CMOS GRAPHIC LCD/TV CONTROLLER

- For Medium-Scale LCD
- Output to LCD-Screen
- Virtual Screen Display RAM
- Enhanced Control Function
- Simultaneous LCD & TV Display

■ DESCRIPTION

The SED1336 is a CMOS low-power dot matrix liquid crystal graphic display controller with built-in TV support. The built-in TV support IC is capable of displaying characters and graphic images simultaneously on TV monitors and flat panels.

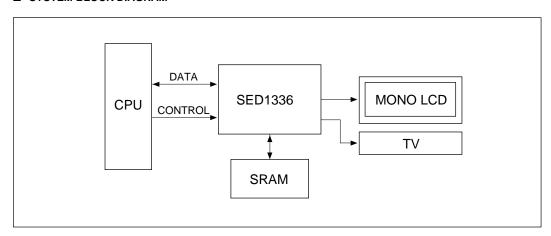
The SED1336 has a built-in TV control circuit that generates either NTSC or PAL system synchronous signals, memory. The device stores the display data in external SRAM that is sent by an 8-bit microcomputer, and generates all the control signals required by the LCD drivers.

The controller incorporates an internal character generator ROM which supports user-defined characters. An external CG ROM can also be supported to provide additional characters.

The SED1336 can be interfaced to high-speed microprocessors such as the Intel 80xx family or the Motorola 68xx family. The controller supports a set of commands that allow the user to create a layered display of characters and graphics.

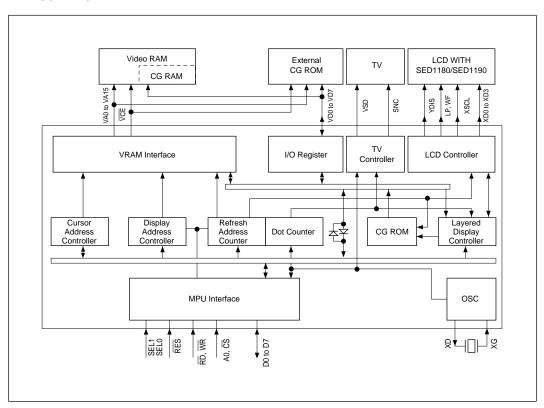
■ FEATURES

- Low-power CMOS fabrication
- Compatible with both Intel 80XX and Motorola 68XX high-speed MPU
- Display duty:

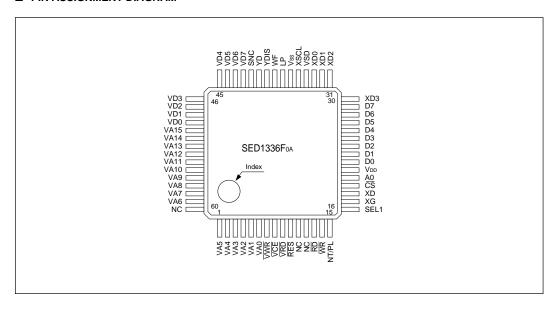

- Internal and external character generator ROM
- Simultaneous LCD and TV operation

- Selectable display synthesis
- Programmable cursor movement
- Multimode display:

2 layers of overlapping character and graphic3 layers of overlapping graphic


- Supports 64K bytes of memory
- Single power supply 3.0V to 5.5V
- Package Plastic QFP6-60 pin (F0A)

■ SYSTEM BLOCK DIAGRAM



■ BLOCK DIAGRAM

■ PIN ASSIGNMENT DIAGRAM

■ PIN DESCRIPTION

Name	Number	Type	Description
VA0 to VA5 VA6 to VA15	6 to 1 59 to 50	Output	VRAM address bus
VWR	7	Output	VRAM write signal
VCE	8	Output	Memory control signal
VRD	9	Output	VRAM read signal
RES	10	Input	Reset
NC	11, 60	_	No connection
CLO	12	Output	Clock output
RD	13	Input	8080-family: Read signal 6800-family: Enable clock (E)
WR	14	Input	8080-family: Write signal 6800-family: R/W signal
NT/PL	15	Input	NTSC or PAL TV mode select
SEL1	16	Input	8080- or 6800-family interface select
OSC1	17	Input	Oscillator connection
OSC2	18	Output	Oscillator connection
CS	19	Input	Chip select
A0	20	Input	Data type select
VDD	21	Supply	3.0 to 5.5V supply
D0 to D7	22 to 29	Input/output	Data bus
XD0 to XD3	30 to 33	Output	Data to LCD X-driver
VSD	34	Output	Video data
XSCL	35	Output	Data shift clock
VSS	36	Supply	Ground
LP	37	Output	Latch pulse
WF	38	Output	Frame signal
YDIS	39	Output	Power-down signal when display is blanked
YD	40	Output	Scan start pulse
SNC	41	Output	TV sync signal
VD0 to VD7	42 to 49	Input/output	VRAM data bus

■ ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	VDD	-0.3 to 7.0	V
Input voltage range	VIN	-0.3 to VDD + 0.3	V
Power dissipation	PD	300	mW
Operating temperature range	Topr	-20 to 75	°C
Storage temperature range	Tstg	-65 to 150	°C
Soldering temperature (10 seconds). See note 1.	Tsolder	260	°C

The humidity resistance of the flat package may be reduced if the package is immersed in solder. Use a soldering technique
that does not heatstress the package.

^{2.} If the power supply has a high impedance, a large voltage differential can occur between the input and supply voltages. Take appropriate care with the power supply and the layout of the supply lines.

^{3.} All supply voltages are referenced to Vss = 0V.

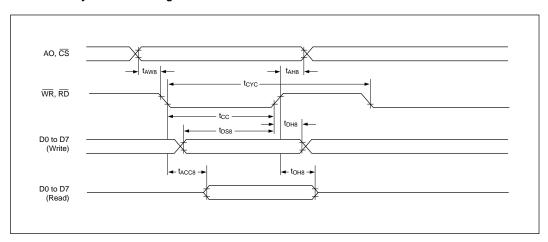
DC Electrical Characteristics

VDD = 4.5 to 5.5V, VSS = 0V, Ta = -20 to $75^{\circ}C$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage	Vdd		4.5	5.0	5.5	V
Register data retention voltage	Vно		2.0	_	6.0	V
Input leakage current	Iμ	VI = VDD. See note 6.	_	0.05	2.0	μΑ
Output leakage current	ILO	Vı = Vss. See note 6.	_	0.10	5.0	μΑ
Operating supply current	lopr	See note 4.	_	11	15	mA
Quiescent supply current	lq	Sleep mode, $VOSC1 = V\overline{CS} = V\overline{RD} = VDD$		0.05	20.0	μΑ
Oscillator frequency	fosc	Measured at crystal,	1.0	_	10.0	MHz
External clock frequency	fcL	47.5% duty cycle.	1.0	_	10.0	MHz
Oscillator feedback resistance	Rf	See note 7.	0.5	1.0	3.0	МΩ
TTL						
HIGH-level input voltage	VIHT	See note 1.	0.8Vpd	_	Vdd	V
LOW-level input voltage	VILT	See note 1.	Vss	_	0.2Vdd	V
HIGH-level output voltage	VOHT	IOH = -5.0 mA. See note 1.	2.4	_	_	V
LOW-level output voltage	Volt	IoL = 5.0 mA. See note 1.	_	_	Vss + 0.4	V
CMOS						
HIGH-level input voltage	VIHC	See note 2.	0.8Vpd	_	Vdd	V
LOW-level input voltage	VILC	See note 2.	Vss	_	0.2Vdd	V
HIGH-level output voltage	Vонс	IOH = -2.0 mA. See note 2.	VDD - 0.4	_	_	V
LOW-level output voltage	Volc	Iон = 1.6 mA. See note 2.	_	_	Vss + 0.4	V
Open-drain						
LOW-level output voltage	Voln	IoL = 6.0 mA. See note 5.	_	_	Vss + 0.4	V
Schmitt-trigger						
Rising-edge threshold voltage	VT+	See note 3.	0.5VDD	0.7Vpd	0.8VDD	V
Falling-edge threshold voltage	VT-	See note 3.	0.2Vdd	0.3Vpd	0.5VDD	V

Notes:

- D0 to D7, A0, CS, RD, WR, VD0 to VD7, VA0 to VA15, VRD, VWR and VCE are TTL-level inputs.
- SEL1 and NT/PL are CMOS-level inputs. YD, XD0 to XD3, XSCL, LP, WF, YDIS and CLO are CMOS-level outputs.
- 3. RES is a Schmitt-trigger input. The pulsewidth on RES must be at least 200 µs. Note that pulses of more than a few seconds will cause DC voltages to be applied to the LCD panel.
- fOSC = 10 MHz, no load (no display memory), internal character generator, 256 × 200 pixel display. The operating supply current can be reduced by approximately 1 mA by setting both CLO and the display OFF.
- SNC and VSD are n-channel, open-drain outputs. The voltage on the outputs should not exceed VDD as internal diodes connect the pins to VDD (SED1336F only).
- 6. VD0 to VD7 and D0 to D7 have internal feedback circuits so that if the inputs become high-impedance, the input state immediately prior to that is held. Because of the feedback circuit, input current flow occurs when the inputs are in an intermediate state.
- 7. Because the oscillator circuit input bias current is in the order of μA , design the printed circuit board so as to reduce leakage currents.


VDD = 3.0 to 4.5V, VSS = 0V, Ta = -20 to $75^{\circ}C$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage	Vdd	See note 8.	3.0	3.5	4.5	V
Register data retention voltage	Vно		2.0	_	6.0	V
Input leakage current	Iμ	VI = VDD. See note 6.	_	0.05	2.0	μΑ
Output leakage current	ILO	Vı = Vss. See note 6.	_	0.10	5.0	μΑ
Operating supply current	lopr	VDD = 3.5V. See note 4. See note 4.	_	3.5	7.0	mA
Quiescent supply current	ΙQ	Sleep mode, Vosc1 = Vcs = VRD = VDD	_	0.05	20.0	μΑ
Oscillator frequency	fosc	Measured at crystal,	1.0	_	8.0	MHz
External clock frequency	fcL	47.5% duty cycle.	1.0	_	8.0	MHz
Oscillator feedback resistance	Rf	See note 7.	0.7	_	3.0	$M\Omega$
TTL						
HIGH-level input voltage	VIHT	See note 1.	0.8Vpp	_	VDD	V
LOW-level input voltage	VILT	See note 1.	Vss	_	0.2Vdd	V
HIGH-level output voltage	Vонт	Iон = -3.0 mA. See note 1.	2.4	_	_	V
LOW-level output voltage	Volt	IoL = 3.0 mA. See note 1.	_	_	Vss + 0.4	V
CMOS						
HIGH-level input voltage	VIHC	See note 2.	0.8Vpp	_	Vdd	V
LOW-level input voltage	VILC	See note 2.	Vss	_	0.2Vdd	V
HIGH-level output voltage	Vонс	Іон = -2.0 mA. See note 2.	VDD - 0.4	_	_	V
LOW-level output voltage	Volc	Iон = 1.6 mA. See note 2.	_	_	Vss + 0.4	V
Open-drain						
LOW-level output voltage	Voln	IoL = 6.0 mA. See note 5.	_	_	Vss + 0.4	V
Schmitt-trigger						
Rising-edge threshold voltage	VT+	See note 3.	0.5Vdd	0.7V _{DD}	0.8Vpd	V
Falling edge threshold voltage	VT-	See note 3.	0.2Vdd	0.3Vpd	0.5Vdd	V

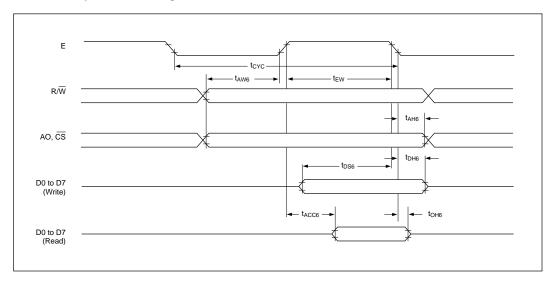
Notes:

- 1. D0 to D7, A0, \overline{CS} , \overline{RD} , \overline{WR} , VD0 to VD7, VA0 to VA15, \overline{VRD} , \overline{VWR} and \overline{VCE} are TTL-level inputs.
- SEL1 and NT/PL are CMOS-level inputs. YD, XD0 to XD3, XSCL, LP, WF, YDIS and CLO are CMOS-level outputs.
- 3. RES is a Schmitt-trigger input. The pulsewidth on RES must be at least 200 μs. Note that pulses of more than a few seconds will cause DC voltages to be applied to the LCD panel.
- 4. fOSC = 10 MHz, no load (no display memory), internal character generator, 256 × 200 pixel display. The operating supply current can be reduced by approximately 1 mA by setting both CLO and the display OFF.
- SNC and VSD are n-channel, open-drain outputs. The voltage on the outputs should not exceed VDD as internal diodes connect the pins to VDD.
- 6. VD0 to VD7 and D0 to D7 have internal feedback circuits so that if the inputs become high-impedance, the input state immediately prior to that is held. Because of the feedback circuit, input current flow occurs when the inputs are in an intermediate state.
- 7. Because the oscillator circuit input bias current is in the order of μA , design the printed circuit board so as to reduce leakage currents.
- 8. VDD = 2.7 to 4.5 V (SED1335F)

Timing Diagrams8080-Family Interface Timing

 $T_a = -20 \text{ to } 75^{\circ}\text{C}$

Signal	Symbol	Parameter	VDD = 4.5	5 to 5.5V	VDD = 3.0) to 4.5V	Unit	Condition
Signal	Symbol	Farameter	min	max	min	max	Offic	
A0, CS	tah8	Address hold time	10	_	10		ns	
AU, CS	taw8	Address setup time	0	_	0		ns	
WR, RD	tcyc	System cycle time	See note	_	See note		ns	
VVIX, ND	tcc	Strobe pulsewidth	120	_	140		ns	CL = 100
	tDS8	Data setup time	120	_	120		ns	pF
D0 to D7	tDH8	Data hold time	5	_	5		ns	
00 10 07	tACC8	RD access time	_	50	_	70	ns	
	ton8	Output disable time	10	50	10	50	ns	


Note: For memory control and system control commands:

 $t_{CYC8} = 2t_{C} + t_{CC} + t_{CEA} + 75 > t_{ACV} + 245$

For all other commands:

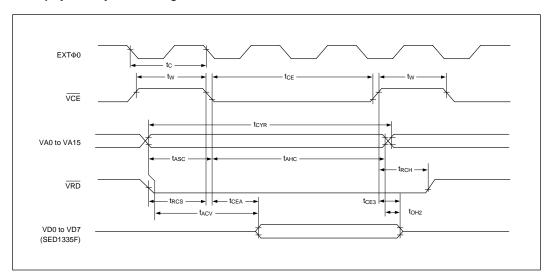
tcyc8 = 4tc + tcc + 30

o 6800-Family Interface Timing

Note: tcyc6 indicates the interval during which $\overline{\text{CS}}$ is LOW and E is HIGH.

 $T_a = -20 \text{ to } 75^{\circ}\text{C}$

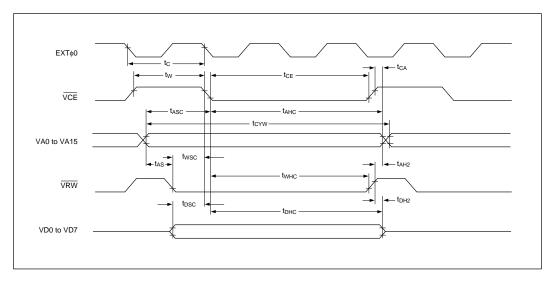
Signal	Symbol	Parameter	VDD = 4.5	5 to 5.5V	VDD = 3.0	0 to 4.5V	Unit	Condition
Oignai Oymboi	Parameter	min	max	min	max	Offic	Condition	
A0,	tCYC6	System cycle time	See note		See note	_	ns	
A0, CS, R/W	tAW6	Address setup time	0		10	_	ns	
R/W	tah6	Address hold time	0		0	_	ns	
	tDS6	Data setup time	100		120	_	ns	CL =
D0 to D7	tDH6	Data hold time	0		0	_	ns	100 pF
50 10 57	toH6	Output disable time	10	50	10	70	ns	
	tACC6	Access time	_	85	_	120	ns	
E	tew	Enable pulsewidth	120	_	140	_	ns	


Note: For memory control and system control commands:

tCYC6 = 2tC + tEW + tCEA + 75 > tACV + 245

For all other commands:

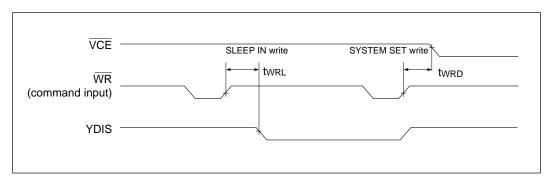
tCYC6 = 4tC + tEW + 30


o Display Memory Read Timing

 $T_a = -20 \text{ to } 75^{\circ}\text{C}$

Cianal	Command and	Davassatas	VDD = 4.	5 to 5.5V	VDD = 3.	0 to 4.5V	l lait	Constition
Signal	Symbol	Parameter	min	max	min	max	Unit	Condition
EXT φ0	tc	Clock period	100	_	125	_	ns	
VCE	tw	VCE HIGH-level pulsewidth	tc - 50	_	tc - 50	_	ns	
VOL	tce	VCE LOW-level pulsewidth	2tc - 30	_	2tc - 30	_	ns	
	tcyr	Read cycle time	3tc	_	3tc	_	ns	
VA0 to VA15	tasc	Address setup time to falling edge of VCE	tc - 70	_	tc - 100		ns	
	tahc	Address hold time from falling edge of VCE	2tc - 30	_	2tc - 40	_	ns	CL = 100 pF
VRD	trcs	Read cycle setup time to falling edge of VCE	tc - 45	_	tc - 55	_	ns	
VILD	trch	Read cycle hold time from rising edge of VCI	0.5tc	_	0.5tc	_	ns	
	tacv	Address access time	_	3tc - 100	_	3tc - 110	ns	
VD0 to	tCEA	VCE access time	_	2tc - 80	_	2tc - 85	ns	
VD7	toH2	Output data hold time	0		0		ns	
	tCE3	VCE to data off time	0	_	0	_	ns	

o Display Memory Write Timing

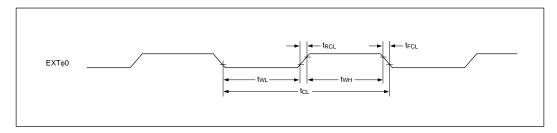


 $T_a = -20 \text{ to } 75^{\circ}\text{C}$

Signal	Symbol	Parameter	VDD = 4.	5 to 5.5V	VDD = 3.0	0 to 4.5V	Unit	Condition
Oignai	Cymbol	rarameter	min	max	min	max	Onit	Condition
EXT φ0	tc	Clock period	100	_	125	_	ns	
VCE	tw	VCE HIGH-level pulsewidth	tc - 50	_	tc - 50	_	ns	
VOL	tCE	VCE LOW-level pulsewidth	2tc - 30	_	2tc - 30		ns	
	tcyw	Write cycle time	3tc	_	3tc	_	ns	
	tahc	Address hold time from falling edge of VCE	2tc - 30	_	2tc - 40	_	ns	
	tasc	Address setup time to falling edge of VCE	tc - 70	_	tc - 100	ı	ns	
VA0 to VA15	tCA	Address hold time from rising edge of VCE	0	_	0	1	ns	
	tas	Address setup time to falling edge of VWR	0	_	0	_	ns	CL = 100 pF
	tAH2	Address hold time from rising edge of VWR	10	_	10		ns	
VWR	twsc	Write setup time to falling edge of VCE	tc - 80	_	tc - 110		ns	
, , , , , , , , , , , , , , , , , , ,	twnc	Write hold time from falling edge of VCE	2tc - 20	_	2tc - 20		ns	
	tosc	Data input setup time to falling edge of VCE	tc - 85	_	tc - 120	_	ns	
VD0 to VD7	tDHC	Data input hold time from falling edge of VCE	2tc - 30	_	2tc - 30	_	ns	
	tDH2	Data hold time from rising edge of VWR	5	50	5	50	ns	

Note: VD0 to VD7 are latching input/outputs. While the bus is high impedance, VD0 to VD7 retain the write data until the data read from the memory is placed on the bus.

• SLEEP IN Command Timing



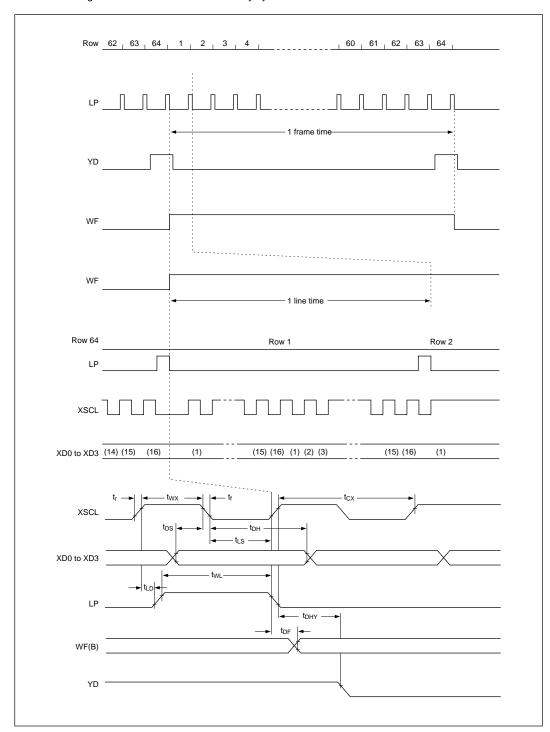
 $Ta = -20 \text{ to } 75^{\circ}\text{C}$

Signal Symbol	Symbol	Parameter	VDD = 4.5 to 5.5V		VDD = 3.0 to 4.5V		Unit	Condition
	i didilicioi	min	max	min	max		Condition	
WR twrd	twrd	VCE falling-edge delay time	*1	_	*1	_	ns	CL=
VVIX	twrL	YDIS falling-edge delay time	_	*2	_	*2	ns	100 pF

- 1. tWRD = 18tc + toss + 40 (toss is the time delay from the sleep state until stable operation)
- 2. $twrL = 36tc \times [TC/R] \times [L/F] + 70$

o External Oscillator Signal Timing

 $T_a = -20 \text{ to } 75^{\circ}\text{C}$


Signal	Symbol	Parameter	VDD = 4.	VDD = 4.5 to 5.5V		0 to 4.5V	Unit	Condition
Oignai	- Cymbol	r diamotor	min	max	min	max	O i iii	00.10.11.011
EXT ϕ 0	trcl	External clock rise time	_	15	_	15	ns	
	tFCL	External clock fall time	_	15	_	15	ns	
	twn	External clock HIGH-level pulsewidth	*1	*2	*1	*2	ns	
	twL	External clock LOW-level pulsewidth	*1	*2	*1	*2	ns	
	tc	External clock period	100	_	125	_	ns	

^{1.} $(tc - trcl - trcl) \times \frac{475}{1000} < twh, twl$

^{2.} $(tc - trcl - trcl) \times \frac{525}{1000} > twh, twl$

• LCD Output Timing

The following characteristics are for a 1/64 duty cycle.

 $T_a = -20 \text{ to } 75^{\circ}\text{C}$

Signal	Symbol	Parameter	VDD = 4.5	5 to 5.5V	VDD = 3.0	0 to 4.5V	Unit	Condition
Oignai	2.3 3,	rarameter	min	max	min	max	Offic	
	tr	Rise time	_	30	_	35	ns	
	tf	Fall time	_	30	_	35	ns	
XSCL	tcx	Shift clock cycle time	4tc		4tc	_	ns	
AGGL	twx	XSCL clock pulsewidth	2tc - 60		2tc - 60	_	ns	
XD0 to	tDH	X data hold time	2tc - 50	_	2tc - 50	_	ns	CL=
XD3	tos	X data setup time	2tc - 100		2tc - 100	_	ns	100 pF
	tLS	Latch data setup time	2tc - 50	_	2tc - 50	_	ns	
LP	twL	LP pulsewidth	4tc - 80		4tc - 100	_	ns	
	tld	LP delay time from XSCI	0		0	_	ns	
WF	tDF	Permitted WF delay	_	50	_	50	ns	
YD	tDHY	Y data hold time	2tc - 20	_	2tc - 20	_	ns	

Note: The SED1336F reads display memory data from the address of the top left corner of the display screen, then scans horizontally until it reaches the address for the bottom right corner of the display screen. Therefore, each line of X-driver data is sent starting from the left side of the display line.