μPD27128 16,384 x 8-BIT NMOS UV/OTP EPROM **Revision 1** Description The $\mu PD27128$ is a 131,072-bit (16,384 \times 8) electrically programmable read-only memory (EPROM). It operates from a single +5V supply making it ideal for microprocessor applications. It features an output enable control and offers a standby mode with reduction in power consumption. A distinctive feature of the µPD27128 is a separate output enable control (OE) in addition to the chip enable control (CE). The OE control eliminates bus contention in multiplebus microprocessor systems. The µPD27128 features conventional, simple one-pulse programming controlled by TTLlevel signals as well as a high-speed programming mode. Total programming time for all 131,072 bits is 820 seconds for the conventional mode, and typically 120 seconds for the high-speed mode. The $\mu PD27128$ is available in a cerdip package as an ultraviolet (UV), erasable EPROM, or in a plastic package as a one-time-programmable (OTP), non-erasable EPROM. #### **Features** - ☐ Ultraviolet erasable and electrically programmable - ☐ Access time—200ns max - ☐ Low power dissipation: 100mA max active current 25mA max standby current - ☐ High-speed programming mode - (typical program time 120s) - Programmable with single pulse (total program time 820s) - ☐ Industry standard pinout (JEDEC approved) - ☐ 4 performance ranges | | | Max Vcc Supply Current | | | | | |--------------|-----------------|------------------------|-----------------|--|--|--| | Device | Max Access Time | Active | Standby
25mA | | | | | | 200ns | 100mA | | | | | | μPD27128-2 | 250ns | 100mA | 25mA | | | | | μPD27128⊕ | 300ns | 100mA | 25mA | | | | | μPD27128-3 5 | | 100mA | 25mA | | | | | μPD27128-4 | 450ns | | | | | | Note: 1 Available as either UV or OTP ## **Block Diagram** #### Pin Configuration #### Pin Identification | | Addresses | |---------------------------------|---------------| | A ₀ -A ₁₃ | Output Enable | | | Data Outputs | | O ₀ -O ₇ | Chip Enable | | PGM | Program | #### Mode Selection | • | | | | | | |------------|------------|---|--|---------------------------------------|--| | ČE
(20) | OE
(22) | PGM
(27) | V _{PP}
(1) | V _{CC}
(28) | Outputs
(11–13, 15–19) | | VIL | VIL | VIH | Vcc | Vcc | Dout | | ViH | X | X | Vcc | Vcc | High Z | | | ViH | VIL | Vpp | Vcc | Din | | | VIL | VIH | Vpp | Vcc | Dout | | | x | x | Vpp | Vcc | High Z | | | ViH | VIL | VPP | Vcc | DIN | | | ĈE
(20) | ČE OE (20) (22) V _{IL} V _{IL} V _{IH} X V _{IL} V _{IH} V _{IL} V _{IL} V _{IH} X | ČE
(20) OE
(22) PGM
(27) V _{IL} V _{IL} V _{IH} V _{IL} V _I V _I V _{IL} V _I V _I V _{IL} V _I V _I V _I X X | CE CO CO CO CO CO CO CO | (20) (22) (27) (1) (28) (1) (28) (1) (10 | ## Note: X can be either VIL or VIH. ## Absolute Maximum Ratings* | | -10°C to +80°C | |------------------------------------|-----------------| | Operating Temperature | -65°C to +125°C | | Storage Temperature Output Voltage | -0.6V to 7.0V | | Input Voltage | -0.6V to 7.0V | | Supply Voltage V _{CC} | -0.6V to 7.0V | | Supply Voltage V _{PP} | -0.6V to +22V | *COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ## Capacitance TA = 25°C; f = 1MHz | | | | Limits | | | | |--------------------|--------|-----|--------|-----|------|------------------------------| | Parameter | Symbol | Min | Typ | Max | Unit | Test Conditions | | Input Capacitance | Cin | | 4 | В | ρF | V _{IN} = 0V | | Output Capacitance | Соит | | 8 | 14 | pF | V _{OUT} = 0V | | Output Cupations | | | | | | | # DC Characteristics Read Mode and Standby Mode $T_A = 0^{\circ}C$ to + 70°C; $V_{CC} = +5V \pm 5\%$; $V_{PP} = V_{CC}$ | Parameter | | | | Limi | ts | | | |----------------------------|----------------|------------------|------|------|---------|------|--------------------------| | | | Symbol | Min | Typ | Max | Unit | Test Conditions | | Output F | ligh Voltage | VoH | 2.4 | | | ٧ | I _{OH} = -400μA | | Output L | ow Voltage | VoL | | | 0.45 | ٧ | I _{OL} = 2.1mA | | Input Hig | jh Voltage | VIH | 2.0 | | Vcc + 1 | ٧ | | | Input Lo | w Voltage | VIL | -0.1 | | 0.8 | ٧ | | | Output L | eakage Current | lLQ | | | 10 | μА | V _{OUT} = 5.25V | | Input Le | skage Current | lu | | | 10 | μΑ | V _{IN} = 5.25V | | Vcc | Standby | lcc1 | | | 25 | mA | CE = VIH | | Current | Active | lcc2 | | 60 | 100 | mA | OE = CE = VIL | | V _{PP}
Current | | l _{PP1} | | | 15 | mA | V _{PP} = 5.25V | # Program, Program Verify, and Program Inhibit Modes $T_A = 25^{\circ}C \pm 5^{\circ}C; V_{CC} \odot = +5V \pm 5\%; V_{PP} = +21V \pm 0.5V$ | | | | Limit | ts | | | |--------------------|--|-----------|------------|---|--------|---| | rameter | Symbol | Min | Тур | Max | Unit | Test Conditions | | gh Voltage | VH | 2.0 | | Vcc + 1 | ٧ | | | w Voltage | VIL | -0.1 | | 0.8 | ٧ | | | akage Current | lu | | | 10 | μA | VIN = VIL OF VIH | | ligh Voltage | Vон | 2.4 | | | ٧ | Іон = −400μА | | ow Voltage | Vol | | | 0.45 | ٧ | IoL = 2.1mA | | Program
Inhibit | lccı | | | 25mA | | CE = V _{IH} | | Program
Verify | Icc2 | | | 100mA | - 112 | | | Program | IPP2 | | | 30mA | | CE = PGM = VIL | | Program
Verity | lpp3 | | | 15mA | | CE = V _{IL}
PGM = V _{IH} | | Program
Inhibit | lpp4 | | | 15mA | | CE = V _{IH} | | | gh Voltage w Voltage akage Current fligh Voltage ow Voltage Program Inhibit Program Verify Program Program Program Program Program Program | h Voltage | Sh Voltage | rameter Symbol Min Typ ph Voltage VH 2.0 VH 2.0 w Voltage ViL -0.1 VH 2.0 w Voltage VoL | Online | rameter Symbol Min Typ Max Unit gh Voltage VH 2.0 Vcc + 1 V w Voltage Vi. -0.1 0.8 V akage Current Iu 10 μA ligh Voltage VoH 2.4 V ow Voltage VoL 0.45 V Program Inhibit Icc1 25mA Program Verify Icc2 100mA Program IPP2 30mA Program Verify IPP3 15mA Program IPP3 15mA | #### Note: F Vcc 6V ± 0.25V for high-speed programming. # AC Characteristics Read Mode and Standby Mode $T_A = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = +5V \pm 5\%; V_{PP} = V_{CC}$ | | Limits | | | | | | | | | | | |---|--------|--------|---|-----|-------|----------|-----|---------|-----|------|----------------------| | | | 27128- | | 27 | 128 I | 27128-3① | | 27128-4 | | C | Test | | Parameter | Symbol | Min M | × | Min | Max | Min | Max | Min | Max | Unit | Conditions | | Address to
Output
Delay | tacc | 20 | 0 | | 250 | | 300 | | 450 | пв | CE = OE = | | CE to Output
Delay | tce | 20 | 0 | | 250 | | 300 | | 450 | ns | OE = V _{IL} | | Output En-
able to Out-
put Delay | toe | 7 | 5 | | 100 | | 120 | | 150 | ns | ČĚ = V _{IL} | | Output En-
able High to
Output De-
lay | to⊭ | 0 6 | 0 | 0 | 85 | 0 | 105 | 0 | 130 | ns | CE = V _{IL} | | Address to
Output Hold
Time | tон | 0 | | 0 | | 0 | | 0 | | ns | CE = OE = | Note: ① Available as either UV or OTP. Test Conditions— Output Load: See Fig. 1. Input Rise and Fall Times: 20ns Input Pulse Levels: 0.45V to 2.4V Timing Measurement Reference Levels: Inputs: 0.8V and 2.0V Outputs: 0.8V and 2.0V #### AC Characteristics (Cont.) Program, Program Verify, and Program Inhibit Modes $T_A = 25^{\circ}C \pm 5^{\circ}C$; $V_{CC} = +5V \pm 5^{\circ}C$; $V_{PP} = +21V \pm 0.5V$ | | | Limits | | Unit | | |-----------------|---|---|--|---|---| | Symbol | Min | Тур | Max | | Test Conditions | | tas | 2 | | | μ\$ | Input Pulse Levels | | toes | 2 | | | μS | = 0.45V to 2.4V | | tos | 2 | | | μ\$ | Input Timing Reference Level = | | tan | 0 | | | μ8 | 0.8V and 2.0V | | tces | 2 | | | μs | Output Timing Reference Level = | | t _{DH} | 2 | | | μS | 0.8V and 2V | | t _{DF} | 0 | | 130 | ns | Input Rise and Fall
Times: 20ns | | toe | | | 150 | ns | • | | tpw | 45 | 50 | 55 | ms | - | | tvs | 2 | | • | μs | - | | | tas toes toes tah toes toh toes toh top top | tas 2 toes 2 tos 2 tos 2 tan 0 toes 2 tan 0 toes 2 toh 2 tor 0 toe toe 45 | Symbol Min Typ tas 2 toes 2 tos 2 tah 0 tces 2 tbh 2 tor 0 toe 1 toe 0 | Symbol Min Typ Max tas 2 toes 2 tos 2 tah 0 tces 2 tbh 2 tor 130 toe 150 tpw 45 50 55 | Symbol Min Typ Max Unit tas 2 μs loss 2 μs tos 2 μs tah 0 μs toes 2 μs toh 2 μs toh 0 130 ns toe 150 ns tew 45 50 55 ms | Note: ①Vcc = 6V ± 0.25V and tew = 1 ms ± 5% for high-speed programming #### **Test Conditions**— Input Pulse Levels = 0.45V to 2.4V Input Timing Reference Level = 0.8V and 2.0V Output Timing Reference Level = 0.8V and 2V Input Rise and Fall Times: 20ns Figure 1. Loading Conditions Test Circuit #### **Function** The μ PD27128 operates from a single +5V power supply making it ideal for microprocessor applications. The $\mu PD27128$ features a standby mode which reduces the power dissipation. #### Operation The six operation modes of the $\mu PD27128$ are listed in Table 1. In the read mode the only power supply required is a +5V supply. During programming all inputs are TTL levels except for V_{PP} which rises from V_{CC} level to 21V. #### **Read Mode** When $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are at a low (0) level, Read is set and data is available at the outputs after t_{OE} from the falling edge of $\overline{\text{OE}}$ and t_{ACC} after setting the address. ### **Standby Mode** The μ PD27128 is placed in a standby mode with the application of a high (1) level TTL signal to the $\overline{\text{CE}}$ input. In this mode the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ input. The active power dissipation is also reduced. ### **Programming Modes** The μPD27128 can be programmed in two ways: (1) conventional programming mode, and (2) high-speed programming mode. In the conventional mode, basically a 50ms PGM pulse is applied to each bit location. The high-speed programming mode is similar to the Intelligent Programming Algorithm™, in which up to fifteen 1ms PGM pulses are applied to each bit location, followed by an additional 4ms PGM pulse for each number of 1ms pulses applied before. The high-speed programming mode reduces the programming time to 120s typical. ## Conventional Programming Mode Programming begins with erasing all data and consequently having all bits in the high (1) level state. Data is then entered by programming a low (0) level TTL signal into the chosen The $\mu PD27128$ is placed in the programming mode by applying a low (0) level TTL signal to the CE and PGM with VPP at +21V. The data to be programmed is applied to the output pins in 8-bit parallel form at TTL levels. Any location can be programmed at any time, either individually, sequentially, or at random. When multiple µPD27128s are connected in parallel except for CE, individual µPD27128s can be programmed by applying a low (0) level TTL pulse to the PGM input of the desired µPD27128 to be programmed. Programming of multiple µPD27128s in parallel with the same data is easily accomplished. All the like inputs are tied together and programmed by applying a low (0) level TTL pulse to the PGM inputs. ## **High-speed Programming Mode** In this mode, programming begins by addressing the first location, and valid data appearing at the eight output pins (a low level TTL signal, 0, into the chosen bit location). V_{CC} is then raised to 6V \pm 0.25V followed by V_{PP} raised to $21V \pm 0.5V$. A \overrightarrow{PGM} pulse of 1ms \pm 5% is then applied in the same manner as described in the program mode timing diagram. The bit is then verified and a program/no program decision is made. If the bit is not programmed, another 1ms PGM pulse is applied, to a maximum of fifteen times. If the bit gets programmed within fifteen efforts, another pulse of 4ms for each effort is applied and the next address is applied. If the bit does not get programmed in fifteen 1ms efforts, another PGM pulse of 60ms is applied and the bit verified. If the bit is not programmed at this stage, the device would be rejected as a program failure. If the bit is programmed, the next address is applied until all addresses are complete. At this stage, V_{CC} and V_{PP} pins are lowered to 5V \pm 5% and all bytes are then verified again for programming. This algorithm is compatible with that of the µPD2764. ## **Program Verify Mode** A verify should be performed on the programmed bits to determine that the data was correctly programmed. The program verify can be performed with CE and OE at low (0) levels and \overline{PGM} at a high (1) level. ## Programming Inhibit Mode Programming multiple µPD27128s in parallel with different data is easier with the program inhibit mode. Except for CE (or \overline{PGM}), all like inputs (including \overline{OE}) of the parallel μPD27128s may be common. Programming is accomplished by applying a low (0) TTL-level program pulse to the CE (or PGM) input with VPP at +21V. A high (1) level applied to the \overrightarrow{CE} (or \overrightarrow{PGM}) of the other $\mu PD27128s$ will inhibit it from being programmed. #### **Output Disable** The data outputs of two or more µPD27128s may be wire-ORed together to the same data bus. In order to prevent bus contention problems between devices, all but the selected µPD27128 should be disabled by raising the CE input to a TTL high. OE input should be made common to all devices and connected to the read line from the system control bus. These connections offer the lowest average power consumption. #### Erasure Mode Erasure of the μPD27128 programmed data can be attained when exposed to light with wavelengths shorter than approximately 4,000 Angstroms (A). It should be noted that constant exposure to direct sunlight or room level fluorescent lighting could erase the µPD27128. Consequently, if the $\mu\bar{P}D27128$ is to be exposed to these types of lighting conditions for long periods of time, its window should be masked to prevent unintentional erasure. Opaque labels are supplied with every device. The recommended erasure procedure for the µPD27128 is exposure to ultraviolet light with wavelengths of 2,537 Angstroms (Å). The integrated dose (i.e., UV intensity \times exposure time) for erasure should be not less than 15W-sec/cm². The erasure time is approximately 15 to 20 minutes using an ultraviolet lamp of 12,000 µW/cm² power rating. During erasure, the µPD27128 should be placed within 1 inch of the lamp tubes. If the lamps have filters on the tubes. the filters should be removed before erasure. ### **Timing Waveforms**