

Micropower Precision Triple Supply Monitor with Push-Pull Reset Output in a 5-Lead SOT-23 Package

March 2000

FEATURES

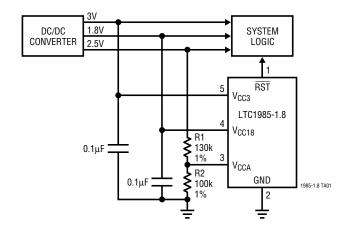
- Monitors Three Inputs Simultaneously: 3V, 1.8V and Adjustable
- ±1.5% Threshold Accuracy Over Temperature
- Very Low Supply Current: 10µA Typ
- 200ms Reset Time Delay
- Power Supply Glitch Immunity
- Guaranteed RESET for $V_{CC3} \ge 1V$ or $V_{CC18} \ge 1V$
- 3V Active-Low Push-Pull Reset Output
- 5-Lead SOT-23 Package

APPLICATIONS

- Desktop Computers
- Notebook Computers
- Intelligent Instruments
- Portable Battery-Powered Equipment
- Network Servers

DESCRIPTION

The LTC®1985-1.8 is a triple supply monitor intended for systems with multiple supply voltages. The reset output remains low until all three supplies have been in compliance for 200ms. Tight 1.5% accuracy specifications and glitch immunity ensure reliable reset operation without false triggering.

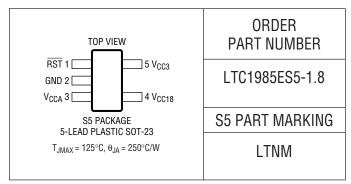

The RST output is guaranteed to be in the correct state for V_{CC18} or V_{CC3} down to 1V. The LTC1985 may also be configured to monitor any one or two V_{CC} inputs instead of three, depending on system requirements.

Very low (10 μ A typical) supply current makes the LTC1985 ideal for power conscious systems.

The LTC1985 is available in a 5-lead SOT-23 package.

7, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION



ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)	
V _{CC3} , V _{CC18} , V _{CCA}	0.3V to 7V
RST	$-0.3V$ to $(V_{CC3} + 0.3V)$
Operating Temperature Range	
(Note 3)	40°C to 85°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10	0 sec) 300°C

PACKAGE/ORDER INFORMATION

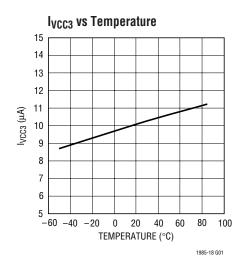
Consult factory for Industrial and Military grade parts.

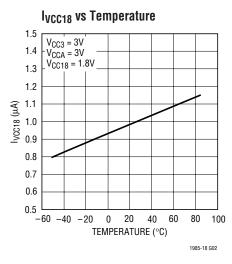
ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_{CC3} = 3V$, $V_{CC18} = 1.8V$, $V_{CC4} = V_{CC3}$ unless otherwise noted.

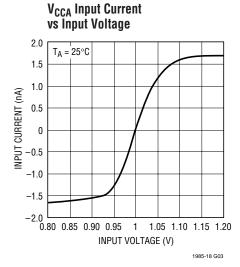
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{RT3}	Reset Threshold V _{CC3}	V _{CC3} Input Threshold	•	2.760	2.805	2.850	V
V _{RT18}	Reset Threshold V _{CC18}	V _{CC18} Input Threshold	•	1.656	1.683	1.710	V
V _{RTA}	Reset Threshold V _{CCA}	V _{CCA} Input Threshold	•	0.985	1.000	1.015	V
V _{CCOP}	V _{CC3} , V _{CC18} Operating Voltage	RST in Correct Logic State	•	1		7	V
I _{VCC3}	V _{CC3} Supply Current	$V_{CC18} > V_{CC3}$ $V_{CC18} < V_{CC3}$, $V_{CC3} = 3V$ (Note 4)	•		1 10	2 20	μA μA
I _{VCC18}	V _{CC18} Supply Current	V _{CC18} < V _{CC3} , V _{CC18} = 1.8V (Note 4)	•		1	2	μА
I _{VCCA}	V _{CCA} Input Current	V _{CCA} = 1V	•	-15	0	15	nA
t _{RST}	Reset Pulse Width	RST Low	•	140	200	280	ms
t _{UV}	V _{CC} Undervoltage Detect to RST	V _{CC18} , V _{CC3} or V _{CCA} Less Than Reset Threshold V _{RT} by More Than 1%			110		μS
V _{OL}	Output Voltage Low, RST	$\begin{split} I_{SINK} &= 2.5 \text{mA}, V_{CC3} = 3 \text{V}, V_{CC18} = 0 \text{V} \\ I_{SINK} &= 100 \mu \text{A}, V_{CC3} = 1 \text{V}, V_{CC18} = 0 \text{V} \\ I_{SINK} &= 100 \mu \text{A}, V_{CC3} = 0 \text{V}, V_{CC18} = 1 \text{V} \\ I_{SINK} &= 100 \mu \text{A}, V_{CC3} = 1 \text{V}, V_{CC18} = 1 \text{V} \end{split}$	•		0.15 0.05 0.05 0.05	0.4 0.3 0.3 0.3	V V V
V _{OH}	Output Voltage High, RST	I _{SOURCE} = 200μA	•	0.8V _{CC3}			V

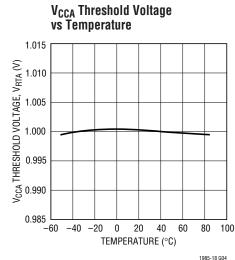
Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

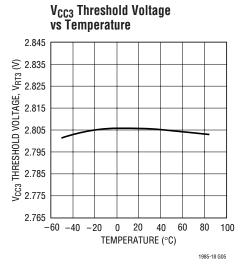
Note 2: All voltage values are with respect to GND.

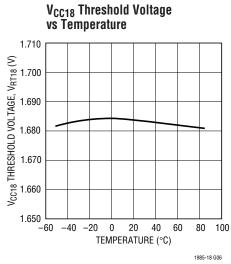

Note 3: The LTC1985E is guaranteed to meet specified performance from 0°C to 70°C and is designed, characterized and assured to meet the

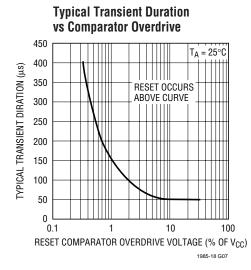

extended temperature limits of $-40\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$ but are not tested at these temperatures.

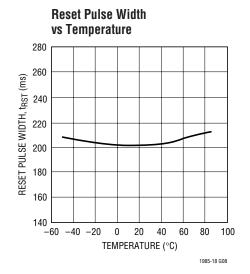

Note 4: Both V_{CC3} and V_{CC18} can act as the supply depending on which pin has the greatest potential.




TYPICAL PERFORMANCE CHARACTERISTICS

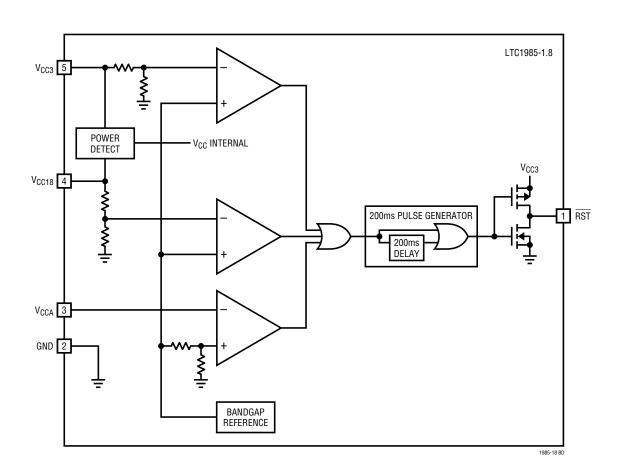






PIN FUNCTIONS

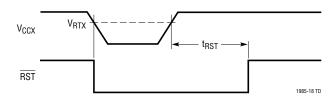
RST (**Pin 1**): Reset Logic Output. Active low, 3V push-pull output. Asserted when one or all of the supplies are below trip thresholds and held for 200ms after all supplies become valid.


GND (Pin 2): Ground.

 V_{CCA} (Pin 3): 1V Sense, High Impedance Input. If unused it can be tied to either V_{CC3} or V_{CC18} .

 V_{CC18} (Pin 4): 1.8V Sense Input and Power Supply Pin. This pin is used on the LTC1985 to provide power to the part when the voltage on V_{CC18} is greater than the voltage on V_{CC3} . Bypass to ground with a ≥0.1μF ceramic capacitor.

 V_{CC3} (Pin 5): 3V Sense Input and Power Supply Pin. This pin provides power to the part when the voltage on V_{CC3} is greater than the voltage on V_{CC18} . Bypass to ground with $a \ge 0.1 \mu F$ ceramic capacitor.


BLOCK DIAGRAM

TIMING DIAGRAM

V_{CC} Monitor Timing

APPLICATIONS INFORMATION

Supply Monitoring

The LTC1985 is a low power, high accuracy triple supply monitoring cirucit with a single 200ms microprocessor reset output.

All three V_{CC} inputs must be above predetermined thresholds for reset not to be invoked. The LTC1985 will assert reset during power-up, power-down and brownout conditions on any one or all of the V_{CC} inputs.

3V or 1.8V Power Detect

The LTC1985 is powered from the 3V input pin (V_{CC3}) or the 1.8V input pin (V_{CC18}), whichever pin <u>has</u> the highest potential. This ensures the part pulls the <u>RST</u> pin low as soon as either input pin is $\geq 1V$.

Power-Up

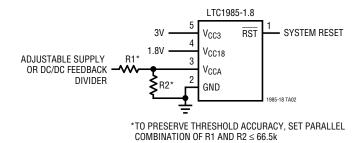
Upon power-up, either the V_{CC18} or V_{CC3} pin, can power the part. This ensures that \overline{RST} will be low when either V_{CC18} or V_{CC3} reaches 1V. As long as any one of the V_{CC} inputs is below its predetermined threshold, \overline{RST} will stay a logic low. Once all of the V_{CC} inputs rise above their

thresholds, an internal timer is started and \overline{RST} is released after 200ms.

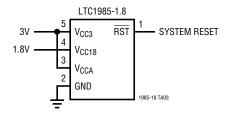
RST is reasserted whenever any one of the V_{CC} inputs drops below its predetermined threshold and remains asserted until 200ms after all of the V_{CC} inputs are above their thresholds.

Power-Down

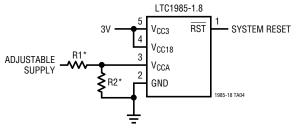
On power-down, once any of the V_{CC} inputs drop below its threshold, \overline{RST} is held at a logic low. A logic low of 0.3V is guaranteed until both V_{CC3} and V_{CC18} drop below 1V.


Override Functions

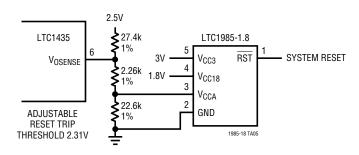
The V_{CCA} pin, if unused, can be tied to either V_{CC3} or V_{CC18}. This is an obvious solution since the trip points for V_{CC3} and V_{CC18} will always be greater than the trip point for V_{CCA}. Likewise, the V_{CC18}, if unused, can be tied to V_{CC3}. V_{CC3} must always be used. Tying V_{CC3} to V_{CC18} and operating off of a 1.8V supply will result in the continuous assertion of RST.



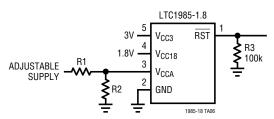
TYPICAL APPLICATIONS


Triple Supply Monitor (3V, 1.8V and Adjustable)

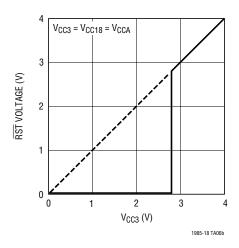
Dual Supply Monitor (3V and 1.8V, Defeat V_{CCA} Input)


Dual Supply Monitor (3V Plus Adjustable)

*TO PRESERVE THRESHOLD ACCURACY, SET PARALLEL COMBINATION OF R1 AND R2 \leq 66.5k

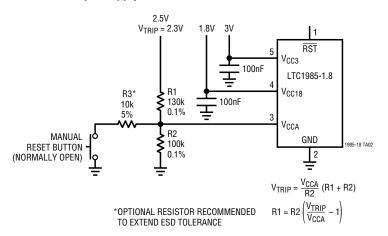

TYPICAL APPLICATIONS

Using $\mbox{\sc V}_{\mbox{\sc CCA}}$ Tied to DC/DC Feedback Divider



Resistor on \overline{RST} Output to Ground Ensures \overline{RST} Valid to V_{CC} = 0V

Typical Application Showing Resistor on RST Output to Ground


RST Voltage vs V_{CC3} with a Resistor on RST to Ground

TYPICAL APPLICATION

Triple Supply Monitor with Manual Reset Button

PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

S5 Package 5-Lead Plastic SOT-23

(LTC DWG # 05-08-1633)

- DIMENSIONS ARE INCLUSIVE OF PLATING
 DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
- MOLD FLASH SHALL NOT EXCEED 0.254mm
- 5. PACKAGE EIAJ REFERENCE IS SC-74A (EIAJ)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS	
LTC690	5V Supply Monitor, Watchdog Timer and Battery Backup	4.65V Threshold	
LTC694-3.3	3.3V Supply Monitor, Watchdog Timer and Battery Backup	2.9V Threshold	
LTC699	5V Supply Monitor and Watchdog Timer	4.65V Threshold	
LTC1232	5V Supply Monitor, Watchdog Timer and Push-Button Reset	4.37V/4.62V Threshold	
LTC1326	Micropower Precision Triple Supply Monitor for 5V, 3.3V and ADJ	4.725V, 3.118V, 1V Thresholds (±0.75%)	
LTC1326-2.5	Micropower Precision Triple Supply Monitor for 2.5V, 3.3V and ADJ	2.363V, 3.118V, 1V Thresholds (±0.75%)	
LTC1536	Precision Triple Supply Monitor for PCI Applications	Meets PCI t _{FAIL} Timing Specifications	
LTC1726-25	Micropower Triple Supply Monitor for 2.5V, 3.3V and ADJ	Adjustable RESET and Watchdog Time Outs	
LTC1726-5	Micropower Triple Supply Monitor for 5V, 3.3V and ADJ	Adjustable RESET and Watchdog Time Outs	
LTC1727	Micropower Triple Supply Monitor	Individual Monitor Outputs	
LTC1728	Micropower Triple Supply Monitor	5-Lead SOT-23 Package	