FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- Active termination drives bus pins to rails when switches are off
- Zero propagation delay, zero added ground bounce
- Undershoot clamp diodes on all switch and control inputs
- Bus exchange allows nibble swap
- TTL-compatible input and output levels
- Bus-hold eliminates floating bus lines and reduces static power consumption
- Available in QSOP package

DESCRIPTION:

The QS3388 provides ten high-speed CMOS TTL-compatible bus switches with active terminators on the bus switch I/O pins. The low ON resistance (5Ω) of the 3388 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. When the switches are turned off, a low drive active terminator circuit drives the disconnected pins to Vcc or ground, away from the TTL threshold. This prevents undriven buses from floating. The Bus Enable $(\overline{\mathrm{BE}})$ signal turns the switches on. The Bus Exchange (BX) signal provides nibble swap of the $A B$ and $C D$ pairs of signals. This exchange configuration allows byte swapping of buses in systems. It can also be used as a five-wide 2-to-1 multiplexer and to create low delay barrel shifters, etc.

The QS3388 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

APPLICATIONS:

- Resource sharing
- Crossbar switching
- Last value latch (graphics and DSP)

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIn	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
lout	DC Output Current	120	mA
Pmax	Maximum Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	0.5	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc .

CAPACITANCE $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{N}}=\mathrm{OV}, \mathrm{V}\right.$ out $\left.=\mathrm{OV}\right)$

Pins	Typ.	Max. ${ }^{(1)}$	Unit
Control Inputs	3	5	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	Description
$A_{0}-A_{4}, B_{0}-B_{4}$	$1 / 0$	A and B Buses
$C_{0}-C_{4}, D 0-D_{4}$	$1 / 0$	C and D Buses
$\bar{B} \bar{E}$	I	Bus Switch Enable
$B X$	I	Bus Exchange

FUNCTIONTABLE ${ }^{(1)}$

$\bar{B} \bar{E}$	$B X$	$\mathrm{~A}_{0}-\mathrm{A}_{4}$	$\mathrm{~B} 0-\mathrm{B}_{4}$	Function
H	X	$\mathrm{Hi}-\mathrm{Z}$	$\mathrm{Hi}-\mathrm{Z}$	Disconnect
L	L	$\mathrm{C} 0-\mathrm{C}_{4}$	$\mathrm{D} 0-\mathrm{D}_{4}$	Connect
L	H	$\mathrm{D} 0-\mathrm{D}_{4}$	$\mathrm{C} 0-\mathrm{C}_{4}$	Exchange

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z $=$ High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
IIN	Input Leakage Current(Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	. 01	± 1	$\mu \mathrm{A}$
Ron	Switch ON Resistance	$\mathrm{Vcc}=$ Min., $\mathrm{VIN}=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$	-	6	8	Ω
		$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{VIN}=2.4 \mathrm{~V}$, $\mathrm{IoN}=15 \mathrm{~mA}$	-	12	17	
IBH	Input Current ${ }^{(2)}$	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vin}=0 \mathrm{~V}$ or Vcc	-	-	± 20	$\mu \mathrm{A}$
	Switch Pins	$\mathrm{Vcc}=$ Max., $0.8 \mathrm{~V}<\mathrm{VIN}<2 \mathrm{~V}$	-	-	± 500	
IBHH	Bus Hold Sustaining Source Current - HIGH ${ }^{(3)}$	$\mathrm{Vcc}=\mathrm{Min} ., \mathrm{V}$ IN $=2 \mathrm{~V}$	-60	-	-	$\mu \mathrm{A}$
IBHL	Bus Hold Sustaining Sink Current - LOW ${ }^{(4)}$	$\mathrm{VCC}=\mathrm{Min} ., \mathrm{VIN}=0.8 \mathrm{~V}$	+60	-	-	

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Input current specified under two conditions:
a) Input voltage at GND or Vcc. This indicates the input current under steady-state condition.
b) Input voltage between 0.8 V and 2 V (TTL input threshold range). This indicates the maximum input current during transient condition. The driver connected to the input must overcome this current requirement in order to switch the logic state of the bus-hold circuit.
3. Івнн represents the latching capability of the bus-hold circuit in logic HIGH state.
4. IBHL represents the latching capability of the bus-hold circuit in logic LOW state.

TYPICAL ON RESISTANCE vs Vin AT Vcc $=5 \mathrm{~V}$

VIN
(Volts)

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$	Max.	Unit
ICCQ	Quiescent Power Supply Current	Vcc $=$ Max., VIN $=$ GND or Vcc, $\mathrm{f}=0$	1.5	mA
$\triangle \mathrm{lcC}$	Power Supply Current per Input HIGH ${ }^{(2)}$	Vcc = Max., VIN $=3.4 \mathrm{~V}, \mathrm{f}=0$	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(3)}$	Vcc = Max., A - D Pins Open, Control Inputs Toggling @ 50\% Duty Cycle	0.25	$\mathrm{mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TTL -driven input ($\mathrm{V} \mathbb{N}=3.4 \mathrm{~V}$, control inputs only). $\mathrm{A}-\mathrm{D}$ pins do not contribute to $\Delta \mathrm{lcc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A-D inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%$
CLOAD $=50 \mathrm{pF}$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
tPLH tPHL	DataPropagationDelay (2) AxBx to CxDx, CxDx to AxBx	-	-	$0.25^{(3)}$	ns
tPZL tPZH	Switch Turn-OnDelay BE to Ax, Bx, Cx, Dx	1.5	-	6.5	ns
tPLZ	Switch Turn-OffDelay ${ }^{(2)}$	1.5	-	5.5	ns
tPHZ	$\overline{B E}$ to Ax, Bx, CX, Dx				
tBX	Switch Multiplex Delay BX to AX, Bx, CX, Dx	1.5	-	6.5	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns at $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ACTIVE TERMINATOR OR ‘BUS-HOLD’ CIRCUIT

The Active Terminator circuit, also known as the Bus-hold circuit, is configured as a "weak latch" with positive feedback. When connected to a TTL or CMOS input port, the Bus-hold circuit holds the last logic state at the input when the input is "disconnected" from the driver. When the output of a device connected to such an input attempts a logic level transition, it will over-drive the Bus-hold circuit. The primary benefit of this circuit is that it prevents CMOS inputs from floating, a situation which should be avoided to prevent spurious switching of inputs and unnecessary power dissipation. Bus-hold is a better solution than the traditional approach of using resistive termination to Vcc or GND to prevent bus floating, because the Bus-hold circuit does not consume any static power.

V-I CHARACTERISTICS OF BUS-HOLD CIRCUIT

The figure above shows the input V-I characteristics of a Bus-hold implementation. The input characteristics resemble a resistor. As the input voltage is increased from 0 volts, the 'sink' current increases linearly. When the TTL threshold of the circuit is reached (typically 1.5 volts), the latch changes the logic state due to positive feedback and the direction of current is reversed. As the voltage is further increased towards Vcc, the input 'source' current begins to decrease, reaching the lowest level at $\mathrm{VIN}=\mathrm{Vcc}$.

ORDERINGINFORMATION

