

10MHz G=1, 2, 5, 10 Programmable Gain *i*CMOS[™] Instrumentation Amplifier

Preliminary Technical Data

AD8250

FEATURES

Easy to Use Programmable Gains: 1, 2, 5, 10 Digitally Latched or Pin Strapped Gain Setting Temp Range -40°C to 85°C

EXCELLENT DC PERFORMANCE High CMRR 100dB G=10

Low Gain Drift: 10ppm/°C Low Input Offset Drift: 1uV/°C Low Input Offset: 100uV

EXCELLENT AC PERFORMANCE

Fast Settle Time: 0.5us to 0.01% High Slew Rate: $30V/\mu s$ High CMRR over Frequency: 80dB to 10kHzLow Noise: $15nV\sqrt{Hz}$, G=10 Low Power: 3mA (typ) Supply: $\pm 5V$ to $\pm 12V$

Applications

Data Acquisition Bio-Medical Analysis Test and Measurement High Performance System Monitoring

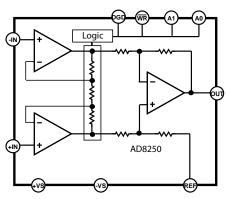


Figure 1. Functional Block Diagram

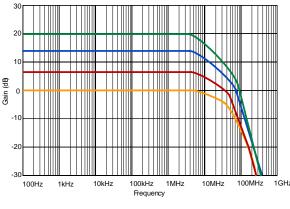


Figure 2. Gain vs Frequency

GENERAL DESCRIPTION

The AD8250 is a digitally gain programmable instrumentation amplifier with high G Ω input impedance and low distortion making it suitable for sensor interfacing and driving high sample rate analog to digital converters. It has a bandwidth of 10MHz, low distortion, and settling time of 0.5us to 0.01%. The offset and gain drift are 1uV/°C and 10ppm/°C respectively. It has a high common-mode rejection of 74dB at G=1 from DC to 100kHz. The combination of precision DC performance coupled with high speed capabilities make the AD8250 an excellent candidate for data acquisition and medical applications. Furthermore, this monolithic solution simplifies design, manufacturing and boosts performance of instrumentation by maintaining tight match of internal resistors and amplifiers.

The AD8250's user interface comprises of a parallel port that allows users to set the gain in one of three different ways. A two bit word sent to A1 and A2, via a bus may be latched using the CLK input. An alternative is to set the gain within 1 μ s by using the gain port in transparent mode. The last method is to strap A1 and A2 to a high or low voltage potential, permanently setting the gain.

The AD8250 is available in a 10-Lead MSOP package and specified over -40°C to 85°C, making it an excellent solution for applications where size and packing density are important considerations.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.326.8703
 © 2006 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Typical Performance Characteristics Error! Bookmark not defined.
Pin Configurations And Functional Descriptions7
Thermal Resistance
Absolute Maximum Ratings
AD8250—Specifications

Theory of Operation
Basic Frequency Response
Outline Dimensions
ESD Caution8

REVISION HISTORY Revision prA: Initial Version

AD8250—SPECIFICATIONS

Table 1. $V_S = \pm 12 V$, $V_{REF} = 0 V$ (@T_A = 25°C, G = +1, R_L = 2 k Ω , unless otherwise noted.)

			AD8250ARM		
Parameter	Conditions	Min	Тур	Max	Unit
COMMON-MODE REJECTION RATIO (CMRR)					
CMRR to 60 Hz with 1 k Ω Source					
Imbalance	VCM = -10 V to +10 V				
	G = 1		80		dB
	G = 2		86		dB
	G = 5		94		dB
	G = 10		100		dB
CMRR to 100kHz	$V_{CM} = -10 V \text{ to } +10 V$				
	G = 1		74		dB
	G = 2				dB
	G = 5				dB
NOICE	G = 10				dB
NOISE	G-1				
Voltage Noise, 1kHz	G=1 G=2		1		nV/√H
	G=2 G=5				nV/√H
	G=10		15		nV/√H
RTI, 0.1 Hz to 10 Hz	G=1		15		nV/√H
	G=2				μV p-p
	G=5				μV p-p μV p-p
	G=10				μV p-p
Current Noise	f = 1kHz				fA/√H
VOLTAGE OFFSET					
Input Offset, Vos	$G=1, V_{s} = \pm 5 V \text{ to } \pm 12 V$			100	μV
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$				μV
Average TC	$T = -40^{\circ}C \text{ to } +85^{\circ}C$			1	μV/°C
Input Offset, Vos	$G=2, V_{S} = \pm 5 V \text{ to } \pm 12 V$			100	
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$			100	μV
Average TC	$T = -40^{\circ}C \text{ to } +85^{\circ}C$			1	μV
Input Offset, Vos				100	μV/°C
-	$G=5, V_{S} = \pm 5 V \text{ to } \pm 12 V$			100	μV
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				μV
Average TC	$T = -40^{\circ}C \text{ to } +85^{\circ}C$			1	μV/°C
Input Offset, Vos	G=10, Vs = ± 5 V to ± 12 V			100	μV
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				μV
Average TC	$T = -40^{\circ}C \text{ to } +85^{\circ}C$			1	μV/°C
Offset Referred to the Input vs. Supply (PSR)	$V_{S}=\pm2.5~V~to~\pm8~V$				
G = 1		76			dB
G = 2					dB
G = 5			1		dB
G = 10		96			dB
INPUT CURRENT			10	15	m ^
Input Bias Current			10	5	nA

AD8250

Preliminary Technical Data

			08250A		
Parameter	Conditions	Min	Тур	Max	Unit
Average TC					pA/°
nput Offset Current			5	10	nA
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				nA
Average TC			1.5		pA/°
YNAMIC RESPONSE					
Small Signal -3dB Bandwidth					
,	G=1		17		MHz
	G=2		15		MH
	G=5		10		MH
	G=10		3.5		MHz
Settling Time 0.01%	10 V Step				
-	G=1		0.5		μS
	G=2				μS
	G=5				μS
Cattling Time 0.0010/	G=10				μS
Settling Time 0.001%	10 V Step				
	G=1				μS
	G=2				μS
	G=5				μS
	G=10				μS
Slew Rate	G=1	20		35	V/µS
	G=2			55	V/μ2 V/μ9
	G=5				
	G=10				V/μ9
					V/μ9
Gain Switching and Settle Time	Gain 1 to Gain 10, 1V signal. 0.01% (if this is just the sum of gain time + settle, then remove)				c
Gain Switching and Settle Time	Gain 1 to Gain 10, 1V signal. 0.001%				μS
Total Harmonic Distortion +					μS
Noise	RL = 100kOhms, G=1				%
Holse	RL = 2kOhms (try 600Ohms?), G=1				%
GAIN					70
Gain Range: 1, 2, 5, 10		1		10	
	N 10N	1		10	V/V
Gain Error	$V_{OUT} = \pm 10 V$			0.10	
	G=1			0.10	%
	G=2				
	G=5				
	G=10				
Gain Nonlinearity	$V_{OUT} = -10 \text{ V to } +10 \text{ V}$				
	$G=1, R_L = 10 k\Omega$		10	40	ppm
	$G=2, R_L = 10 k\Omega$				Ppm
	G=5, R∟ = 10 kΩ				Ppm
	$G=10, R_L = 10 k\Omega$				
					Ppm
Gain Nonlinearity	$G=1-10$, $R_L=2$ k Ω			10	Ppm
Gain vs. Temperature	All Gains			10	ppm
			3		
NPUT					1
Input Impedance					
Differential			1 2		GΩ∥
Common Mode			1 2		GΩ∥
Input Operating Voltage Range $V_s = \pm 5 V$ to $\pm 15 V$					

Preliminary Technical Data

AD8250

		AD	8250A	RM	
Parameter	Conditions	Min	Тур	Max	Unit
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				V
OUTPUT	$R_L = 10 \text{ k}\Omega$,				
		-Vs +		+Vs –	
Output Swing	$V_s = \pm 5 V \text{ to } \pm 15 V$	1.5		2	V
Over Temperature	$T = -40^{\circ}C \text{ to } +85^{\circ}C$				V
Short Circuit Current					mA
REFERENCE INPUT					
R _{IN}			20		kΩ
l _{IN}	V_{IN} +, V_{IN} -, V_{REF} = 0				μA
Voltage Range		–Vs		+Vs	V
Gain to Output					V/V
Digital Logic Inputs					V
Digital Ground Voltage, DGND					V
Digital Input Voltage Low					v
Digital Input Voltage High					V
Digital Input Leakage Current					pА
Gain Switching Time					Ns
Tsu					Ns
T _{HD}					ns
T _{WR_LO}					Ns
Twr_hi					Ns
POWER SUPPLY					
Operating Range ³		±5		±15	
Quiescent Current			3		mA
Over Temperature	$T = -40^{\circ}C$ to $+85^{\circ}C$				mA
TEMPERATURE RANGE					
Specified Performance		-40		+85	°C

ABSOLUTE MAXIMUM RATINGS

Table 2. AD8250 Absolute Maximim Ratings

Parameter	Rating
Supply Voltage	+/-14V
Power Dissipation	See Figure 2
Output Short Circuit Current	
Common-Mode Input Voltage	VEE – 0.5 V to VCC + 0.5 V
Differential Input Voltage	V
Storage Temperature	–65°C to +125°C
Operating Temperature Range	–40°C to +85°C
Lead Temperature Range (Soldering 10 sec)	°C
Junction Temperature	°C
Θ _{JA} (4 layer JEDEC Standard	°C/W

Board)	
Package Glass Transition Temperature	°C
ESD (Human Body Model)	kV
ESD (Charge Device Model)	kV
ESD (Machine Model)	kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS

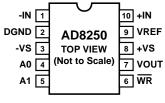


Figure 3. 10-Lead MSOP

10-Lead MSOP(ARM PACKAGE) Pin No. Name Description					
1	-IN	Inverting Input Terminal (True differential input)			
2	DGND	Digital Ground.			
3	-Vs	Negative Supply Terminal			
4	A0	Gain Setting Pin (LSB)			
5	A1	Gain Setting Pin (MSB)			
6	WR	Write Enable			
7	VOUT	Output Terminal			
8	+Vs	Positive Supply Terminal			
9	VREF	Reference Voltage Terminal (drive this pin with a low impedance voltage source to level shift the output signal)			
10	+IN	Non-inverting Input Terminal (True differential input)			

OUTLINE DIMENSIONS

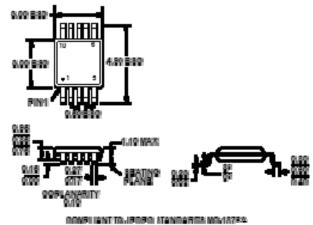


Figure 4. 10 Lead MSOP (RM) – Dimensions shown in millimeters

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table 4. Ordering Guide

AD8250 Products	Temperature Package	Package Description	Package Option	Branding
AD8250ARMZ	-40°C to +85°C	10-Lead MSOP	RM-10	
AD8250ARMZ-RL	-40°C to +85°C	10-Lead MSOP	RM-10	
AD8250ARMZ-R7	-40°C to +85°C	10-Lead MSOP	RM-10	
AD8250-EVAL		Evaluation Board		

NOTES

© 2003 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A.

www.analog.com