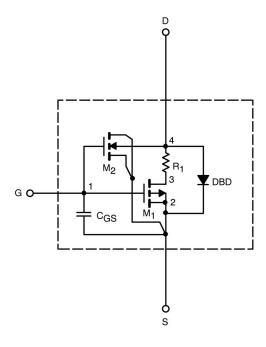


SPICE Device Model Si6433BDQ Vishay Siliconix

P-Channel 2.5-V (G-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to $125^{\circ}\mathrm{C}$ temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

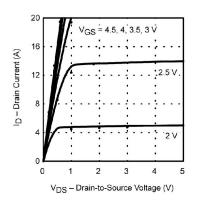
Document Number: 72565 www.vishay.com 21-May-04 1

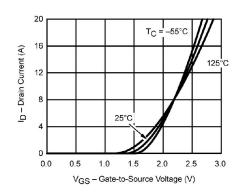
..lodel Si6433BDQ

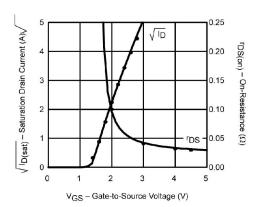
Vishay Siliconix

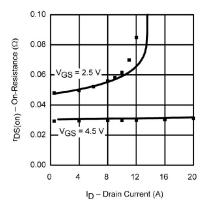
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_D = -250 \mu\text{A}$	1.2		V
On-State Drain Current ^b	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	75		Α
Drain-Source On-State Resistance ^b	「DS(on)	$V_{GS} = -4.5 \text{ V}, I_D = -4.8 \text{ A}$	0.031	0.032	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -3.6 \text{ A}$	0.050	0.053	
Forward Transconductance ^b	g _{fs}	$V_{DS} = -5 \text{ V}, I_D = -4.8 \text{ A}$	13	14	S
Diode Forward Voltage ^b	V _{SD}	$I_S = -1.35 \text{ A}, V_{GS} = 0 \text{ V}$	-0.79	-0.77	V
Dynamic ^a					
Total Gate Charge	Q_g	$V_{DS} = -6 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -4.8 \text{ A}$	8.7	10	nC
Gate-Source Charge	Q_{gs}		1.8	1.8	
Gate-Drain Charge	Q_{gd}		3	3	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -6 \text{ V}, R_L = 6 \Omega$ $I_D \cong -1 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_G = 6 \Omega$	43	45	ns
Rise Time	t _r		26	60	
Turn-Off Delay Time	t _{d(off)}		67	70	
Fall Time	t _f		18	35	

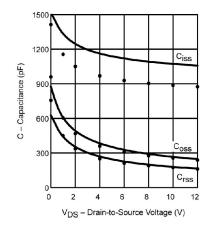
Notes

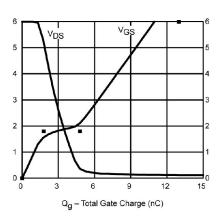

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%.


www.vishay.com Document Number: 72565




SPICE Device Model Si6433BDQ Vishay Siliconix





Note: Dots and squares represent measured data