GP1F351T/GP1F351R

■ Features

- 1. Electric and optical signal compatible design (Three kinds of terminals are integrated into a single unit)
- 2. Compact design with small jack compatible mini-plug (Less than 1/2 in volume of **GP1F32T/R**)
- 3. OPIC type

(Direct interface to microcomputer of the I/O signals)

(High fidelity real sound reproduction)

4. High speed data transmission Signal transmisson speed: MAX. 8Mbps (NRZ signal)

■ Applications

- 1. MD. DCC
- 2. Portable CD, DAT

Optical Mini-Jack for Digital Audio Equipment

■ Outline Dimensions

* OPIC is a trademark of Sharp and stands for Optical IC. It has light detecting element and signal processing circuitry integrated single chip.

■ Absolute Maximum Ratings

GP1F351T/GP1F351R (Photoelectric conversion element)

Parameter	Symbol Rating		Unit
Supply voltage	V _{CC}	- 0.5 to + 7.0	V
Output ourset (CD1E2E1D)	Іон	4 (source current)	mA
Output current (GP1F351R)	I_{OL}	4 (sink current)	mA
Input voltage (GP1F351T)	V _{im}	- 0.5 to V _{CC} + 5.0	V
Operating temperature	Topr	- 20 to +70	°C
Storage temperature	T _{stg}	- 30 to +80	°C
*1Soldering temperature	T _{sol}	260	°C

GP1F351T/GP1F351R (Jack)

Parameter	Symbol	Rating	Unit
Total power dissipation	Ptot	D.C.12V, 1A	-
Isolation voltage	V _{iso}	A.C. $500V_{rms}$ (For 1min.)	-
Operating temperature	Topr	- 20 to 70	°C
Storage temperature	T _{stg}	- 30 to 80	°C
*1Soldering temperature	T _{sol}	260	°C

^{*1 5}s/time up to 2 times.

■ Recommended Operating Conditions

GP1F351T

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	V_{CC}	4.75	5.0	5.25	V
Operating transfer rate	T	-	-	8	Mbps

GP1F351R

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	V_{CC}	4.75	5.0	5.25	V
Operating transfer rate	T	0.1	-	8	Mbps
Receiver input optical power level	Pc	- 24.0	-	- 14.5	dBm

■ Electro-optical Characteristics

GP1F351T (Photoelectric conversion element)

 $(Ta = 25^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak emission wavelength	λ_{P}	-	630	660	690	nm
Optical power output coupling with fiber	Pc	Refer to Fig. 1	- 21	- 17	- 15	dBm
Supply current	I_{CC}	Refer to Fig. 2	-	4	10	mA
High level input voltage	V_{iH}	Refer to Fig. 2	2	-	-	V
Low level input voltage	V _{iL}	Refer to Fig. 2	-	-	0.8	V
Low→High delay time	t_{PLH}	Refer to Fig. 3	-	-	100	ns
High→Low delay time	t _{PHL}	Refer to Fig. 3	-	-	100	ns
Pulse width distortion	Δ tw	Refer to Fig. 3	- 25	-	+ 25	ns
Jitter	Δ tj	Refer to Fig. 3	-	1	25	ns

GP1F351R (Photoelectric conversion element)

 $(Ta= 25^{\circ}C)$

Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak sensitiv wavelength	ity	λР	-	-	700	-	nm
Supply curre	nt	Icc	Refer to Fig. 4	-	15	40	mA
High level ou	ıtput voltage	V _{OH}	Refer to Fig. 5	2.7	3.5	-	V
Low level ou	tput voltage	V _{OL}	Refer to Fig. 5	-	0.2	0.4	V
Rise time		$t_{\rm r}$	Refer to Fig. 5	-	12	30	ns
Fall time		t_{f}	Refer to Fig. 5	-	4	30	ns
$Low \rightarrow High$	delay time	t _{PLH}	Refer to Fig. 5	-	-	100	ns
High→ Low	delay time	tPHL	Refer to Fig. 5	-	-	100	ns
Pulse width o	listortion	Δtw	Refer to Fig. 5	- 30	-	+ 30	ns
Jitter	$P_{C} = -14.5 dBm$	A 4:	Defeate Fig. 6	-	1	30	ns
Jitter	$P_C = -24dBm$	Δtj	Refer to Fig. 6	-	-	30	ns

■ Mechanical and Electrical Characteristics GP1F351T/GP1F351R (Jack)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Insertion force, withdrawal force	FP	*2	5	-	35	N
Contact resistance	Rcon	*3	-	-	30	mΩ
Isolation resistance	R iso	D.C. 500V, 1min.	100	-	-	ΜΩ

Note) This jack is designed for applicable to \$\phi\$ 3.5 compact single head plug (EIAJ RC-6701A).

About movable contact terminal and make contacts, it measures at 100 mA or less and 1000 Hz at the condition of inserting EIAJ 6701A standard plug for tast.

Fig. 1 Measuring Method of Optical Output Coupling Fiber

Note) (1) $V_{CC} = 5.0V \pm 0.05V$ (State of operating)

(2) To bundle up the standard fiber optic cable, make it into a loop with the diameter D= 10cm or more. (The standard fiber optic cable will be specified elsewhere.)

^{*2} Measuring method of insertion force and withdrawal force.

Insertion and withdrawal force shall be measured after inserting and withdrawing 3 times by using EIAJ RC-6701A standard plug for test.

^{*3} Measuring method of contact resistance.

Fig. 2 Measuring Method of Input Voltage and Supply Current

Input conditions and judgement method

Conditions Judgement method	
$V_{in} = 2.0V$ or more	$-21 \le P_C \le -15 dBm$, I $CC = 10 mA$ or less
$V_{in} = 0.8V$ or less	$P_C \le -36 dBm$, $I_{CC} = 10 mA$ or less

Note) $V_{CC} = 5.0 \pm 0.05V$ (State of operating)

Fig. 3 Measuring Method of Pulse Response and Jitter

Test item

Test time	Symbol	Test condition
Low→High pulse delay time	t _{PLH}	-
High→Low pulse delay time	t _{PHL}	<u>-</u>
Pulse width distortion	Δtw	$\Delta tw = t_{PHL} - t_{PLH}$
Low→High Jitter	Δtjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High→Low Jitter	Δtjf	Set the trigger on the fall of input signal to measure the jitter of the fall of output

- Note) (1) The waveform write time shall be 4 seconds. But do not allow the waveform to be distorted by incresing the brightness too much.
 - (2) $V_{CC} = 5.0 \pm 0.05V$ (State of operating)
 - (3) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF.

Fig. 4 Supply Current

Iı	Measuring method	
Supply voltage	$V_{CC} = 5.0 \pm 0.05 V$	Measured on an
Optical output coupling fiber	$P_C = -14.5 dBm$	ammeter (DC average
Standard transmitter input signal	6Mbps NRZ, Duty 50% or 3Mbps biphase mark PRBS signal	amperage)

Fig. 5 Measuring Method of Output Voltage and Pulse Response

Test item

Test item	Symbol
Low→High pulse delay time	t _{PLH}
High→Low pulse delay time	t _{PHL}
Rise time	t _r
Fall time	t _f
Pulse width distortion Δ tw = t _{PHL} - t _{PLH}	Δtw
High level output voltage	Voh
Low level output voltage	Vol

- Note) (1) $V_{CC} = 5.0 \pm 0.05V$ (State of operating)
 - (2) The fiber coupling light output set at 14.5dBm/- 24.0dBm.
 - (3) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF.
 - (4) Rsi, Rso : Standard load resistance (Rsi : $3.3k\Omega$, Rso : $2.2k\Omega$)
 - (5) The output (H/L level) of GP1F351R are not fixed constantly when it receivers the disturbing light (including DC light, no input light) less than 0.1Mbps.

Fig. 6 Measuring Method of Jitter

Test item

Test item	Symbol	Test condition
Low→High Jitter	Δtjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High→Low Jitter	Δtjf	Set the trigger on the fall of input signal to measure the jitter of the fall of output

- Note) (1) Rsi/Rso; Standard load resistance (Rsi: $3.3k\Omega$, Rso: $2.2k\Omega$)
 - (2) The fiber coupling light output set at 14.5dBm/ 24.0dBm.
 - (3) The waveform write time shall be 3 seconds. But do not allow the waveform to be distorted by increasing the brightness too much.
 - (4) $V_{CC} = 5.0 \pm 0.05 \text{V}$ (State of operating)
 - (5) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF.

Kinds of plug	Output		
	4	5	1
Analog electricity	L	L	L
Digital electricity	L	L	Н
Digital optics	L	Н	Н
No plug	Н	Н	Н

• Please refer to the chapter "Precautions for Use"