

<u>S9318</u>

Nonvolatile DACPOT[™] Electronic Potentiometer With Up/Down Counter Interface

FEATURES

- Digitally Controlled Electronic Potentiometer
 - 8-Bit Digital-to-Analog Converter (DAC)
 - Independent Reference Inputs
 - Differential Non-Linearity ±0.5LSB max
 Integral Non-Linearity ±1LSB max
- V_{OUT} Value in E²PROM for Power-On Recall – Equivalent to 256-Step Potentiometer
- Unity Gain Op Amp Drives up to 1mA
- Simple Trimming Adjustment
 - Up/Down Counter Style Operation
- Low Noise Operation
- "Clickless" Transitions between DAC Steps
- No Mechanical Wearout Problem
 - 1,000,000 Stores (typical)
 - 100 Year Data Retention
- Operation from +2.7V to +5.5V Supply
- Low Power, 1mW max at +5V

OVERVIEW

The S9318 DACPOTTM trimmer is an 8-bit nonvolatile DAC designed to replace mechanical potentiometers. The S9318 includes a unity-gain amplifier to buffer the DAC output and enables V_{OUT} to swing from rail to rail. The DACPOT trimmer operates over a supply voltage range of 2.7V to 5.5V.

The S9318's simple up/down counter input provides an ideal interface for automatic test equipment to dither and monitor the V_{OUT} voltage. This interface allows for quick and consistent calibration of even the most sophisticated systems.

The S9318 is a pin-compatible performance upgrade for other industry nonvolatile potentiometers. The S9318 offers double the resolution of these devices and provides 'clickless' transitions of V_{OUT}.

FUNCTIONAL BLOCK DIAGRAM

PIN NAMES

Symbol	Description
INC	Increment Input, High to Low Edge Trigger
UP/DN	Up/Down Input controlling relative Vout movement
V _H	V+ reference input
GND	Analog and Digital Ground
Vout	Trimmed Voltage Output
VL	V- reference input
CS	Active low chip select input
VDD	Supply Voltage (2.7V to 5.5V)

PINOUT

Analog Section

The S9318 is an 8-bit, voltage output digital-to-analog converter (DAC). The DAC consists of a resistor network that converts an 8-bit value into equivalent analog output voltages in proportion to the applied reference voltage.

Reference Inputs

The voltage differential between the V_L and V_H inputs sets the full-scale output voltage range. V_L must be equal to or greater than ground (i.e. a positive voltage). V_H must be greater than V_L and less than or equal to V_{DD}. See table on page 3 for guaranteed operating limits.

Output Buffer Amplifier

The voltage output is a precision unity-gain follower that can slew up to $1V/\mu s$.

Digital Interface

The interface is designed to emulate a simple up/down counter, but instead of a parallel count output, a ratiometric voltage output is provided.

Chip Select (CS) is an active low input. Whenever \overline{CS} is high the S9318 is in standby mode and consumes the least power. This mode is equivalent to a potentiometer that is adjusted to the required setting. When \overline{CS} is low the S9318 will recognize transitions on the \overline{INC} input and will move the V_{OUT} either toward the V_H reference or toward the V_L reference depending upon the state of the UP/ \overline{DN} input.

The host may exit an adjustment routine in two ways: deselecting the S9318 while \overline{INC} is low will not perform a store operation (a subsequent power cycle will recall the original data); deselecting the S9318 while \overline{INC} is high will store the current V_{OUT} setting into nonvolatile memory.

Increment (INC) is an edge triggered input. Whenever \overline{CS} is low and a high to low transition occurs on the \overline{INC} input, the V_{OUT} voltage will either move toward V_H or V_L depending upon the state of the UP/ \overline{DN} input.

UP/Down (UP/DN) is an input that will determine the V_{OUT} movement relative to V_H and V_L. When \overline{CS} is low, UP/ \overline{DN} is high and there is a high to low transition on \overline{INC} , the V_{OUT} voltage will move (1/256th x V_H-V_L) toward V_H. When \overline{CS} and UP/ \overline{DN} are low, and there is a high to low transition on \overline{INC} , the V_{OUT} will move (1/256th x V_H-V_L) toward V_L.

ABSOLUTE MAXIMUM RATINGS*					
Temperature Under Bias	-55°C to +125°C				
Storage Temperature	-65°C to +150°C				
Voltage on pins with reference to GND:					
Analog Inputs	-0.5V to V _{DD} +.5V				
Digital Inputs	-0.5V to V _{DD} +.5V				
Analog Outputs	-0.5V to V _{DD} +.5V				
Digital Outputs	-0.5V to V _{DD} +.5V				
Lead Solder Temperature (10 secs)	300°C				

***COMMENT**

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside those listed in the operation sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

RECOMMENDED OPERATING CONDITIONS

Condition	Min	Мах
Temperature	-40°C	+85°C
V _{DD}	+2.7V	+5.5V

DAC DC ELECTRICAL CHARACTERISTICS

 V_{DD} = +2.7V to +5.5V, V_{refH} = V_{DD} , V_{refL} = 0V, T_A = -40°C to +85°C, unless specified otherwise

	Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Accuracy	INL	Integral Non-Linearity	I _{LOAD} = 100μA,	-	0.5	±1	LSB
	DNL	Differential Non-Linearity	$I_{LOAD} = 100 \mu A$, Guaranteed but not tested	-	0.1	±0.5	LSB
References	Vн	V _{refH} Input Voltage		VrefL	-	V _{DD}	V
	VL	V _{refL} Input Voltage		Gnd	-	V _{refH}	V
	R _{IN}	V_{refH} to V_{refL} Resistance		-	38K	-	Ω
	TCRIN	Temperature Coefficient of R_{IN}	V _{refH} to V _{refL}	-	600	-	ppm/°C
Analog	Gefs	Full-Scale Gain Error	DATA = FF	-	-	±1	LSB
Output	VoutZS	Zero-Scale Output Voltage	DATA = 00	0		20	mV
TCVOL	TCV _{OUT}	V _{OUT} Temperature Coefficient	V_{DD} = +5, I_{LOAD} = 50µA, V_{refH} = +5V, V_{refL} = 0V Guaranteed but not tested	-	-	50	μV/°C
	IL	Amplifier Output Load Current		-200		+1000	μA
	R _{OUT}	Amplifier Output Resistance	$I_L = 100 \mu A \qquad V_{DD} = +5V \\ V_{DD} = +3V$	-	10 20		Ω Ω
	PSRR	Power Supply Rejection	$I_{LOAD} = 10 \mu A$	-	-	1	LSB/V
	en	Amplifier Output Noise	$f = 1KHz, V_{DD} = +5V$	-	90	-	nV/ $\sqrt{H_Z}$
	THD	Total Harmonic Distortion	V _{IN} = 1V rms, f = 1KHz	-	0.08	-	%
	BW	Bandwidth - 3dB	V _{IN} = 100mV rms	-	300	-	kHz

2016 PGM T3.4

2016-04 4/24/99

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min	Мах	Unit	Test Method
VZAP	ESD Susceptibility	2000		V	MS-883, TM 3015
ILTH	Latch-Up	100		mA	JEDEC Standard 17
T _{DR}	Data Retention	100		Years	MS-883, TM 1008
N _{END}	Endurance	1,000,000		Stores	MS-883, TM 1033

2016 PGM T2.0

DC ELECTRICAL CHARACTERISTICS V_{DD} = +2.7V to +5.5V, V_H = V_{DD} , V_L = 0V, Unless otherwise specified

Symbol	Parameter	Conditions	Min	Max	Units
I _{DD}	Supply Current during store, note 1	$CS = V_{IL}$		1.2	mA
I _{SB}	Supply Standby Current	CS = VIH		200	μA
Ін	Input Leakage Current	$V_{IN} = V_{DD}$		10	μA
IIL	Input Leakage Current, note 2	$V_{IN} = 0V$		-25	μA
Vih	High Level Input Voltage		2	Vdd	V
VIL	Low Level Input Voltage		0	0.8	V
			•	•	2016 PGM T4.3

Notes:

1. I_{DD} is the supply current drawn while the EEPROM is being updated. I_{DD} does not include the current that flows through the Reference resistor chain.

2. \overline{CS} , UP/ \overline{DN} and \overline{INC} have internal pull-up resistors of approximately 200k Ω . When the input is pulled to ground the resulting output current will be V_{DD}/200k Ω .

OPERATIONAL TRUTH TABLE

INC	CS	UP/DN	Operation	
HI _{TO} LO	L	Н	V_{OUT} toward V_{H}	
HI _{TO} LO	L	L	V_{OUT} toward V_L	
Н	LO _{TO} HI	Х	Store Setting	
L	LO _{TO} HI	Х	Maintain Setting, NO Store	
V _{DD}	V _{DD}	V _{DD}	Standby	

2016 PGM T5.1

AC TIMING CHARACTERISTICS V_{DD} = +4.5V to +5.5V

Symbol	Parameter	Min	Max	Units
tCLIL	CS to INC Setup	100		ns
tihdc	INC High to UP/DN Change	100		ns
tDCIL	UP/DN to INC Setup	100		ns
tı∟	INC Low Period	200		ns
tıH	INC High Period	200		ns
tihch	INC Inactive to CS Inactive	100		ns
twp	Write Cycle Time		5	ms
t ILVOUT	INC to V _{OUT} Delay		5	μs

2016 PGM T6.1

NOTICE

SUMMIT Microelectronics, Inc. reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. SUMMIT Microelectronics, Inc. assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained herein reflect representative operating parameters, and may vary depending upon a user's specific application. While the information in this publication has been carefully checked, SUMMIT Microelectronics, Inc. shall not be liable for any damages arising as a result of any error or omission.

SUMMIT Microelectronics, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless SUMMIT Microelectronics, Inc. receives written assurances, to its satisfaction, that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; and (c) potential liability of SUMMIT Microelectronics, Inc. is adequately protected under the circumstances.

© Copyright 1999 SUMMIT Microelectronics, Inc.