

display attributes that incude underlining, italics, blinking, eight foreground/background colors, character position offset delay, and background transparency. The 16-bit display character representation allows the modification of some key attributes on a character-by-character basis. A character's pixel array is stored as a 16- or 18-word representation in Character Graphics ROM (CGROM). The ROM contents are referenced by a 16-bit word stored in video RAM (VRAM) defining the character type and its key attributes.

The character control mode provides access to the full set of attribute controls. Each word of RAM specifies a single displayed character and basic character attributes, allowing the modification of attributes on a character-by-character basis. The insertion of control characters permits direction of other character attributes.

The fully customized 512 character set, formatted in two 256 character banks, can be displayed with a host of

composite video signal with the assistance of the processor's digital signal processing capabilities and displayed on the screen. The character representation in this mode allows for a simple attribute control through the insertion of control characters, and each word of RAM specifies two displayed characters.

control mode for maximum display control flexibility, and closed caption mode for optimum display of closed caption text. Closed caption text can be decoded directly from the

RISC processor core allows the user to control the onboard peripheral functions and registers using the standard processor instruction set. The extensive character attributes can be controlled in two modes: by the on-screen display controller character

52-pin SDIP packages. The powerful 12 MHz Z89C00

The Z89303/05/07 Digital Television Controllers are

application-specific controllers designed to provide complete audio and video control of television receivers, video recorders, with advanced on-screen display facilities. The Z89303/05/07 are 24K, 16K and 12K ROM versions in

⊗ Silos

GENERAL DESCRIPTION

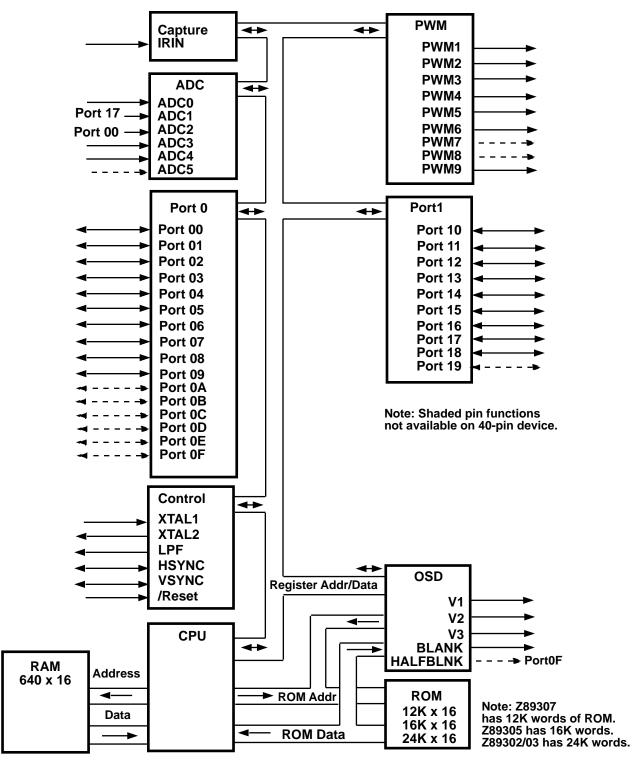
CUSTOMERPROCUREMENTSPECIFICATION

PRELIMINARY

Z89303/05/07 DIGITALTELEVISIONCONTROLLER

Serial interfacing with the television tuner is provided through the tuner serial port. Other serial devices, such as digital channel tunning adjustments, may be accessed through the industry standard I²C port.

Additional hardware provides the capability to display two times normal size characters. The smoothing logic contained in the on-screen display circuit improves the appearance of larger fonts. Fringing circuitry can be activated to improve the visibility of text by surrounding the character lines with a one-pixel border.


RGB outputs provide the direct video signals, and a blanking output is provided to control the video multiplexor. Dot clock and verticle line synchronization are normally obtained from H_FLYBACK and V_FLYBACK, but can be generated by the Z89303/05/047, and driven to the external deflection unit through the bidirectional SYNC ports when external video synchronization signals are not present.

User control can be monitored through the keypad scanning port, or the 16-bit remote control capture register. Receiver functions such as color and volume can be directly controlled by eight 8-bit pulse width modulated ports.

All nine PWM ports are available in the 52-pin package.

The Z89303/05/07 has two internal 12 MHz VCOs that are referenced to a 32 KHz internal oscillator to provide the system clock. In Sleep mode, the controller uses the 32 KHz clock for the system clock to reduce power consumption. The processor can be suspended by placing it into STOP mode when main power is not available for minimal power consumption.

GENERAL DESCRIPTION (Continued)

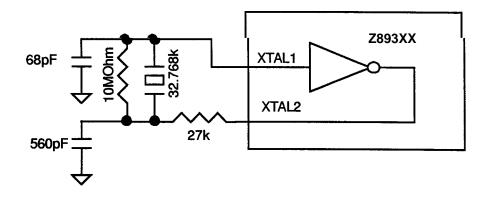
Functional Block Diagram

	Ц		$\overline{\bigcirc}$		L	DMAAA
PWM9	Ц	1	-	52	F.	PWM8
IRIN	Ч	2		51	Ľ	PWM7
Port18/G<0>	Ц	3		50		PWM6
Port19		4		49		PWM5
Port0E	П	5		48		PWM4
Port00/ADC2		6		47		PWM3
Port01/I2SSC		7		46		PWM2
Port02/I2SSD		8		45		PWM1
Port03		9		44		ADC5
GND		10		43		CVI/ADC0
Port04/ADC4		11	Z89303	42		LPF
Port05/ADC3		12	Z89305	41		XTAL2
Port06/Counter		13	Z89307	40		AN GND
Port07/CSync		14	52-Pin Shrink	39		XTAL1
Port08/R<1>		15	DIP	38		AN VCC
Port09		16		37		/Reset
VCC		17		36		Port0F/HalfBlnk
Port10/R<0>		18		35		Port17/ADC1
Port11/I2MSC		19		34		Blank
Port12/I2MSD		20		33		V1
Port13/G<1>		21		32		V2
Port14/B<0>		22		31		V3
Port15/B<1>		23		30		VSync
Port16/SCLK		24		29		HSync
Port0A		25		28		Port0D
Port0B		26		27	Þ	Port0C
					1	

52-Pin Shrink DIP Configuration

PIN DESCRIPTIONS

Z89303/05/07


Pin Name	Function	Z89303/05/07 52-Pin	Configu Direction	ration Reset	
V _{cc}	+5 V	17,38		PWR	
– GND –	0 V	10,40		PWR	
IRIN	Infrared Remote Capture Input	2	Ι	Ι	
ADC[5:0] ^a	4-Bit Analog to Digital Converter Input ^b	44,11,12,6,35,43	nAI	Ι	
PWM10, PWM9	14-Bit Pulse Width Modulator Output	-,1	OD	Ο	
PWM[8:1]°	8-Bit Pulse Width Modulator	52,51,50,49,	OD	0	
	Output	48,47,46,45			
Port0[F:0] ^d	Bit Programmable	36,5,28,27,26,25,	В	Ι	
	Input/Output Ports	16,15,14,13,12,			
		11,9,8,7,6			
Port1[9:0]°	Bit Programmable	4,3,35,24,23,22,	В	Ι	
	Input/Output Ports	21,20,19,18			
SCLf	12C Clock I/O	7 or 19	BOD		
SCD ^g	12C Data I/O	8 or 20	BOD		
XTAL1	Crystal Oscillator Input	39	AI	Ι	
XTAL2	Crystal Oscillator Output	41	AO	0	
LPF	Loop Filter	42	AB	0	
HSYNC	H_Sync	29	В	Ι	
VSYNC	V_Sync	30	В	Ι	
/RESET	Device Reset	37	Ι	Ι	
V[3:1]	OSD Video Output	31,32,33	0	0	
(Typically Dr	ive B, G, and R Outputs)				
Blank	OSD Blank Output	34	0	0	
Half Blank ^h	OSD Half Blank Output	36	0		
RGB Digital	R[1:0],G[1:0], and B[1:0]	23,22,21,	0		
Outputs ⁱ	Outputs of the RGB Matrix	18,15,3			
SCLK ^k	Internal Processor SCLK	24	0		

V1, V2, V3 ANALOG OUTPUT Specifications $V_{cc} = 5.25$ V

V _{cc} = 5.25 V	Condition	Limit
Output Voltage	Bit = 11	4.55 V +/- 0.25 V
	Bit = 10	3.205V +/- 0.2 V
	Bit = 01	1.95 V +/- 0.15 V
	Bit = 00	0.65 V +/- 0.1 V
Settling Time	70% of DC Level, 10pf Load	< 50 nsec

V1, V2, V3 ANALOG OUTPUT Specifications $V_{cc} = 4.75V$

V _{cc} = 4.75V	Condition	Limit
Output Voltage	Bit = 11 $Bit = 10$	3.90 V +/- 0.25 V 2.90 V +/- 0.2 V
	Bit = 01 Bit = 00	1.90 V +/- 0.15 V 0.1 V +/- 0.1 V
Settling Time	70% of DC Level, 10pf Load	< 50 nsec

32K Oscillator Recommended Circuit

Notes:

- c) PWM[8,7] is not available on the 40-pin DIP version.
- d) Port0[F:A] is not available on the 40-pin DIP version.
- e) Port19 is not available on the 40-pin DIP version.
- f) SCL I/O pin is shared with Port0 or Port11.
- g) SCD I/O pin is shared with Port02 or Port12.
- h) Half Blank output is a function shared with PortOF. Half Blank output is not available on the 40-pin DIP version.
- Digital RGB outputs and the internal SCLK are shared with Port1[5:0]. i)
- k) Internal processor SCLK is shared with Port16.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Min	Max	Units	Conditions
V _{cc}	Power Supply Voltage	0	7	V	
V _{ID}	Input Voltage	-0.3	V _{CC} +0.3	V	Digital Inputs
VIA	Input Voltage	-0.3	V _{cc} +0.3	V	Analog Inputs (A/D0A/D4)
V	Output Voltage	-0.3	V_{CC}^{cc} +0.3	V	All Push-Pull Digital Output
V _o	Output Voltage	-0.3	$V_{CC}^{cc} + 8.0$	V	Open-Drain PWM Outputs
0					(PWM1PWM8)
I _{OH}	Output Current High		-10	mA	One Pin
I _{OH}	Output Current High		-100	mA	All Pins
I _{OL}	Output Current Low		20	mA	One Pin
I _{OL}	Output Current Low		200	mA	All Pins
T _A	Operating Temperature	0	70	°C	
T _A	Storage Temperature	-65	150	°C	

DC CHARACTERISTICS $T_A = 0^{\circ}C$ to + 70°C; $V_{CC} = 4.5$ V to + 5.5 V; $F_{OSC} = 32.768$ KHz

Symbo	ol Parameter	Min	Max	Typical	Units	Conditions
V	Input Voltage Low	0	0.2 V _{cc}	0.4	V	
V_{IH}^{L}	Input Voltage High	$0.6 V_{\rm cc}$	V _{cc}	3.6	V	
$\overline{V_{_{PU}}}$	Max. Pull-Up Voltage		12		V	PWM0PWM8 Only
V _{OL}	Output Voltage Low		0.4	0.16	V	@ $I_{OI} = 1 \text{ mA}$
V _{OL}	Output Voltage High	$V_{\rm CC}$ –0.9		4.75	V	@ $I_{OL} = 0.75 \text{ mA}$
V _{XL}	Input Voltage XTAL1 Low		0.3 V _{cc}	1.0	V	External Clock
V _{XH}	Input Voltage XTAL1 High	V _{cc} -2.0	cc	3.5	V	Generator Driven
V _{HY}	Schmitt Hysteresis	3.0	0.75	0.5	V	On XTAL1 Input Pin
I_{IR}^{III}	Reset Input Current		150	90	μA	$V_{RL} = 0 V$
Ι"	Input Leakage	-3.0	3.0	0.01	μA	@ 0 V and V_{cc}
I _{cc}	Supply Current		100	60	mA	
I _{CC1E}	Supply Current of the OTP		700	300	μΑ	Sleep Mode @ 32 KHz
I _{CC1}	Supply Current		300	100	μΑ	Sleep Mode @ 32 KHz
I _{CC2}	Supply Current		10	5	μΑ	Sleep Mode

@ Zilæ

AC CHARACTERISTICS $T_A = 0^{\circ}C$ to + 70°C; $V_{CC} = 4.5$ V to 5.5 V; $F_{OSC} = 32.768$ KHz

Symbol	Parameter	Min	Max	Typical	Units
$T_{P}C$ $T_{R}C, T_{F}C$	Input Clock Period Clock Input Rise and Fall	16	100	32 12	μS μS
T _D POR	Power On Reset Delay	0.8		1.2	S

AC CHARACTERISTICS $T_A = 0^{\circ}C$ to + 70°C; $V_{CC} = 4.5$ V to 5.5 V; $F_{OSC} = 32.768$ KHz

Symbol	Parameter	Min	Max	Typical	Units
T _w RES T _D H _s	Power-On Reset Min. Width H_Sync Incoming Signal Width	5.5	5TPC 12.5	11	μS μS
$\frac{T_{_{D}}V_{_{S}}}{T_{_{D}}E_{_{S}}}$	V_Sync Incoming Signal Width Time Delay Between Leading Edge of V_Sync and H_Sync in Even Field	0.15 -12	1.5 +12	1.0 0	mS μS
T _D O _S	Time Delay Between Leading Edge of H_Sync in Odd Field	20	44	32	μS
T _w HV _s	H_Sync/V_Sync Edge Width		2.0	0.5	μS

Notes:

All timing of the I²C bus interface are defined by related specifications of the I²C bus interface.

Development Projects:

Customer is cautioned that while reasonable efforts will be employed to meet performance objectives and milestone dates, development is subject to unanticipated problems

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or non-con-

© 1994 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document. and delays. No production release is authorized or committed until the Customer and Zilog have agreed upon a Customer Procurement Specification for this project.

formance with some aspects of the CPS may be found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056