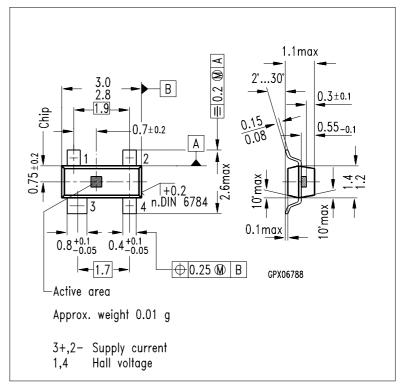


Hall Sensor KSY 13


Version 2.0

Features

- High sensitivity
- High operating temperature
- Low offset voltage
- Low TC of sensitivity and internal resistance
- Plastic miniature package SOT 143 for surface mounting (SMT)

Typical Applications

- Digital speed sensors
- · Digital position sensors
- Commutatorless DC motors

Dimensions in mm

Туре	Marking	Ordering Code	
KSY 13 (E 7502)	S 13	Q62705-K209 (taped on 18-cm reel)	

The position sensor KSY 13 is an ion-implanted Hall generator made of mono-crystalline GaAs material. Enclosed in a miniature package (SOT 143), it is suitable for surface mounting (**SMT**).

If the sensor is operated with a constant supply current, the output Hall voltage is directly proportional to a magnetic field acting upon the sensor. This sensor is outstanding for its high magnetic field sensitivity and very low temperature coefficient.

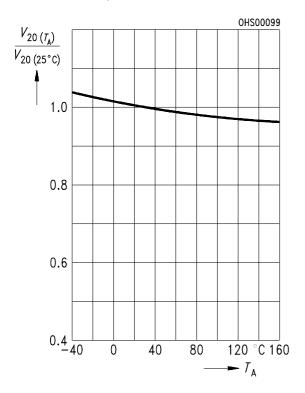
The active area of the GaAs chip is approx. $0.2 \text{ mm} \times 0.2 \text{ mm}$ and is placed approx. 0.3 mm below the plastic surface of the package. The chip carrier is softmagnetic.

Absolute Maximum Ratings

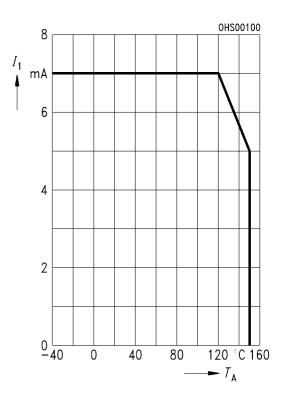
Parameter	Symbol	Limit Values	Unit
Operating temperature range	T_{A}	- 40 / + 150	°C
Storage temperature range	$T_{ m stg}$	- 50 / + 160	°C
Supply current	I_1	7	mA
Thermal conductivity ¹⁾	$G_{\sf th\;A}$	≥ 2.7	mW/K

Electrical Characteristics ($T_{\rm A}$ = 25 °C)

Nominal supply current	I_{1N}	5	mA
Open-circuit Hall voltage $I_1 = I_{1N}, \ B = 0.1 \ T$	V_{20}	95145	mV
Ohmic offset voltage $I_1 = I_{1N}, \ B = 0 \ T$	V_{R0}	≤±20	mV
Supply and Hall side internal resistance $B = 0$ T	R _{10, 20}	9001200	Ω
Temperature coefficient of the open-circuit Hall voltage $I_1 = I_{1N}$, $B = 0.2$ T	TC_{V20}	approx0.05	%/K
Temperature coefficient of the internal resistance $B = 0.2 \text{ T}$	<i>TC</i> _{R10, R20}	approx. + 0.10.18	%/K


Data Sheet 2 1999-04-01

 $^{^{1)}}$ Thermal conductivity chip-ambient when mounted on alumina ceramic 15 mm \times 16.7 mm \times 0.7 mm



Open-circuit Hall voltage $V_{\rm 20}$ versus temperature

referred to V_{20} at $T_{\rm A}$ = 25 °C

Max. permissible supply current $I_{\rm 1}$ versus temperature $T_{\rm A}$

