

Product Description

The PE42742 is an SPDT UltraCMOS™ Switch designed for Broadband applications such as CATV, DTV, Multi-Tuner DVR (Digital Video Recorder), Set-top Box, PCTV and Game Boxes. It meets FCC 15.115 spec of 80 dB isolation @ 216 MHz and offers high isolation and low insertion loss in both a powered and a unique unpowered default state. The PE42742 covers a broad frequency range from near DC to beyond 2200 MHz with a single positive supply and CMOS control. It provides a smaller, cost effective, more reliable and manufacturable alternative to mechanical relays in settop box applications.

The PE42742 is manufactured on Peregrine's UltraCMOS™ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Figure 1. Functional Diagram

Advance Information PE42742

75 Ω Terminated - 2200 MHz SPDT CATV UltraCMOS™ Switch **Featuring Unpowered Operation**

Features

- Meets FCC 15.115 spec of 80 dB isolation @ 216 MHz
- Unpowered operational state
- CTB performance of 90 dBc
- High isolation: 63 dB at 1000 MHz
- Low insertion loss: typically 0.5 dB at 5 MHz, 0.8 dB at 1000 MHz
- CMOS single-pin control with logic select
- Single +3 volt supply operation
- 500 V HBM RF ports
- Low current consumption: 8 μA

Figure 2. Package Type

4x4 mm 20-lead QFN

Table 1. Electrical Specifications @ +25 °C, V_{DD} = +3 V (Z_S = Z_L = 75 Ω)

Parameter	Condition	Typical	Units
Operating Frequency ¹	5-2200		MHz
RF1-RFC Insertion Loss	5 MHz – 216 MHz 216 MHz – 550 MHz 550 MHz – 806 MHz 806 MHz – 2200 MHz	0.5 0.5 0.8 1.0	dB dB dB dB
RF2-RFC Insertion Loss	5 MHz – 216 MHz 216 MHz – 550 MHz 550 MHz – 806 MHz 806 MHz – 2200 MHz	0.7 0.8 1.0 1.3	dB dB dB dB
Isolation RF1 or RF2 to RFC	5 MHz – 216 MHz 216 MHz – 550 MHz 550 MHz – 806 MHz 806 MHz – 2200 MHz	75 67 65 58	dB dB dB dB
Isolation RF1 to RF2⁴	5 MHz – 216 MHz 216 MHz – 550 MHz 550 MHz – 806 MHz 806 MHz – 2200 MHz	88 81 78 56	dB dB dB dB
Input IP2 ²	5 MHz - 1000 MHz	90	dBm
Input IP3 ²	5 MHz - 1000 MHz	50	dBm
Input 1dB Compression ²	1000 MHz	30	dBm
CTB / CSO	77 & 110 channels; Power Out = 44 dBmV	-90	dBc
Switching Time	50% CTRL to 10 / 90 RF	2	μs
Video Feedthrough³	5 MHz - 1000 MHz	15	mV_{pp}

Table 2. Electrical Characterization (Unpowered Operation)

Parameter	Condition	Typical	Units
Operating Frequency ¹	5-2200		MHz
Isolation RF1 to RF2 ⁴	5 MHz – 216 MHz	86	dB
	216 MHz – 550 MHz	79	dB
	550 MHz – 806 MHz	77	dB
	806 MHz – 2200 MHz	58	dB
Isolation RF1 or RF2 to RFC (RF2 Unpowered)	5 MHz – 216 MHz	95	dB
	216 MHz – 550 MHz	80	dB
	550 MHz – 806 MHz	69	dB
	806 MHz – 2200 MHz	56	dB

Notes:

- 1. Device linearity will begin to degrade with input signals below 5 MHz.
- 2. Measured in a 50 Ω system.
- 3. Measured with a 1 ns risetime, 0/3 V pulse and 500 MHz bandwidth
- 4. Minimum per FCC 15.115 spec

Figure 3. Pin Configuration (Top View)

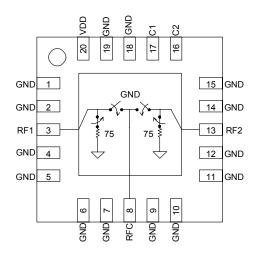


Table 3. Pin Descriptions

No.	Name	Description	
1	GND	RF Ground	
2	GND	RF Ground	
3	RF1 ¹	RF I/O	
4	GND	RF Ground	
5	GND	RF Ground	
6	GND	RF Ground	
7	GND	RF Ground	
8	RFC ¹	RF Common	
9	GND	RF Ground	
10	GND	RF Ground	
11	GND	RF Ground	
12	GND	RF Ground	
13	RF2 ¹	RF I/O	
14	GND	RF Ground	
15	GND	RF Ground	
16	C2 ²	Control 2 (or logic select)	
17	C1 ²	Control 1 (or logic select)	
18	GND	GND	
19	GND	Digital Ground	
20	VDD	Supply	
Pad	GND	RF Ground Pad	

Notes:

Table 4. Operating Conditions @ 25 °C

Parameter	Min	Тур	Max	Unit
V _{DD} Power Supply	2.7	3.0	3.3	V
I_{DD} Power Supply Current $(V_{DD} = 3 \text{ V}, V_{CNTL} = 3 \text{ V})$		8		μΑ
Control Voltage High	0.7 x V _{DD}		V_{DD}	V
Control Voltage Low	0		$0.3 \times V_{DD}$	V

Table 5. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	Power supply voltage	-0.3	4.0	٧
Vı	Voltage on CTRL input	-0.3	V _{DD} + 0.3	٧
P_{RF}	RF power on RFC, RF1, RF2 Terminated/Through		24/33	dBm
T _{ST}	Storage temperature	-65	+150	°C
T _{OP}	Operating temperature	-40	+85	°C
V _{ESD}	ESD voltage (Human Body Model)	500		V

Part performance is not guaranteed under these conditions. Exposure to absolute maximum conditions for extended periods of time may adversely affect reliability. Stresses in excess of absolute maximum ratings may cause permanent damage.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS™ device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS™ devices are immune to latch-up.

Switching Frequency

The PE42742 has a maximum 25 kHz switching rate when the internal negative voltage generator is used.

^{1.} RF pins 3, 8, and 13 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 V DC requirement is met.

^{2.} Pins 16 and 17 can be set for single pin or complementary pin control.

Table 6. Truth Table

V_{DD}	C1 (pin 17)	C2 (pin 16)	RFC – RF1	RFC – RF2
OFF	Low	Low	ON	OFF
ON	Low	Low	ON	OFF
ON	Low	High	OFF	ON
ON	High	Low	OFF	ON
ON	High	High	ON	OFF

Note: A versatile logic table has been established to allow either C1 or C2 act as a single pin control and in either polarity.

Typical Applications

The PE42742 provides the high isolation required by FCC part 15.115 regulation between the television antenna and the cable plant. The advantage of the PE42742 is that device isolation / thru performance is maintained when power is removed. This unique feature makes the PE42742 ideal for set-top box and VCR applications. The PE42742 supports signal flow from RFC to RF1 and RF2 termination in the unpowered state; similar to the powered state with C1=C2 (both high or low).

Figure 4. Typical Application (1 of 4)

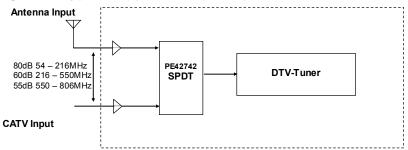


Figure 5. Typical Application (2 of 4)

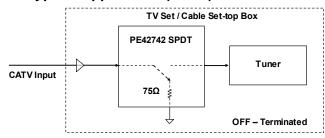


Figure 6. Typical Application (3 of 4)

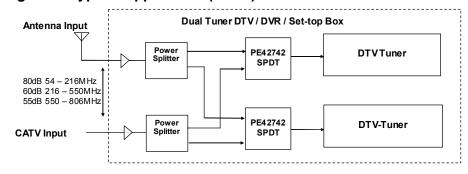
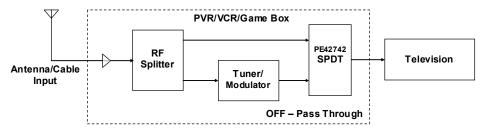



Figure 7. Typical Application (4 of 4)

©2006 Peregrine Semiconductor Corp. All rights reserved.

Evaluation Kit

The SPDT Switch Evaluation Kit facilitates customer evaluation of the PE42742 SPDT switch. The RF common port is connected through a 75 Ω transmission line to J2. Ports 1 and 2 are connected through 75 Ω transmission lines to J1 and J3. A through line connects F connectors J4 and J5. This transmission line can be used to estimate the PCB loss over the environmental conditions. J6 provides DC and digital inputs to the device.

The board is composed of a two metal layer FR4 material with a total thickness of 0.032". The transmission lines are hybrid microstrip/coplanar waveguide with ground plane (28 mil core, 12 mil width, 12 mil gap).

The provided jumpers short the control pins to ground for logic low. With the jumper removed the control input rises to V_{DD} for logic high through the 1 M Ω pull up resistor. These resistors will draw several microamps from V_{DD.} They are not required for normal operation.

Figure 5. Evaluation Board Layouts

Peregrine Specification 101/0269

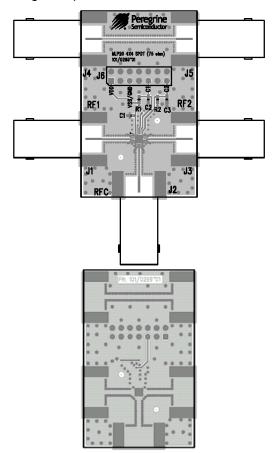


Figure 6. **Evaluation Board**

Peregrine Specification 102/0352

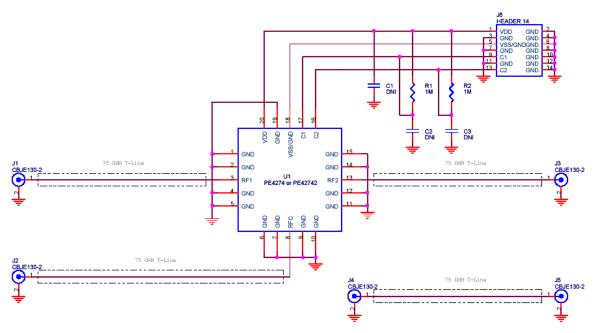


Figure 16. Package Drawing

4x4 mm 20-lead QFN

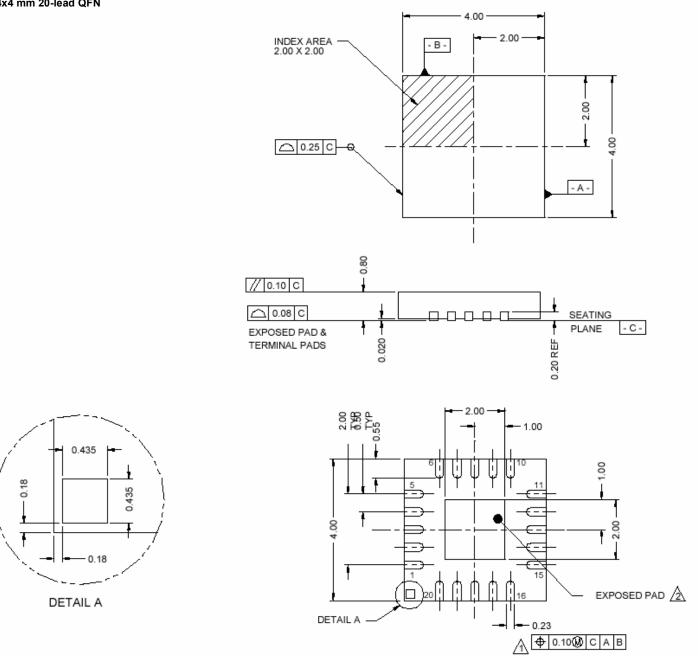
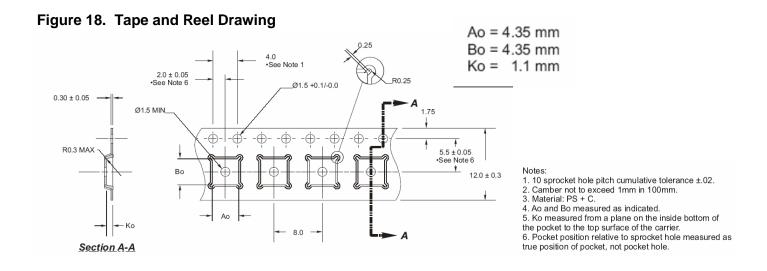



Figure 17. Marking Specification

YYWW = Date Code (Year, Work Week) ZZZZZ = Last five digits of PSC Lot Number

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
42742-00	PE42742-EK	PE42742-20 QFN 4x4mm-EK	Evaluation Kit	1 / Box
42742-51	42742	PE42742G-20 QFN 4x4mm-75A	Green 20-lead 4x4mm QFN	75 units / Tube
42742-52	42742	PE42742G-20 QFN 4x4mm-3000C	Green 20-lead 4x4mm QFN	3000 units / T&R

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9450 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-4741-9173 Fax: +33-1-4741-9173

Space and Defense Products

Americas:

Tel: 858-731-9453 Europe, Asia Pacific: 180 Rue Jean de Guiramand 13852 Aix-En-Provence Cedex 3, France

Tel: +33-4-4239-3361 Fax: +33-4-4239-7227

North Asia Pacific

Peregrine Semiconductor K.K.

Teikoku Hotel Tower 10B-6 1-1-1 Uchisaiwai-cho, Chiyoda-ku Tokyo 100-0011 Japan Tel: +81-3-3502-5211

Fax: +81-3-3502-5213

Peregrine Semiconductor, Korea

#B-2402, Kolon Tripolis, #210 Geumgok-dong, Bundang-gu, Seongnam-si Gyeonggi-do, 463-480 S. Korea

Tel: +82-31-728-4300 Fax: +82-31-728-4305

South Asia Pacific

Peregrine Semiconductor, China

Shanghai, 200040, P.R. China Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

For a list of representatives in your area, please refer to our Web site at: www.psemi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a DCN (Document Change Notice).

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS and HaRP are trademarks of Peregrine Semiconductor Corp.