type indicated

in the REMAP_IDENTIFICATION_REG register.

Device | Revision Code Revision Status
A7S04 0x0_01_13 Production
A7S20 0x0_01_13 Production
A7S20 0x0 01 11 Prototype, no cache support
A7S20 0x0_00 00 Obsolete

Not reset. Undefined.
Clear Reset Memory Map Register (REMAP_CLEAR_RESET_MAP_REG)

This register provides a means to change the system memory map from the user's current
memory map to the one used during normal operation. Writing this register causes the
memory map switch. It effectively clears the Flash alias bit in the Alias Enable Reqister.

This register is provided to maintain compatibility with other software created for the
ARM7TDMI processor. The same functionality is provided by the A7S’s Alias Enable

Register.
Bit
31:0

Description/Function

Reserved

Pin Status Register (REMAP_PIN_STATUS_REG)

This register enables software to monitor the status of some static pins of the device. This
register is read-only.

Bit
31:5 Reserved
4 VSYS Bad Flag (VSYS_BAD_BIT):
A ‘1’ indicates that the voltage level on the VSYS pin dropped to a “bad
level permanently or temporarily.
3 VSYS Good Flag (VSYS_GOOD_BIT):
A ‘1’ indicates that the voltage level on the VSYS pin reached a “good”
level permanently or temporarily.
2 SLAVE- Pin Status (SLAVEN_BIT)
Should always be ‘1°. SLAVE- pin connects to VCCIO.
1 RST- Pin Status (RSTN_BIT)
0 VSYS Pin Status (VSYS BIT)
Configuration reset value: bits [4:3] =171’
Bits [2:0] are not reset. Undefined.

Description/Function

SUBJECT TO CHANGE 114 TCH305-0001-002

WMaTriscend

Pin Status Clear Register (REMAP_PIN_STATUS CLEAR_REG)

This register is write only. Software clears bits of the Pin Status Register by writing ‘1’ to
the corresponding Pin Status Clear Register location. Writing 0 has no effect.

Bit Description/Function
31:5 Reserved
4 Clear VSYS Bad Flag (VSYS_BAD_CLR_BIT):
0: No effect
1: Clear bit.
3 Clear VSYS Good Flag (VSYS_GOOD_CLR_BIT):
0: No effect
1: Clear bit.
2:0 Reserved

Alias Enable Register (REMAP_ALIAS _ENABLE_REG)

This register defines which alias is enabled at the bottom of the memory starting at ad-
dress 0. If more than one alias is enabled, they are overlaid over each other with the fol-
lowing priority (from highest to the lowest priority). See Figure 28.

1. Internal boot ROM

2. External Flash or SRAM static memories
3. Internal SRAM

4. External SDRAM

Bit Description/Function
31:4 Reserved
3 SDRAM Alias Enable (SDRAM_AEN_BIT):
0: Disable alias
1: Alias external SDRAM to address O
2 Internal SRAM Alias Enable (SRAM_AEN_BIT):
0: Disable alias
1: Alias internal SRAM to address 0
1 Flash Alias Enable (FLASH_AEN_BIT):
0: Disable alias
1: Alias external Flash to address 0
0 Internal Boot ROM Alias Enable (ROM_AEN_BIT):
This alias is automatically disabled during the device initialization process.
0: Disable alias
1: Alias external Flash to address 0

Power-on or configuration reset value: O0xF (All aliases enabled).

System reset value: OxE (All aliases enabled, except for primary initialization ROM).

After secondary initialization complete: 0xC (SDRAM and internal SRAM aliased to ad-
dress 0).

TCH305-0001-002 115 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Access Protection Register (REMAP_ACC_PROTECT_REG)

Bit Description/Function

31:1 Reserved
0 DMA Register Write Disable (DMA_DIS_BIT):
When set, protects the A7S control registers against accidental DMA write
accesses.
0: DMA write accesses allowed to addresses between 0xD101_0000 and

0xD101_FFFF.
1: The memory region between 0xD101_000 and 0xD101_FFFF is pro-
tected against DMA write transactions.

System reset value: 1

SUBJECT TO CHANGE 116 TCH305-0001-002

WMaTriscend

Dedicated 16-bit Timers

The A7S system has two dedicated 16-bit timers that follow the exact model specified by
the ARM "Reference Peripherals" document. If required by an application, timers with dif-
ferent features can be added in using the CSL matrix.

Each timer is 16 bits wide with an 8-stage programmable pre-scaler and operates from the
system clock. The system clock is used directly, or divided by 16 or 256 using the pre-
scaler. Two operating modes are available, free-running and periodic timer. In periodic
timer mode, the counter generates a raw interrupt at a constant time interval. In free-
running mode, the timer overflows after reaching zero and continues to countdown from
the maximum value.

The pre-scale values, the timer mode, and enable control are configured using the Timer
Control Register. Writing ‘1’ to the Timer Clear Register clears the timer interrupt flag.
The current timer value is available in the Timer Value Reqister.

Free-Running Mode

Figure 58 shows a block diagram of the free-running mode. Writing to the Timer Load
Register loads the timer. Once enabled, the timer decrements until it reaches 0. Upon
reaching zero, the timer generates a raw interrupt and the counter wraps around to its
maximum value, OxFFFF, and continues to decrement.

Periodic Timer Mode

Figure 59 shows a block diagram of the periodic mode. Writing to the Timer Load Regis-
ter loads the timer. Once enabled, the timer decrements until it reaches 0. Upon reach-
ing zero, the timer generates a raw interrupt and the counter reloads itself from the Timer
Load Register and continues to decrement.

CSl Bus
¢ LOAD Timer0 = IRQ_RAWI[3]
TIMERx_LOAD_REG[15:0] Timer1 = IRQ_RAWI[4]
Raw
Interrupt
{} Flag
H{ LOAD COUNT=0 D Qf—»
TIMERXx_VALUE_REG[15:0] EN

ENABLE (Down Counter)
[RST

BUSCLK

| o]

N J TIMERX_CLEAR_REG

TIMERX_CONTROL_REG
Figure 58. Timer O or Timer 1 in Free-Running Mode.

TCH305-0001-002 117 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

CSI Bus

J L

LOAD Timer0 = IRQ_RAWI[3]
TIMERx_LOAD_REG[15:0] Timer1 = IRQ_RAWI[4]
Raw

- Interrupt
{} Flag
LOAD COUNT=0 D QF—»

TIMERX_VALUE_REG[15:0]

ENABLE (Down Counter) =N
[RST

Pre-scaler

BUSCLK

[
L [7fe[[sf2] | [0]

N J TIMERX_CLEAR_REG

TIMERX_CONTROL_REG
Figure 59. Timer O or Timer 1 in Periodic Mode.

Clock Source and Pre-scaling

The source for the timer clock is the system clock. The clock is pre-scaled by the values
1, 16 or 256. The pre-scaler unit generates an enable signal to decrement the counter.

Control Registers Description

Address
Base Offset Register Name Access

+ 0x00 Timer O Load R/W
+ 0x04 Timer 0 Value R
+ 0x08 Timer 0 Control R/W
+ 0x0C Timer O Clear W

TIMER_BASE + 0x20 Timer 1 Load R/W
+ 0x24 Timer 1 Value R
+ 0x28 Timer 1 Control R/W
+ 0x2C Timer 1 Clear W

SUBJECT TO CHANGE 118 TCH305-0001-002

Timer Load Register (TIMERx_LOAD_REG)

Bit Description/Function
31:16 | Reserved
15:0 Load Timer Value (LOAD_FIELD [15:0]):

Writing to this register loads the timer.
timer. Also used as the reload value in period mode.

Not reset. Undefined.
Timer Value Register (TIMERx_VALUE_REG)
This register is read-only.

Bit Description/Function
31:16 | Reserved
15:0 Current Timer Value (VALUE FIELD [15:0])

System reset value: 0
Timer Control Register (TIMERx_CONTROL_REG)

This register configures the timer’s operation.

Bit

Description/Function

31:8

Reserved

7

Timer Enable (TIM_ENABLE_BIT):
0: Disable
1. Enable

Timer Mode (TIM_MODE_BIT):
0: Free-running
1: Periodic

54

Reserved

3:2

Pre-scale Value (PRESCALE_FIELDI[1:0]):
00: Bus Clock

01: Bus Clock =+ 16

10: Bus Clock + 256

11: Reserved

1:0

Reserved

System reset value: 0
Timer Clear Register (TIMERXx_CLEAR_REG)

This register is used to clear the timer interrupt. This register is write-only.

Bit Description/Function
31:1 Reserved
0 Clear Timer Interrupt (TIM_INT_CLEAR_BIT):

1: Clear timer interrupt
0: No effect

TCH305-0001-002

119 SUBJECT TO CHANGE

WMaTriscend

Defines the initial value of the

Triscend A7S Configurable System-on-Chip Platform

Watchdog Timer

The watchdog timer is a free-running 32-bit counter programmed to serve as an event
timer. The watchdog timer operates from the internal system clock. The time-out interval
is programmable. When a time-out occurs, the watchdog timer generates a raw interrupt
and optionally generates a system reset. Both operations are independent of one an-
other.

The watchdog timer is primarily used as a system monitor but also serves as a simple
timer. As a system monitor, the watchdog timer generates a interrupt or optionally gener-
ates a system reset. As a simple timer, the watchdog timer again generates an interrupt,
but with system reset option disabled. Similarly, the CPU can poll the raw interrupt flag or
directly read the value of the counter. The watchdog timer is initialized upon a system re-
set or via a control register bit.

The time-out interval is programmable using the Watchdog Timeout Value Register.
The watchdog counter is loaded automatically when software writes to the time-out inter-
val. Once enabled, the watchdog counter decrements indefinitely or until it is disabled.
Upon reaching zero, the counter reloads the time-out value and continues decrementing.

When the counter reaches zero, a time-out occurs which sets the interrupt flag. If the
watchdog interrupt source is not enabled in the IRQ Enable Reqister (bit 6), then it can
be polled as a status line in the IRQ Raw Status Register (bit 6). If the watchdog-reset
bit is enabled, then the watchdog timer generates a system reset 4,096 clock cycles after
the time-out occurs. A system reset also resets the watchdog timer, clearing and dis-
abling it. The 4096-cycle delay provides ample time for the software to reset the watch-
dog timer before a watchdog reset occurs, avoiding an unwanted reset condition. If the
system ever entered an unexpected state, then the CPU would fail to reset the watchdog
timer when required. The watchdog timer would cause a system reset, forcing the system
back into a known state.

CSI Bus
WATCHDOG_TIMEOUT_VAL_REG([31:0]
4096 System Reset
- Clock Cycle
{} Delay
E > LOAD
ENABLE Raw
WATCHDOG_CURRENT_VAL_REG[31:0] Interrupt
(Down Counter) Flag
IRQ_RAWI[6]
RESET COUNT=0 D QF—»
BUSCLK EN
|f RST
[2]1]0] | 0]
WATCHDOG_CONTROL_REG WATCHDOG_CLEAR_REG

Figure 60. The A7S’s 32-bit Watchdog Timer.

SUBJECT TO CHANGE 120 TCH305-0001-002

WMaTriscend

The application program resets the watchdog timer by setting the self-clearing
WD_RESET BIT in the Watchdog Control Register.

Watchdog Registers Memory Map

Address
Base Offset Register Name Access
+ 0x00 Watchdog Control R/W
+ 0x04 Watchdog Timeout Value R/W
WD BASE
_BAS + 0x08 Watchdog Current Value R
+ 0x0C Watchdog Clear W

Watchdog Control Register WATCHDOG_CONTROL_REG)

Bit Description/Function
31:1 Reserved
2 Enable Watchdog Reset (EN_WD_RST_BIT):

0: Disable watchdog timer reset

1: Enable watchdog timer reset. A system reset will occur 4096 clock cy-
cles after the Watchdog timer time-out, unless the application program
resets the watchdog timer within the 4096 clock cycle window.

1 Watchdog Reset (WD_RESET_BIT):

0: No effect

1: Reset watchdog timer, including its interrupt flag and reset logic. This
bit is self-clearing.

0 Watchdog Enable (WD_ENABLE_BIT):

0: Disable watchdog timer

1: Enable watchdog timer

System reset value: 0
Watchdog Time-out Value Register (WATCHDOG_TIMEOUT_VAL_REG)

When this register is updated, the counter is also automatically loaded with this register
value.

Bit Description/Function
31:0 Watchdog Time-out Value
Not reset. Undefined.

Watchdog Current Value Register (WATCHDOG_CURRENT_VAL_REG)

This register is read only.

Bit Description/Function
31:0 Watchdog Current Value
Not reset. Undefined.

Watchdog Clear Register (WATCHDOG_CLEAR_REG)

This register is used to clear the watchdog interrupt. It is a write-only register.

Bit Description/Function
31:1 Reserved
0 Clear Watchdog Timer Interrupt (WD_INT_CLR_BIT):
0: No effect.
1: Clear timer interrupt

TCH305-0001-002 121 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Serial Ports (UARTSs

Each A7S CSoC device contains two dedicated Universal Asynchronous Re-
ceiver/Transmitters (UARTs). Each UART, shown in Figure 62, is “register and feature
compatible” with a 16C450/550-style device and is a full duplex asynchronous communi-
cation module that supports the following features.

= 5-, 6,- 7-, or 8 bit data transmission

= Even, odd, or no parity bit generation and checking

= Start and stop bit generation and checking

= Line break detection and generation

= Receiver overrun and framing error checking

= Communications rates exceeding 1M baud

= Internal programmable baud-rate generator

= FIFO (16C550-style) or non-FIFO (16C450-style) operating modes
— Transmitter is buffered with 16-byte FIFO

— Receiver is buffered with 16-byte FIFO plus three error bits per data byte
= Exception handling using interrupt/polled modes

= Internal diagnostic capabilities with loop-back

= Modem handshake capability

In addition to the regular set of 16C550 registers, a few additional registers provide extra
flexibility to the serial ports.

Baud Rate Generation

The baud-rate generator provides the clock for the transmitter and the receiver. The gen-
erated clock is 16 times the baud rate of the UART. The baud rate-generator output from
each UART is also available in the CSL through the BDCLKXx sideband signals.

NOTE:
/ The BDCLKX sideband signal is a pulse that repeats at the baud-rate frequency

and is High for one Bus Clock cycle, Low for the remainder of the period. It is
not a 50% duty cycle output.

Dividing Bus Clock, the system clock, generates the baud-rate clock. The clock division is
performed in two steps. First, the system clock is divided down using an 8-bit pre-scaler,
defined in the UART Control Register. The available pre-scaler ranges between 1 to
256. Then pre-scaler output is further divided by a fully programmable 16-bit value.

Together, the 8-bit pre-scaler and the UART’s 16-bit divider provide a 24-bit divider. Any
effective baud rate can be synthesized from a 60 MHz clock using a 24-bit divisor value,
as shown in Equation 2. The output of the BDCLKx baud-rate clock sideband signals is
sixteen times the baud-rate frequency, as shown in Equation 3.

DATA (5 to 8 bits)

N

AN
p
_\START/< LsB X X X:::X X MsB XPARITYY STOP \ /

- Data shift direction, LSB first
Figure 61. UART serial data format.

SUBJECT TO CHANGE 122 TCH305-0001-002

WMaTriscend

F . UART_E NABLE ® I:BusCIock
PaudRe® ~ 16 ¢ (UART_PRESCALE +1) ¢ (UART_DIVISOR)

(2)

where:
UART_ENABLE the PRESCALE _EN_BIT bit in the UART control register.
Feuscock = the frequency of Bus Clock.

UART_PRESCALE = The 8-bit UART_PRESCALE_FIELD[7:0] field in the UART
control register. Values 0 and 1 are illegal.

UART_DIVISOR = the 16-bit divider value stored in the
UARTx_DIVISOR _MSB_REG and
UARTx_DIVISOR LSB_REG registers.

Faaudrate ciock = FBaudrate ® 16 (3)

NOTE:
The 16550/16450-style UARTs embedded within an A7S CSoC device are gener-

ally binary compatible with the original discrete UART components. However,
the baud-rate equation is different.

Transmitting Data

Data is transmitted by writing a data byte into the Transmit Holding Register or the
transmit FIFO in FIFO mode. The data byte is either written directly through a CSI mem-
ory access or by a memory-to-device DMA transaction. In DMA mode, the UART gener-
ates the proper requests to prompt the system for more data. In normal, non-DMA mode,
data requests are prompted through interrupts.

Once transmitted, the data byte is then shifted out through the SOUTx CSL sideband sig-
nal. The LSB is shifted out first and the MSB last, as shown in Figure 61. The proper
framing bits—start, stop, and parity—are automatically added by the transmitter.

The transmitter clock is the output of the baud rate generator. Data bits are presented on
the serial output data line once every 16 transmitter clock cycles.

Receiving Data

The UART receives bytes from the SINx CSL sideband signal. Once a byte is received,
the UART either generates an interrupt or generates a DMA device-to-memory request to
an associated DMA channel. The byte is stored in the Receiver Buffer Register or in the
Receiver Buffer in FIFO mode. When using the DMA to transfer received data; the FIFO
mode is unnecessary because a DMA request is generated immediately when a word is
received. Realistically, the DMA response latency is fast enough to eliminate buffering in
the UART.

The receiver clock is the output of the baud rate generator. The receiver synchronizes the
shift clock using the falling edge of the start bit on the SINx sideband input. It then re-
ceives a complete byte according to the parameters set in the Line Control Register.

TCH305-0001-002 123 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

16C550-style UART

=P -0 Control
Register
Receiver
UartoControl. FIFO -
: Receiver
Enable shift |€—SINx)
; Receiver Register
REQ < Recelver Buffer [« i
ACK Channel -t - Register -
Select Receiver
Timing
. || ___| and Control
Line Control
—p Register 4
Enable —
Divisor Latch
| System P " SB) 16x
BCLK—| Clock Pre- » oo Taron ba;Jd ‘
3 Saler —p ivisor Latc _ rate i
: (MSB) > BDCLKXx
+16 ‘
Line Status [| -
Register »1 Transmitter
4_I Timing
Enable and Control
P Transmitter Transmitter
REQ = DMA FIFO v
ACK Channel Transmitter
Select Shift » SOUTX
- Register
Transmitter
Holding
- Register
Interrupt Interrupt
— Enable — Control » |IRQ
Register Logic
¢ > Interrupt ID
Register <
» RTS
Modem
M Control ﬁ - CTS
Register
9! Modem » DTR
Control
Modem Logic <«+—DSR
Modem Register -t
Control » <+—R|
Enable /
V¥V DATA[7:0]

Figure 62. UART block diagram showing one of the 16C550-style serial ports and the

N

Sideband Signals

NOTE: The modem control logic is shared
between both UART channels. Only
one modem can be enabled at a time.

modem control logic, assigned to one of the serial ports.

SUBJECT TO CHANGE

124

TCH305-0001-002

WMaTriscend

UART Sideband Signals

The serial data input and output signals, as well as the baud-rate clock, are available as
sideband signals into the CSL matrix, as shown in Figure 63. These signals can connect
to other logic within the CSL matrix or to PIO pins. There are no PIO pins dedicated for
these signals, any PIO pins will do.

SINO —p» —» SOUTO SIN1 — —» SOUT1
UART O UART 1
—» BDCLKO —» BDCLK1

Figure 63. UART sideband signals.

DMA Feature

Each UART optionally connects to any of the four CSI DMA channels. The transmitter
and the receiver of each UART can be paired independently to a DMA channel using the
UART Control Register.

When associated with a DMA channel, the receiver or transmitter issues DMA requests
and is treated as an I/O device. For example, if the receiver of a UART is paired to a
DMA channel, then the receiver issues a device-to-memory DMA request whenever data
is available. Application software previously configures the DMA channel to perform de-
vice-to-memory transfers. The DMA performs a DMA Acknowledge Read cycle to gather
the data from the receiver then stores the data away in memory at the current DMA desti-
nation address.

When a UART transmitter is associated with a DMA channel, it similarly issues memory-
to-device requests.

Using DMA transfers frees the CPU from polling for data or handling interrupts.

Modem Feature and Sideband Control Signals

Signals required to interface a UART with a modem are available through the CSL side-
band signals, as shown in Figure 64. Each UART has a full set of modem handshake
signals. However, only one set of signals can be used at a time. Only one set at a time is
statically connected to the CSL sideband signals by setting the MODEM_EN_BIT.

CTS —»» —» DTR

DSR —p»| Modem —» RTS
ocp —| Interface

RI —»

Figure 64. Modem control sideband signals.

Table 47 describes the modem control signals, including their signal direction and active
polarity. On the A7S CSoC device, all the modem control signals are active High, which
differs from a stand-alone 16C450/550 UART device. On the original 16C450/550, the
RTS-, DTR-, DCD-, CTS-, and RI- signals are all active Low. On the A7S device, these
are active High. However, these signals can be inverted using CSL logic to maintain com-
plete compatibility with the original 16C450/550.

TCH305-0001-002 125 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Table 47. Modem Control Sideband Signals.

Active
Signal Description Direction Polarity
DTR | Modem Data Terminal Ready (DTR) signal | UART - CSL High
RTS Modem Request to Send (RTS) signal UART - CSL High
CTS Modem Clear to Send (CTS) signal CSL > UART High
DSR | Modem Data Set Ready (DSR) signal CSL - UART High
DCD | Data Carrier Detect (DCD) CSL > UART High
RI Modem Ring Indicator (RI) CSL > UART High
Serial Ports Register Memory Map
Address
Base Offset Register Name Access
+ 0x00 [UART 0 Control R/W
UART 0 RxTx
+ 0x20 |or R/W
UART 0 Divisor LSB
UART 0 Interrupt Enable
+0x24 |or R/W
UART 0 Divisor MSB
UART 0 Interrupt Identification R
+ 0x28 |or or
UART 0 FIFO Control W
+ 0x2C |[UART 0 Line Control R/W
+ 0x30 [UART 0 Modem Control R/W
+ 0x34 |UART O Line Status R
+ 0x38 |UART 0 Modem Status R
+ 0x3C [UART 0 Scratchpad R/W
UART_BASE + 0x40 |UART 1 Control R/W
UART 1 RxTx
+ 0x60 |or R/W
UART 1 Divisor LSB
UART 1 Interrupt Enable
+ 0x64 |or R/W
UART 1 Divisor MSB
UART 1 Interrupt Identification R
+ 0x68 [Or or
UART 1 FIFO Control W
+ 0x6C |[UART 1 Line Control R/W
+ 0x70 |[UART 1 Modem Control R/W
+ 0x74 |UART 1 Line Status R
+ 0x78 |UART 1 Modem Status R
+ 0x7C [UART 1 Scratchgad R/W

To preserve full compatibility with the 16C550-style UART, some registers share the same
address. Registers sharing the same address are differentiated by the DLAB_BIT, bit 7 in

the UART's Line Control Reqister.

values.

Each serial channel contains a set of the following registers.

Set DLAB_BIT=1 to access the baud-rate divisor

SUBJECT TO CHANGE

126

TCH305-0001-002

WMaTriscend

UART Control Register (UARTx_CONTROL_REG)

Bit

Description/Function

31:23

Reserved

22:21

Receive DMA Channel Select (RX_DMA_SEL_FIELD [1:0]):
These bits specify the DMA channel that services the UART’s receive
transfers. (see Table 48)

20

Receive DMA Channel Enable (RX_DMA_EN_BIT)
Setting this bit enables the UART receive channel to communicate with the
select DMA channel via a device-to-memory device transaction.

0: Disabled
1: Enabled

19

Reserved

18:17

Transmit DMA Channel Select (TX_DMA_SEL_FIELD [1:0]):
These bits specify the DMA channel that services the UART’s transmit
transfers. (see Table 48)

16

Transmit DMA Channel Enable (TX_DMA_EN_BIT):
Setting this bit enables the UART transmit channel to communicate with
the selected DMA channel via a memory-to-device transaction.

0: Disabled
1: Enabled

15:10

Reserved

Modem Control Enable (MODEM_EN_BIT):

Setting this bit enables the serial channel’s modem control lines, which are
available to the CSL matrix via sideband signals.

0: Disabled
1: Enabled

NOTE: Because both channels share the same sideband lines for the mo-
dem handshake, only one serial channel can have its modem enabled.

Pre-scaler Enable (PRESCALE_EN_BIT):
When disabled, the output of the pre-scaler is forced to 0.

0: Disabled
1: Enabled

7:0

System Clock Pre-Scale Value (UART_PRESCALE_FIELD [7:0]):
Divide the system clock frequency from 1 to 256.

System reset value: 0

Table 48. DMA Channel Select settings.

DMA Channel Setting
Channel 0 00
Channel 1 01
Channel 2 10
Channel 3 11
TCH305-0001-002 127 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

UART Receive Buffer/Transmit Holding Register (UARTx_RX_TX_REG)

Writing to this register sends data to the transmitter. Reading from this register captures
data from the UART receiver. This register is only accessible when DLAB_BIT=0 in the
UART’s Line Control Register.

Bit Description/Function
31:8 Reserved
7:0 Receive Buffer/Transmit Holding Register (Data[7:0])

Not reset. Undefined.
UART Interrupt Enable Register (UARTX_INT_ENABLE_REG)
This register is only accessible when DLAB_BIT=0 in the UART’s Line Control Register.

Bit

Description/Function

314

Reserved

3

Modem Status Interrupt Enable (MSE_BIT):

This bit enables the modem status interrupt sources (bits
DELTA_CTS_BIT, DELTA_DSR_BIT, TERI_BIT and DELTA_DCD_BIT of
the Modem Status Register).

0: Disable

1: Enable

Receiver Line Status Interrupt Enable (RLSE_BIT):
This bit enables the line status interrupt sources (bits OE_BIT, PE_BIT,
FE_BIT and BI_BIT of the Line Status Register).

0: Disable
1: Enable

Transmit Holding Register Empty Interrupt Enable (THREE_BIT):
This bit enables the UART interrupt that signals when the transmit holding
register is empty, indicated by the TEMT_BIT in the Line Status Reqister.

0: Disable
1: Enable

Receiver Data Ready Interrupt Enable (RDRE_BIT):

This bit enables the UART’s Data Ready, Trigger Level and Timeout inter-
rupts.

0: Disable

1: Enable

System reset value: 0

SUBJECT TO CHANGE 128 TCH305-0001-002

WMaTriscend

UART Line Control Register (UARTx_LINE_CONTROL_REG)

Bit Description/Function
31:8 Reserved
7 Divisor Latch Select (DLAB_BIT):
This bit must be set to access the baud-rate divisor registers.
0: Normal UART operation
1: Access baud-rate divisor registers
6 Set Break (BREAK_BIT):
When set, this bit transmits a break condition to the receiving UART.
When set, the serial output line (SOUT) is forced Low (the Spacing state).
Clearing this bit releases the break condition. The break control bit acts
only on the SOUT line and has no other effect on the transmitter.
0: Release break condition
1: Force break condition
5 Stick Parity (STICK_PARITY_BIT):
When in the stick parity mode (SP=1 and PEN=1), the parity bit transmitted
is the opposite polarity of the EPS bit programmed.
4 Even Parity Select (EPS_BIT):
If set, the total number of 1’s in the transmitted data bits + parity bit is even.
If cleared, the total number of 1’s is odd.
0: odd parity
1: even parity
3 Parity Enable (PEN_BIT):
0: No parity
1: Enable parity
This bit controls the generation and transmission of parity bits in the trans-
mitter and reception and checking of parity bits in the receiver.
2:0 Stop Bits, Word Length Select (STB_WLS_FIELD) (see Table 49)

System reset value: 0

Table 49. UART Data Format Settings.

STB_ WLS FIELD [2:0] Data Format
STB | WLS1 | WLSO | Data Bits | Stop Bits
0 0 0 5 1
0 0 1 6 1
0 1 0 7 1
0 1 1 8 1
1 0 0 5 1.5
1 0 1 6 2
1 1 0 7 2
1 1 1 8 2
TCH305-0001-002 129 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

UART Line Status Register (UARTX_LINE_STATUS_REG)

This register is read-only.

Bit Description/Function
31:8 Reserved
7 Error Bit (ERROR_BIT):

This bit is valid only in FIFO mode. When set, it indicates that there is at
least one parity, framing or break indication in the FIFO. It is reset when
the Line Status Register is read and there are no subsequent errors in the
FIFO.

6 Transmitter Empty (TEMT_BIT):

When set, it indicates that the transmitter is idle (buffer or FIFO and trans-
mitter shift register are empty).

5 Transmit Holding Register Empty (THRE_BIT):

If set, the bit indicates that the UART is ready to accept a new character for
transmission. This bit is cleared when a new data byte is loaded into the
transmitter buffer or FIFO.

4 Break Indicator (BI_BIT):

This bit is set if the duration of break transmission is longer than one word
transmission time on all word boundaries.

3 Framing Error (FE_BIT):

This bit is set whenever the stop bit following the data/parity bit is logic 0. It
is reset by reading the Line Status Register.

2 Parity Error (PE_BIT):

This bit is set upon detection of a parity error. It is reset by reading the Line
Status Reqister.

1 Overrun Error (OE_BIT):

If set, this bit indicates that the receiver buffer or FIFO has overflowed.
The data causing the overflow is lost. The bit is reset when the Line
Status Register is read.

0 Data Ready (DR_BIT):

This bit is set when a complete incoming character is transferred into the
receiver buffer. Reading the receiver buffer clears this bit. In FIFO mode,
this bit is set whenever a character is received and transferred to the re-
ceiver FIFO. It is reset after reading all the bytes from the receiver FIFO.

System reset value: 0x60

SUBJECT TO CHANGE 130 TCH305-0001-002

WMaTriscend

UART Modem Control Register (UARTx_MODEM_CONTROL_REG)

Bit Description/Function
31:5 Reserved
4 Loopback Feature Enable (LOOP_BIT):

This bit enables a local loopback feature for diagnostic testing of the
UART. The output of the transmitter is looped back into the receiver.

1: Enable
0: Disable
3:2 Reserved
1 Request To Send (RTS_BIT):
This bit controls the RTS sideband signal level.
0 Data Terminal Ready (DTR_BIT):
This bit controls the DTR sideband signal level.

System reset value: 0
UART Modem Status Register (UARTx_MODEM_STATUS_REG)

This register is read-only.

Bit Description/Function
31:8 Reserved
7 Data Carrier Detect Flag (DCD_BIT):
This bit reflects the state of the DCD sideband signal.
6 Ring Indicator Flag (RI_BIT):
This bit reflects the state of the Rl sideband signal.
5 Data Set Ready Flag (DSR_BIT):

This bit reflects the state of the DSR sideband signal.

4 Clear To Send Flag (CTS_BIT):

This bit reflects the state of the CTS sideband signal.

3 Delta DCD Bit (DELTA_DCD_BIT):

This bit is set whenever the DCD sideband signal changes state.
2 Trailing Edge of RI Bit (TERI_BIT):

This bit is set whenever a falling edge on the Rl sideband signal is de-
tected.

1 Delta DSR Bit (DELTA_DSR_BIT):

This bit is set whenever the DSR sideband signal changes state.
0 Delta CTS Bit (DELTA_CTS_BIT):

This bit is set whenever the CTS sideband signal changes state.

Default reset value: 0x000000(xxxx0000)
UART Interrupt Identification Register (UARTxX_INT_ID_REG)

This register shares the same address as the FIFO Control Register.

Bit Description/Function
31:8 Reserved

7:6 FIFO Mode Indicator (FIFO_MODE_FIELD [1:0]):
00: FIFO mode disabled (16C450-style mode)

11: FIFO mode enabled (16C550-style mode)

5:4 Reserved

3.0 Interrupt Identification (INT_ID_FIELD [3:0]):
(see Table 50)

System reset value: 1

TCH305-0001-002 131 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

UART FIFO Control Register (UARTx_FIFO_CTRL_REG)
This register is write-only. It shares the same address as the Interrupt Identification Reg-

ister.

Bit Description/Function

31:8 Reserved

7:6 Receiver FIFO Trigger Level (F FIFO_TRIG_LEVEL_FIELDI[1:0]):
These bits define the trigger level of the receiver FIFO interrupt.
00: Trigger Level = 1
01: Trigger Level =4
10: Trigger Level =8
11: Trigger Level = 14

5:3 Reserved

2 Transmit FIFO Clear (TX_FIFO_CLR_BIT):

Writing a ‘1’ to this bit clears all bytes in the transmit FIFO. This bit is self-
clearing.

Receiver FIFO Clear (RX_FIFO_CLR_BIT):
Writing a ‘1’ to this bit clears all bytes in the receiver FIFO. This bit is self-
clearing.

FIFO Mode Enable (FIFO_MODE_ENABLE_BIT):

Writing a 1 enables both the transmitter and receiver FIFOs. Resetting this
bit clears all bytes in both FIFOs. This bit must be ‘1’ in order to write to
the other bits of the FIFO Control Register.

UART Scratchpad Register (UARTx_SCRATCHPAD_REG)
This register is used as a simple one-byte scratchpad. It is provided for compatibility pur-

poses.
Bit Description/Function
31:8 Reserved
7:0 UART Scratchpad Register (Scratchpad[7:0])

Not reset. Undefined.
UART Divisor Latch LSB Register (UARTx_DIVISOR_LSB_REG)
This register is only accessible when DLAB_BIT=1 in the UART’s Line Control Register.

Bit Description/Function

31:8 Reserved

7:0 Baud Rate Generator Divisor Least Significant Byte
(DIVISOR LSB FIELD [7:0])

Not reset. Undefined.
UART Divisor Latch MSB Register (UARTx_DIVISOR_MSB_REG)
This register is only accessible when DLAB_BIT=1 in the UART’s Line Control Register.

Bit Description/Function

31:8 Reserved

7:0 Baud Rate Generator Divisor Most Significant Byte
(DIVISOR MSB FIELD [15:8])

Not reset. Undefined.

SUBJECT TO CHANGE 132

TCH305-0001-002

WMaTriscend

Table 50. Interrupt Identification.

Interrupt ID Priority Interrupt Interrupt Reset
3/2]1]0] Level Type Interrupt Source Control
0]0]0 1 — None None —
0O(1]111]0 1 Receiver Overrun Error, Parity Read from Line

(Highest) | Line Status Error, Framing Error, or | Status Reqgister
Break Interrupt
0j|1]0]0 2 Received Receiver data available | Read from Receiver
Data Avail- or FIFO trigger level Buffer Register or the
able reached FIFO drops below the
trigger level
1111010 2 Character No characters have Read from the
Timeout been removed from or | Receiver Buffer Reg-
(FIFO mode | input to the receiver ister
only) FIFO during the last 4
character times and
there is at least 1 char-
acter in the FIFO dur-
ing this time.
0jo0|1]0 3 Transmitter Transmitter Holding Write to the
Holding Reg- | Register Empty Transmitter Holding
ister Empty Register or read from
the IR Reqister, if
this condition was the
source of the interrupt
0O|l0|O0O0]O 4 Modem Clear to Send, Data Read from the
(Lowest) | Status Set Ready, Ring Indi- Modem Status Reg-
cator, or Data Carrier ister
Detect
NOTE:

Setting the MSB and LSB of the UARTX _DIVISOR xxx REG to zero yields an

undefined result.

TCH305-0001-002

133

SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

DMA Controller

The DMA unit is composed of four independent channels. Via program settings, each
channel performs a series of transfers between an 1/O device and memory or performs
memory-to-memory transfers. A set of parameters defines the operation of a given trans-
fer including the memory source or destination addresses, the transfer count and a variety
of other transfer characteristics. These parameters are either ...

= programmed directly into the corresponding DMA channel control registers by the CPU,
or

= assembled into a series of two-word or four-word descriptors, which operate independ-
ently of the CPU.

DMA Interaction with A7S System

The DMA controller interacts with the other subsystems that comprise the A7S system, as
shown in Figure 65. The DMA interface to each subsystem has been optimized in some
manners, as described below. Each of the four channels operates independently over the
CSl bus.

ARM7TDMI
CPU

CPU Local Bus
Static
ey
Flas
DMA Controller Interface
Inteknal CPU Local
DMA | |DMA| | DMA| | DMA SRAM BBLLJJSS gidcgé
0 1 2 3 r
4 \@ A@ A@ @ @ > | SDRAM
> Interface
| CSI Bus & 5

<

\ \ \ y I/0 Device E g E g
(2] () 12 (]
Memory- Ay g |3 |8
mapped B O F | X F | &
Peripheral 0 %’
= UART O UART 1
Q0 2 DMA
§ 2 @ _g F\glor]trtol
S S egister
Selector < (Sefector)
Configurable System Logic

Figure 65. The DMA Controller communicates with functions over the CSI bus and
directly with I/O devices implemented in the CSL matrix.

External Memory Interface

There are optional transfer buffers available when the DMA communicates with external
memory. These buffers help maximize system performance. Each DMA channel has op-
tional buffers for transfers to and from SDRAM and Flash, controlled by the
DMA_BUF _EN_FIELD.

SUBJECT TO CHANGE 134 TCH305-0001-002

WMaTriscend

UARTSs

The receiver and transmitter in both UARTs can be optionally assigned to a specific DMA
channel via the UART Control Register for each UART. The RX DMA SEL_FIELD con-
trols which DMA channel communicates with the receiver, enabled by the
RX_DMA_EN_BIT. Similarly, the TX DMA SEL FIELD defines which DMA channel
communicates with the transmitter, enabled by the TX_DMA EN_BIT.

DMA requests from a UART receiver are handled as device-to-memory transfers. Con-
versely, requests from a UART transmitter are handles as memory-to-device transfers.

Internal SRAM

The DMA can transfer data between the CSI bus and internal SRAM without wait-states.
By restricting the CPU to one half of the internal SRAM and the DMA to the other half,
then both the CPU and DMA access internal SRAM without causing wait-states. This
technique is powerful for building ping-pong buffers where the DMA transfers data to or
from one half of internal SRAM while the CPU processes data stored in the other buffer.
When the DMA and CPU finish their tasks, both switch to the opposite half and continue
the task.

The SRAM_PROTECT FIELD optionally provides write-protection for 4Kbyte portions of
internal SRAM. This capability exists because the DMA can write into SRAM and the
SRAM can contain executable code.

Configurable System Logic (CSL)

The DMA communicates with both memory-mapped peripherals and input/output (I1/O) de-
vices implemented in the CSL matrix. In both cases, the DMA works in conjunction with a
Selector to access the CSL-based function. If the DMA communicates with a memory-
mapped function, then the Selector decodes the address presented on the CSl bus. If the
DMA communicates with an I/O device, then the Selector acts as a DMA Control Reqister
for the device, steering request and acknowledge signals to and from the selected DMA
channel.

A7S Control Registers Protected Against DMA Writes

The A7S control register are protected against DMA write access by default, via the
REMAP_ACC PROTECT_ REG register. This is to prevent an incorrectly specified DMA
write transaction from accidentally corrupting the control registers and potentially placing
the A7S in an unexpected state.

Restricting DMA Access

There is no hardware protection that prevents the DMA channels from accessing other re-
stricted areas of memory. If the operating system needs to restrict an application from us-
ing DMA read and write transactions to some regions in memory space, then the DMA
control registers should only be made available via supervisor-mode calls.

TCH305-0001-002 135 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

DMA Transfer Types

Each DMA channel supports three different types of transfers, as summarized in Table 51.
Table 51. DMA Transfer Types.

Typical Request Acknowledge
Transfer Type Source | Destination Source Destination
Memory-to-memory | Memory Memory CPU sets the Soft- | No acknowledge
ware Request Bit signal generated
REQSEL input to ACKSEL output
Memory-to-device Memory CSL DMA Control from DMA Control
Register Register
REQSEL input to ACKSEL output
Device-to-memory CSL Memory DMA Control from DMA Control
Register Register

Memory-to-memory transfers

Most memory-to-memory transfers begin when the CPU sets the Software Request Bit for
a specific channel. It is possible to request a memory-to-memory transfer from within the
CSL matrix using the REQSEL input on a DMA Control Register. However, no acknowl-
edge signal is generated for this type of transfer.

Unlike the Triscend E5 CSoC family, memory-to-memory transfers use only a single A7S
DMA channel.

Device transfers

The device side of a memory-to-device or device-to memory DMA transfer resides either
in a UART or in the CSL matrix.

By setting bits in the UART Control Register, a DMA channel services requests for the
UART transmitter and another channel services the receiver.

With CSL-based devices, a DMA Control Register associated with the requesting device
forwards any requests to the selected DMA channel and steers the acknowledge signal
back to the CSL logic, as shown in Figure 66. Additional control signals provide early
termination and retransmit request capabilities.

Transfer Data Widths

A DMA channel transfers three possible data widths, including word, half-word, and byte
transfers. The transfer data width is controlled by the TRANS SIZE FIELD in the channel
control register. The size of the transfer also controls the auto-increment or auto-
decrement value of the address pointers.

If the data width of the device is different than the width of the external memory subsys-
tem, and the transfer is to external memory, then the external memory interface reacts ac-
cordingly. For example, a word-wide transfer from a device to byte-wide external static
memory results in four individual write operations by the memory controller.

SUBJECT TO CHANGE 136

TCH305-0001-002

WMaTriscend

Automatic Address Generation

Each DMA channel provides automatic address generation, based on the source and des-
tination address registers. The current source and destination address pointers are auto-
matically and independently updated after each transfer.

Prior to starting a DMA request, the source address for a transfer is loaded into the
Transfer_Source Address Register. The address loaded must be correctly aligned
based on the transaction data width, as indicated in Table 52. The source address is only
appropriate for transfers that originate from memory, i.e., memory-to-memory or memory-
to-device transfers, as shown in Table 53.

The destination address for a transfer is loaded into the Transfer Destination Address
Reqgister. Again, the address loaded must be correctly aligned on the transfer size, as in-
dicated in Table 52. The destination address is only appropriate for transfers that con-
clude in memory, i.e., memory-to-memory or device-to-memory transfers, as shown in
Table 53.

Table 52. Address Alignment and Auto Increment/Decrement Value
by Transfer Size.

Source/Destination | Auto Increment/
Transfer Width | Address Alignment | Decrement Value
Word Word +4
(32 bits) (A[1:0]=00 -
Half-Word Half-Word +9
(16 bits) (A[0]=0) B
Byte
@)t;its) Byte 1
Table 53. Source and Destination Address Requirements by Transfer Type.
Transfer Type Source Address Destination Address
Memory-to-Memory v v
Memory-to-Device v
Device-to-Memory v

When a DMA channel is initialized, the contents of the source register is copied to the
Current Source Address Register and the destination register copied to the Current
Destination Address Register.

After each valid transfer, the DMA channel updates the current source and destination
registers, as appropriate. The DMA controller provides auto increment and decrement
capabilities. Based on the settings in the SRC_ADDR_MODE_FIELD, the current source
address is either ...

= incremented,
= decremented, or
= remains constant

... after the end of each DMA transaction. Similarly, the current destination address is
modified according to the DEST_ADDR_MODE_FIELD.

The amount that an address pointer is incremented or decremented also depends on the
DMA transaction data width, indicated in the TRANS SIZE FIELD. For example, a word-

TCH305-0001-002 137 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

wide transfer increments or decrements an address register by 4, pointing to the next
word location. See Table 52.

Controlling Device-Side DMA Transfers

I/O devices, implemented in CSL logic, attach to a particular DMA channel via a DMA
Control Register, as shown in Figure 66. A DMA Control Register is actually an alternate
function provided by each CSI bus address Selector and these are distributed throughout
the CSL matrix.

ARM7TDMI

e 1Y

i Configurable :

! System Logic | § |Reauest T HyA
; Device : > ¢~ cknowledge| Channel 3
. T~ Request DVIA
: Es Acknowledge| Channel 2
o 28 [rewes o —om
: g 32 ¢/\cknowledge| Channel 1
ACKSEL <€ < |_Request ™ pma
DMACTL . ¢/\cknowledge| Channel 0

Figure 66. DMA Control Registers steer control signals between a CSL-based de-
vice and a specified DMA channel.

In most applications, application software executing on the CPU assigns a DMA Control
Register to a specific DMA channel. Each DMA Control Register is individually ad-
dressed, located in memory. The address for a DMA Control Register is programmable,
just like any Selector address. Typically, only the symbolic address name is specified for
a DMA Control Register. The actual address assignment is usually left to the Triscend
FastChip development system.

A DMA control register is enabled for DMA access by setting the associated enable bit.
Until enabled, all DMA requests from a DMA Control Register are ignored. When en-
abled, the DMA Control Register forwards any requests on the REQSEL input to the as-
signed DMA channel and steers any acknowledge signals from the DMA back to the
ACKSEL output. Similarly, the DMACTL and DMASTAT signals are also steered to the
assigned DMA channel.

Most transfers to or from a device begin when a device requests a transfer by asserting
the REQSEL input on its associated DMA Control Register. The DMA channel indicates
that it is ready to send or receive data by asserting the ACKSEL output on the associated
DMA Control Register.

In standard use, only one DMA Control Register is enabled per channel, per transfer di-
rection at any time. Other DMA Control Registers can share a DMA channel, but must
only be enabled via software after first disabling the active control register.

DMA Control Register Connections

Table 54 shows the inputs to a DMA Control Registers from the CSL matrix. By appropri-
ately driving the inputs, a CSL-based device can request a new DMA transfer using the
REQSEL input or terminate a currently-active transfer using the DMASTAT input.

The DMASTAT input has no meaning for memory-to-memory transfers.

SUBJECT TO CHANGE 138 TCH305-0001-002

WMaTriscend

REQSEL DMASTAT Action
0 0 No Request
1 0 Request
0 1 Retransmit
1 1 Last request

Table 54. Device-Side DMA Request and Status Signals.

Shaded entries do not apply for memory-to-memory transfers.

Similarly, Table 55 shows the outputs from a DMA Control Register to the CSL matrix. A
CSL-based device uses these outputs to control the data phase of a DMA transfer. When
the DMA Control Register asserts the ACKSEL output, the CSL device either accepts or
presents data, depending on the direction of the DMA transfer. The DMACTL signal ac-
knowledges any early termination request.

The DMACTL input has no function for memory-to-memory transfers.
Table 55. Device-Side DMA Control and Acknowledge Signals.

ACKSEL | DMACTL Action
0 0 No Acknowledge
1 0 Acknowledge
0 1 Retransmit Acknowledge
1 1 Last Acknowledge

Shaded entries do not apply for memory-to-memory transfers.
E5 Backward Compatibility Mode

To maintain backward compatibility with Triscend E5 family designs, a bit (AUX_DIS _BIT)
in each DMA channel selectively enables or disables the DMASTAT and DMACTL control
signals for all associated DMA Control Registers.

Distributed DMA Control Register

Bit Description/Function
7:4 Duplicate bits 3:0
3 Reserved

2:1 DMA Channel Select:

Steers control signals between a CSL-based device and the selected DMA
controller. The DMA Channel Select bits must be written to all nibbles.
When read, all nibbles must be OR-ed together.

00: Channel 0

01: Channel 1

10: Channel 2

11: Channel 3

0 Enable:

Allows a CSL-based device to access DMA services via the selected DMA
channel. The Enable control bit must be written to all nibbles. When read,
all nibbles must be OR-ed together to determine the actual value.

0: Disable DMA services for this device.
1: Enable DMA services for this device.
Configuration reset value: 0 (Disabled)

The register mnemonic for a distributed DMA Control Register is user defined as a
symbolic address. FastChip’s Generate utility allocates a DMA Control Register on a
word boundary. The control register can be accessed as a word, half-word, or byte but be
sure to duplicate all nibbles during writes and OR together all bits of a nibble during reads.

TCH305-0001-002 139 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

The distributed DMA Control registers only connect to one of the eight nibbles on
the CH data bus. Consequently, application code must write duplicate copies of
the high and low nibble. When reading, only one of the eight nibbles will contain
valid data. All nibbles should be OR-ed together to determine the actual settings.
For example, to enable a DMA Control Register to access DMA channel 2 using a
word-wide write, write the value 0x55555555 to the DMA Control Register ad-
dress.

NOTE:

Device-to-Memory Handshake

Figure 67 shows an example of a device-to-memory transfer, originating in the CSL ma-
trix. A logic function in the CSL indicates that it is ready to provide data by asserting the
REQSEL input on its associated DMA Control Register. Bits within the DMA Control Reg-
ister dictate whether the request is forwarded to the DMA controller and to which specific
channel. Upon receiving a request, the assigned DMA channel indicates that it is ready to
receive the data by asserting its acknowledge signal. The acknowledge signal is for-
warded to the DMA Control Register, which asserts its ACKSEL output.

In most applications, the ACKSEL signal enables data on the CSI Data Read bus. Upon
receiving the data, the DMA stores the data in memory at the current location defined in
the DMA channel transfer parameters.

DMA Control Register

Request \ Acknowledge
CSI Bus
Read Data
DATA
Requesting Data o
Source
»| ENABLE

Figure 67. Device-to-memory transfer.

An example device-to-memory transfer appears in Figure 68. The example waveform as-
sumes minimum latency. Prior to the request, one of the DMA channels is configured for
a device-to-memory operation and the proper values loaded into its configuration regis-
ters.

SUBJECT TO CHANGE 140 TCH305-0001-002

WMaTriscend

® The CSL-based device requests to transfer data to memory, by asserting REQSEL be-
fore the next rising edge of Bus Clock.

@ The selected and enabled DMA channel asserts ACKSEL and expects the device to
present its data on the CSI Data Read port. Data must be set-up and valid before the
next rising clock edge. For any given REQSEL, the corresponding ACKSEL is always
one bus clock-cycle in duration. There are no wait-states allowed on a device-side
data transfer.

® The DMA channel writes the data to the memory location specified in the DMA chan-
nel’'s configuration registers.

Bus Clock J | | | | | | | |
REQSEL m

CSl Data Read :X : . : : : : .
CSl Data Write :X :X X :X :X :X :X DATA:)
CSl Address :X X X X X X X ADDR.)
ACKSEL /@_\ @

Minimum REQSEL to ACKSEL latency is 4 clock cycles

)

—— N < /
<
- -
<
O
>
_|
>
<
—<

Figure 68. Example device-to-memory DMA transfer, assuming minimum latency.

TCH305-0001-002 141 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Memory-to-Device Handshake

Figure 69 shows an example of a memory-to-device transfer, ending in a CSL-based de-
vice. A logic function in the CSL indicates that it is ready to receive data by asserting the
REQSEL input on its associated DMA Control Register. Bits within the DMA Control Reg-
ister dictate whether the request is forwarded to the DMA controller and to which specific
channel. Upon receiving a request, the assigned DMA channel grabs data from memory
at the location defined by the DMA channel’s current transfer parameters. The DMA then
presents valid data on the CSI Data Write port and indicates that data is ready by assert-
ing its acknowledge signal. The acknowledge signal is steered back to the appropriate
DMA Control Register and appears on its ACKSEL output.

In most applications, the ACKSEL signal drives an enable signal on a register that is to
capture the data. The clock to the register is the Bus Clock, which is also available on the
CSI bus socket interface. After capturing the DMA transfer, the data is available to other
CSL logic on the ‘Q’ output of the data register.

DMA Control Register

Request \ Acknowledge
CSI Bus
Write Data
DATA D Q p=—
—»ENABLE
—>

| BUSCLK >

Figure 69. Memory-to-device transfer.

Requesting Data Destination

An example memory-to-device transfer appears in Figure 68. The example waveform as-
sumes minimum latency. Prior to the request, one of the DMA channels is configured for
a memory-to-device operation and the proper values loaded into its configuration regis-
ters.

Likewise, a DMA control register—part of a CSL logic function—is enabled and the
channel select bits are set to steer signals to the proper DMA channel.

SUBJECT TO CHANGE 142 TCH305-0001-002

WMaTriscend

® The CSL-based device requests data from memory by asserting REQSEL before the
next rising edge of Bus Clock.

@ The selected and enabled DMA channel reads the requested data from the memory
location specified in the DMA channel configuration registers.

® The DMA presents data on the CSI Data Write bus and asserts ACKSEL. For any
given REQSEL, the corresponding ACKSEL is always one bus clock-cycle in duration.
There are no wait-states allowed on a device-side data transfer. The receiving CSL-
based device must accept the data on or before the next rising edge of Bus Clock.

. 0 1 2 3 4 5 6 7
Bus Clock J | | | | | | | |

REQSEL m_\
Csl DataReade X X X X DATAIX X X
A

)
CSI Data Write :X X X X X X X DATA;)

Csl Address :X X \ Y ADDR Y ! X)
ACKSEL ® /@ \

Minimum REQSEL to ACKSEL latency is 7 clock cycles >I

Figure 70. Example memory-to-device DMA transfer, assuming minimum latency.

DMA Requests

A DMA transfer begins with a request either by the CPU or from a device implemented in
the CSL matrix. The DMA controller treats both types of requests equally.

CPU Requests via Software Request Bit

The CPU requests DMA services by setting the Software Request bit (SFT_REQ _BIT) for
a specific DMA channel. This bit is self-clearing.

The CPU generally begins memory-to-memory transfers in this manner, though transfers
to and from a device and memory are also supported.

Device-Side Requests

Devices implemented in CSL logic request a DMA transfer by asserting the REQSEL input
on an enabled DMA Control Register. The request is forwarded to the appropriate DMA
channel.

A valid request is recognized under the following conditions.

= The REQSEL input to the DMA Controller Register is a logical High at the rising-edge of
Bus Clock.

= The DMA Control Register is enabled and associated with one of the four DMA chan-
nels.

= The DMA channel is enabled and initialized.

A separate request is recognized on every clock edge where REQSEL is asserted, as
shown in Figure 71.

TCH305-0001-002 143 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Bus Clock J | | | | | | | |
REQSEL r\ / __

+ troh

Single Request Four-Request Burst

Figure 71. Example DMA Requests.
Single versus Block Requests

In most cases, a single request results in a single data transfer by the DMA channel.
However, if the DMA channel is in block request mode, then each request causes the
DMA to transfer a block of data, the size of which is specified in the Transfer Count Reg-
ister.

The device requesting a DMA transfer must be ready to send or receive data in a single
Bus Clock cycle, in response to an ACKSEL acknowledge signal. There are no wait-
states allowed for device-side transfers. Only memory-mapped CSL functions may have
wait-states.

Pending Request Counter

Once appropriately configured, a DMA channel receives all valid requests but does not
guarantee immediate service. Any un-serviced requests—for which the DMA channel has
not yet transferred data—are tracked in the DMA channel’'s 10-bit Pending Request
Counter. The counter accumulates requests only if the corresponding DMA channel is
enabled. Software can read the value of the counter at any time. The pending requests
counter is cleared by setting the DMA clear bit or by enabling the DMA channel.

Up to 1,023 un-service requests can be accumulated. If a DMA channel accumulates too
many un-serviced requests, the channel can generate an interrupt, if so enabled.

The counter only tracks the number of requests signaled. If Block Request is enabled,
then each block transfer counts as one request.

If the auxiliary handshake signals are enabled, then a device can terminate the DMA
transaction early by signaling a “last” request. The position of that last request is stored,
so that the transaction can be terminated early, after service any requests that occurred
prior to the last request. The DMA controller maintains a separate “last” counter internally
as well as the pending request counter.

The "last” request functionality is not available if Block Request is enabled.

SUBJECT TO CHANGE 144 TCH305-0001-002

WMaTriscend

DMA Acknowledge Cycles

Once a CSL-based device requests a DMA transfer, control over the transaction shifts to
the DMA channel. The DMA channel requests the CSI bus. Once granted the bus by the
CSI bus arbiter, the DMA channel asserts its acknowledge signal High during each bus
cycle in which the DMA expects to send or receive data. On the device side, the ACKSEL
output on a DMA Control Register steers this acknowledge signal back to the requesting
CSL-based device.

NOTE:

The ACKSEL signal is only generated for device-to-memory or memory-to-device
transfers. No acknowledge signal is generated for memory-to-memory transfers.

When ACKSEL is asserted High, the CSL-base device must respond appropriately. Dur-
ing a device-to-memory transfer, the CSL-based device presents data on the Data Read
port, controlled by ACKSEL. During a memory-to-device transfer, the CSL-based device
accepts data from the Data Write port, again controlled by ACKSEL. When accepting
data, the ACKSEL signal typically connects to the enable inputs of flip-flops that capture
the write data from the CSI bus socket.

A valid acknowledge occurs under the following conditions.

= A device issued a valid request.
= The DMA channel is enabled and initialized.

= The DMA Control Register is enabled and associated with one of the four DMA chan-
nels.

= The ACKSEL output from the DMA Controller Register is a logical High at the rising-
edge of Bus Clock.

A separate data acknowledge occurs on every clock edge where ACKSEL is asserted, as
shown in Figure 72.

Bus Clock J | | | | | | | |
ACKSEL | [\ / \ i
CSl Data :X DATA X X XDATA oX DATA 1X DATA 2X DATA 3X)

} L
Y
Single Acknowledge Four-Acknowledge Burst

Figure 72. Example DMA acknowledges cycles.

There may not be a direct correlation between the number of DMA requests to a channel
and the DMA acknowledge responses from a channel. This is because a singe request
might ask for a block transfer whereas an acknowledge signal occurs for every individual
data transfer.

Also, there is no correlation between the relative timing of requests and the corresponding
acknowledge signals. A group of single-data requests, spaced every five clock cycles
might result in a group of acknowledge signals in five consecutive clock cycles. The only
correlation is that the data first requested is also the data first transferred and first ac-
knowledged.

TCH305-0001-002 145 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

The DMA may acknowledge a series of transfers on a consecutive clock cycles, up to the
number of pending requests tracked in the Pending Reqguest Counter.

The device requesting a DMA transfer must be ready to send or receive data in a single
Bus Clock cycle, in response to an ACKSEL acknowledge signal. There are no wait-
states allowed for device-side transfers. Only memory-mapped CSL functions may have
wait-states.

REQSEL to ACKSEL Latency

The minimum REQSEL to ACKSEL latency is between four to seven CSI bus clock cy-
cles, as shown in Table 56. It is difficult to specify absolute latency numbers because the
latency depends on a variety of factors. The CSI bus supports multiple bus masters, con-
trolled by a round-robin bus arbitration scheme. There can be just one or up to ten bus
masters active on the CSI bus, depending on the application. Furthermore, other CSL
functions that connect to the CSI bus may be in the middle of a transaction and may re-
quire wait-states.

Table 56. Minimum REQSEL to ACKSEL Latency.

DMA Transfer Direction | Latency Units
Memory-to-Device 7 CSl bus
Device-to-Memory 4 clock cycles

Terminating a Transfer

A DMA transfer terminates by one of four possible means, as described below.
1. Normal Termination

2. Early Termination via a “Last” Request

3. Retransmit Termination Request

4. Early Termination by Software

Normal termination is the most common and works best for data transfers with a known
size. However, the A7S provides enhanced capabilities for transferring blocks with an un-
known size using auxiliary control signals available on each DMA Control Register.

Normal Termination

A DMA transfer terminates normally when a DMA channel’s Transfer Counter reaches
zero.

Early Termination via a “Last” Request

In many applications, the size of a DMA data transfer may not be known in advance. Data
packets or frames may be of varying length. With the A7, CSL-based devices can termi-
nate the current DMA transfer before reaching the maximum terminal count.

This early termination capability is not available for block transfers, i.e., if the
BLOCK EN BIT is enabled. Likewise, this capability is not available for memory-to-
memory transfers.

When transferring data of unknown length, allocate a buffer in memory, large enough to
accommodate the largest expected data transfer—e.g., a complete frame. A frame might
consist of a single data transfer or enough data to completely fill the buffer. The request-
ing device controls the amount of data transferred by notifying the DMA channel when the
transfer ends.

SUBJECT TO CHANGE 146 TCH305-0001-002

WMaTriscend

To notify the DMA channel of the last transfer request, the CSL-based device simultane-
ously asserts both REQSEL and the DMASTAT signal. This action terminates the current
transfer and the DMA controller tags the transfer as completed. In descriptor mode, the
transfer count and status are updated in the corresponding descriptor by the DMA, and
the DMA controller continues on to the next indicated action.

Figure 73 shows an idealized device-to-memory transfer with early termination, when the
CSL-based device issues a “Last” request.

® The CSL-based device starts requesting that the DMA channel transfer data to mem-
ory by asserting the REQSEL input on the associated DMA Control Register. The re-
quests do not need to occur on consecutive clock cycles.

@ To notify the DMA controller that the third request is also the “Last” request, the device
asserts the DMASTAT input along with the REQSEL input on the DMA Control Regis-
ter.

® After being granted the CSI bus, the enabled and initialized DMA channel acknowl-
edges the data transfer by asserting ACKSEL on the DMA Control Register. The ac-
knowledge signals may or may not occur on consecutive clock cycles. The CSL-
based device uses the ACKSEL to enable the requested data onto the CSI Data Read
port of the CSI bus socket.

@ The DMA notifies the CSL-based device of the “Last” acknowledge by asserting both
the ACKSEL and DMACTL outputs on the DMA Control Register. Again, the CSL-
based device provides data onto the CSI Data Read port of the CSI bus socket.

® The DMA channel stores the requested data away in memory. In this example, the
data is stored at incrementing addresses, controlled by the DMA channel’s configura-
tion registers. The transfers to memory may or may not occur on consecutive clock
cycles.

Bus Clock | |

|
REQSEL | j @
DMASTAT /@
X
X
X

CSI Data Read _:X X

-

Csl DataWrite:;X . X :X :X :X n-2 X n-1 X Last)
csl Address___X X X X X) ADDR X ADDR+1)ADDR+2)
ACKSEL / @ @

DMACTL

\
\
A X2 Nt fst f K K)
\
\

\
\

9

—

Last

Acknowledge

Request ==
Request =

Last Request ejp-
Acknowledge ==
Acknowledge ==
Transfer to
Memory —>
Transfer to
Memory —>
Transfer to
Memory —>

Figure 73. An idealized device-to-memory transfer showing early termination via a
“Last” request.

TCH305-0001-002 147 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Retransmit Termination Request

A CSL-based device can notify the DMA channel that it wishes to receive the data again,
usually because of a data transmission error. To request retransmission, the device assert
the DMASTAT input on a DMA Control Register, without asserting the REQSEL input. In
response to such a request, the selected DMA channel re-executes the current transfer.
There is no need for software interaction to restart the transfer. Before requesting re-
transmission, the device must wait for the DMA unit to acknowledge all pending re-
quests. Additionally, the device must wait for the DMA unit to acknowledge the re-
transmission before issuing any new requests.

In Descriptor mode, the DMA channel restarts the existing description table entry. The
DMA channel does not re-fetch the current descriptor table entry.

The DMA channel always services any pending requests accumulated in the Pending Re-
quest Counter before proceeding with the retransmit request. The DMA channel ac-
knowledges the request by asserting the DMACTL output, without asserting the ACKSEL
output. Upon receiving the DMACTL signal, the device can safely issue new requests.

This retransmission capability is not available for memory-to-memory transfers.

The DMA channel generates an interrupt if a device requests retransmission during a
linked transfer, in the period between consecutive descriptor entries.

A device must not issue a retransmission request after receiving a Last Acknowledge
(ACKSEL=High, DMACTL=High) nor after the device issues a Last Request
(REQSEL=High, DMASTAT=High).

Figure 74 shows an idealized device-to-memory transfer with a retransmit termination re-
quest.

® The CSL-based device starts requesting that the DMA channel transfer data to mem-
ory by asserting the REQSEL input on the DMA Control Register associated with the
device.

@ After being granted the CSI bus, the enabled and initialized DMA channel acknowl-
edges the data transfer by asserting ACKSEL on the DMA Control Register. The ac-
knowledge signals may or may not occur on consecutive clock cycles. The CSL-
based device uses the ACKSEL to enable the requested data onto the CSI Data Read
port.

® The CSL-based device must wait until after all pending requests have been acknowl-
edged before requesting retransmission of the current transfer. The device issues a
retransmit termination request to the DMA channel by asserting DMASTAT High but
holding REQSEL Low.

The DMA channel stores the previously requested data away in memory.

© @

The DMA acknowledges the retransmission request by asserting the DMACTL output
on the DMA Control Register. The ACKSEL output is Low.

® After the retransmit request is acknowledged (Step ®), the device is allowed to issue a
new request.

SUBJECT TO CHANGE 148 TCH305-0001-002

WMaTriscend

Bus Clock

rese_ [\ 'mon!
CSI Data Read :X : X : X : X
CSI Data Write :X : X : X : X
CSI Address ::X X X X

ACKSEL

DMACTL / @

——
o
>
_'
>
- \I
—
—
—
—

=<

-

[l
]

= o = =) o> =0 ==
8 o EQD ED =5 ED 58
> o (k=] 0o o 0o 2>
o 2 cT c2 w5 c2 o
g = sg gz 928 sz g
o o s 50 G 50 x

c] Cc o [Ny

x @ Xx ~ xx

(8] (8] (8]

< < <

Figure 74. Idealized device-to-memory transfer showing a retransmit request.

Early Termination by Software

The CPU terminates an active DMA transfer by clearing the DMA channel's
DMA_ENABLE BIT. This method should be used only as a last resort.

Direct Mode

In direct mode, the CPU or other master writes to a DMA channel’s control registers to
configure the transfer parameters and mode of operation. This method requires that the
CPU update these registers on any subsequent transfers. The address and transfer count
are doubled-buffered inside each DMA channel. Once a transfer starts, the CPU can
setup the next transfer, offering linked-list transfers while operating in direct mode.

Initializing a direct-mode DMA transfer entails programming the control registers for a par-
ticular DMA channel.

Prepare DMA Channel

1. Clear the DMA channel setting the CLEAR BIT. Allow enough bus cycles for the
longest possible memory access to complete.

Release the CLEAR BIT.
The METHOD BIT must be 0 for direct mode transfers.

If not using the auxiliary DMA signals to signal early termination requests or retrans-
mission requests, set the AUX_DIS BIT.

5. If, after completing this transfer, the DMA channel should repeat this same transfer
again, using the same transfer parameters, set the CONT_BIT for continuous initializa-
tion. If a single transfer or if the DMA channel will be loaded with different parameters
after completing the current transfer, clear the CONT_BIT.

TCH305-0001-002 149 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

Define the Transfer Width, Size, and Direction
6. Define the width of the data transferred by the DMA using the TRANS_SIZE FIELD.
7. Define the type of DMA transfer using the TRANS DIR_FIELD.

8. Load the DMAx_TRANS CNT_ REG with the number of bytes to transfer, minus one.
For example, if transferring 64 pieces of data, load the transfer count register with 63.

9. If each incoming request asks for a block transfer, set the BLOCK EN BIT. The
DMAx TRANS CNT REG defines the size of the block transfer. Otherwise, if each
request asks for a single transfer, clear the BLOCK EN_BIT.

Define the Source Address and Automatic Addressing Options
10. If performing device-to-memory transfers (TRANS DIR_FIELD=10’b), skip to Step 13.

11.If performing memory-to-memory or memory-to-device transfers, load the
DMAx_SRC_ADDR_REG with the starting memory address where the data is located.

12. Define in automatic addressing options for the source address using the
SRC_ADDR_MODE _FIELD. After every transfer, the DMA channel modifies the
DMAx_CUR _SRC_ADDR_REG according to the defined addressing option.

Define the Destination Address and Automatic Addressing Options
13. If performing memory-to-device transfers (TRANS DIR_FIELD=00’b), skip to Step 16.

14.If performing memory-to-memory or device-to-memory ftransfers, load the
DMAx DST_ADDR_REG with the starting memory address where the data will be
stored.

15. Define in automatic addressing options for the source address using the
DEST ADDR_MODE_FIELD. After every transfer, the DMA channel modifies the
DMAx CUR DEST ADDR_REG according to the defined addressing option.

Define DMA Interrupt Conditions

16. Clear the current DMA interrupt register value by writing OxF to the
DMAx_INT CLEAR REG.

17. Enable the desired DMA interrupt conditions in the DMAx_INT_ENABLE REG. Once
a selected interrupt condition occurs, the corresponding bit location is set in the
DMAXx_INT_REG and the DMA channel generates an IRQ interrupt.

18. Enable the specific IRQ request associated with the DMA channel via the
INT_IRQ _ENABLE_REG. The interrupt register bit locations are shown in Table 46.

Start the DMA Transfer

19. Enable the DMA channel to receive requests by setting the DMA_ENABLE BIT. Set-
ting this bit also clears the DMAx_PEND REQ REG. Any incoming requests are now
recognized but they will not be serviced until the DMA channel is initialized. The in-
coming requests are accumulated in the DMAx_PEND_REQ REG.

20. Initialize the DMA channel by setting the DMA_INIT_BIT. Setting this bit loads the
various starting operating values into the appropriate control registers. Once the trans-
fer has started, the DMA_INIT BIT is automatically cleared by hardware. After com-
pleting the transfer, the DMA channel waits for a new initialization command. If none
are present, the DMA stops, otherwise it continues with the next transfer. While the
DMA is busy with a transfer, the CPU can set up the next transfer and set the
DMA_INIT_BIT, after the CPU checks that the current transfer has actually started. If

SUBJECT TO CHANGE 150 TCH305-0001-002

WMaTriscend

the DMA_INIT_BIT is zero or its corresponding interrupt is set, then it is safe to update
the parameters.

Descriptor Mode

Descriptor mode allows a DMA channel to perform complex linked transfers without much
CPU interaction. Setting the METHOD_BIT in a DMA channel’s control register activates
descriptor mode. Linked transfers are a series of single transfers where the DMA control-
ler automatically deduces the parameters for the next transfer from the values in the de-
scriptor table. This method frees the CPU from the tedious task of constantly monitoring
and managing the DMA transfers.

Figure 75 shows an example linked transfer using descriptor mode. A Descriptor Table is
created somewhere in memory and a DMA channel is configured to perform descriptor
mode transfers. The METHOD BIT is set and the channel’s other static parameters are
defined. The DMA channel is enabled and initialized. A descriptor table entry is loaded
when either ...

= the CPU sets the DMA_INIT_BIT and the DMA channel is in descriptor mode, or
= the previous entry in the descriptor table has completed.

® When the DMA channel is initialized, the DMA controller begins fetching a command at
the beginning of the Descriptor Table, located at the Descriptor Table Base Address.

@ The DMA controller reads the command parameters and programs the DMA channel’s
configuration registers. The controller loads the source and destination addresses, as
required by the transaction, and the transfer count.

® After the transfer completes, the DMA controller examines the Buffer Status and the
Action When Transfer Complete bits in the table entry to determine the next course of
action. Assuming that the next action to continue, the DMA fetches the next entry
from the Descriptor Table and performs the next transfer.

® Descriptor Table Base Address Used only for memory-
/— (Dma0ScrAddr) to-memory transfers
Descriptor Table Current Address \A Transfer Source Address
(DmaOCurDescAddr) (DmaOSrcAddr)
Transfer (Destination) Address
® (DmaODesAddr)
® Transfer Count
® (DmaOTransCnt)
\» Transfer Address #1 Transfer Count #1 C-er?tr}gfleél %?gr{’:ﬁexrt) 3
Transfer Address #2 Transfer Count #2 C-I(—)rr?tr:g];eﬁgz Nﬁ%gﬁaﬁt
Transfer Address #3 Transfer Count #3 C-I(—)rﬁtr}gfleﬁgs l}ll_%vr{lglfee);t)
. 2
°
- 2
@ Transfer Address #n Transfer Count #n C-gr?tr;gll(e#[n Restart

Descriptor Table Somewhere in Memory

Figure 75. A descriptor mode DMA transfer using DMA Channel O.

TCH305-0001-002 151 SUBJECT TO CHANGE

Triscend A7S Configurable System-on-Chip Platform

@ The process continues until a descriptor entry commands the DMA channel to halt or
to restart the linked transfer chain again.

The descriptor table resides anywhere in the system memory map, including memory-
mapped functions in the CSL matrix. Two or more DMA channels can share Descriptor
Table values by setting the Descriptor Table Base Address to the same value in multi-
ple DMA channels.

Descriptor Table Format

NOTE: . . .
/ Not all DMA controls are accessible through a descriptor table entry. Some static

settings, such as the DMA channel’s Transfer Direction, must be set when the
DMA isfirst initialized.

The Transfer Descriptor Table, located at the address defined in the
DMAx DES TABLE ADDR_REG register has n entries. Each entry has two or four com-
mand words depending on the type of transfer. In Table 57 and Table 58, n refers to the
“n™ entry in the Descriptor Table.

If calculating offsets from the current descriptor table address, set n=0.

Table 57 Transfer Descriptor Table Format for Memory-to-Device or
Device-to-Memory Transfers

Address

Base Offset Field

DMAx DES TABLE ADDR REG +(n ¢8)+0 | Transfer Start Address
+(n e 8) +4 | Transfer Control/Status

Table 58 Transfer Descriptor Table Format for Memory-to-Memory Transfers
Address
Base Offset Field
+(n e 16) + 0 | Transfer Source Address
+(n e 16) +4 | Reserved
+(n ¢ 16) + 8 | Transfer D