

NTE3029A Infrared–Emitting Diode

Description:

The NTE3029A 940nm LED is a multi-purpose device designed for use in numerous applications. This Gallium Arsenide device is manufactured to tight tolerances for maximum performance and long lifetime.

Features:

- Low Cost
- Low Degradation
- New Mold Technology Improves Performance under Variable Environmental Conditions
- New Lens Design offers Improved Optical Performance

Applications:

- Low Bit Rate Communication Systems
- Keyboards
- Coin Handlers
- Paper Handlers

- Touch Screens
- Shaft Encoders
- General Purpose Interruptive and Reflective Event Sensors

Absolute Maximum Ratings:

Reverse Breakdown Voltage, V _R	6V
Forward Current, I _F	
Continuous	100mA
Peak Pulse	1A
Device Power Dissipation ($T_A = +25^{\circ}C$, Note 2), $P_D \dots P_D \dots$	100mW
Derate Above 55°C	2mW/°C
Ambient Operating Temperature Range, Topr	–40° to +100°C
Storage Temperature Range, T _{stq}	–40° to +100°C
Lead Temperature (During Soldering, Note 3), T _L	+260°C

- Note 1. The NTE3029A is a discontinued device and has been replaced by NTE3029B.
- Note 2 Measured with device soldered into a typical printed circuit board.
- Note 3 Maximum exposure time: 5sec. Minimum of 1/16 inch from the case. A heat sink should be applied in order to prevent the case temperature from exceeding +100°C.

<u>Electrical Characteristics</u>: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Reverse Leakage Current	I _R	$V_R = 6V$	-	0.05	100	μΑ
Forward Voltage	V _F	I _F = 50mA	_	1.3	1.5	V
Temperature Coefficient of Forward Voltage	ΔV_{F}		_	-1.6	_	mV/°C
Capacitance	С	V = 0V, f = 1MHz	_	24	50	pF

<u>Optical Characteristics</u>: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Peak Emission Wavelength	λ_{P}	I _F = 50mA	930	940	950	nm
Spectral Half Power Wavelength			_	48	_	nm
Spectral Output Temperature Shift			_	0.3	_	nm/°C
Axial Power Output Intensity	Po	I _F = 20mA, Note 4	50	150	_	μW/ sq cm
Intensity Per Unit Solid Angle	E _e	I _F = 20mA, Note 4	0.2	0.65	_	mW/Sr
Power Half-Angle	Ω		_	±20	_	0
Rise Time and Fall Time	t _r , t _f		_	1.0	_	μs

Note 4 Measured using a 11.28 mm diameter detector placed 21 mm away from the device under test.

