

MOS INTEGRATED CIRCUIT $\mu PD434008AL$

4M-BIT CMOS FAST SRAM 512K-WORD BY 8-BIT

Description

The μPD434008AL is a high speed, low power, 4,194,304 bits (524,288 words by 8 bits) CMOS static RAM.

Operating supply voltage is $3.3 \text{ V} \pm 0.3 \text{ V}$.

The μ PD434008AL is packaged in 36-pin plastic SOJ.

Features

• 524,288 words by 8 bits organization

• Fast access time: 15, 17, 20 ns (MAX.)

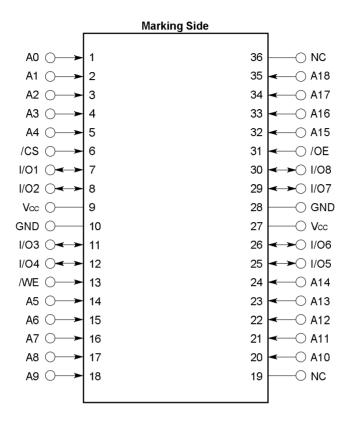
• Output Enable input for easy application

• Single +3.3 V power supply

Ordering Information

Part number	Package	Access time	Supply currer	nt mA (MAX.)
		ns (MAX.)	At operating	At standby
μPD434008ALLE-A15	36-pin plastic SOJ	15	150	5
μPD434008ALLE-A17	(10.16 mm (400))	17	140	
μPD434008ALLE-A20		20	130	

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

Pin Configuration

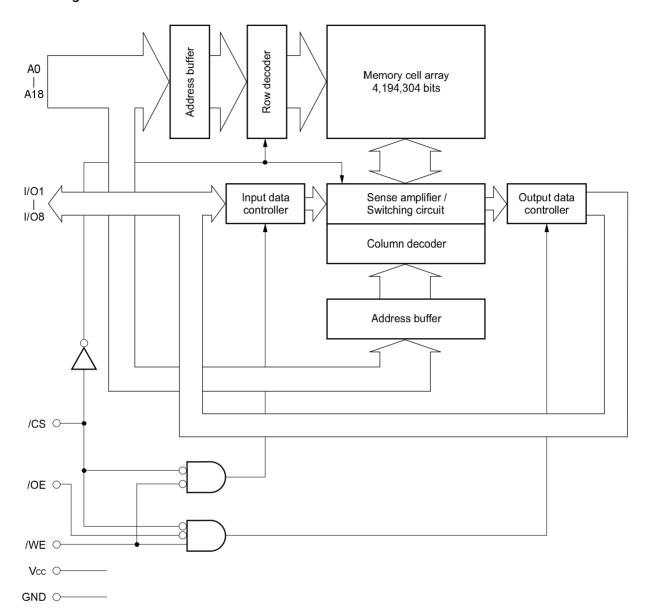
/xxx indicates active low signal.

36-pin plastic SOJ (10.16 mm (400))

A0 to A18 : Address Inputs

I/O1 to I/O8: Data Inputs / Outputs

/CS : Chip Select /WE : Write Enable /OE : Output Enable : Power supply Vcc


: Ground **GND**

NC : No connection

Remark Refer to Package Drawing for the 1-pin index mark.

Block Diagram

Truth Table

/CS	/OE	/WE	Mode	I/O	Supply current
Н	×	×	Not selected	High-Z	IsB
L	L	Н	Read	Douт	lcc
L	×	L	Write	Din	
L	Н	Н	Output disable	High-Z	

Remark ×: Don't care

Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	Vcc		–0.5 ^{Note} to +4.6	V
Input / Output voltage	VT		–0.5 ^{Note} to +4.6	٧
Operating ambient temperature	TA		0 to 70	°C
Storage temperature	Tstg		-55 to +125	°C

Note -2.0 V (MIN.) (pulse width: 2 ns)

Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		3.0	3.3	3.6	٧
High level input voltage	Vıн		2.2		Vcc+0.3	V
Low level input voltage	V⊩		-0.3 Note		+0.8	V
Operating ambient temperature	TA		0		70	°C

Note -2.0 V (MIN.) (pulse width: 2 ns)

DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

Parameter	Symbol	Test condition		MIN.	TYP.	MAX.	Unit
Input leakage current	lu	V _{IN} = 0 V to V _{CC}		-2		+2	μΑ
Output leakage current	llo	V _{I/O} = 0 V to V _{CC} ,		-2		+2	μΑ
		/CS = VH or /OE = VH	or /WE = V _{IL}				
Operating supply current	lcc	/CS = VIL,	Cycle time : 15 ns			150	mA
		II/O = 0 mA,	Cycle time : 17 ns			140	
		Minimum cycle time	Cycle time : 20 ns			130	
Standby supply current	İsb	/CS = VIH, VIN = VIH or	VIL			50	mA
	Is _{B1}	/CS ≥ Vcc - 0.2 V,				5	
		$V_{IN} \le 0.2 \text{ V or } V_{IN} \ge V_{CC} - 0.2 \text{ V}$					
High level output voltage	Vон	Iон = -4.0 mA		2.4			V
Low level output voltage	Vol	IoL = +8.0 mA				0.4	V

Remark VIN: Input voltage

VI/O: Input / Output voltage

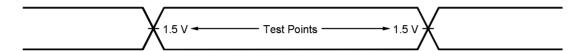
Capacitance (TA = 25 °C, f = 1 MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	V _{IN} = 0 V			6	pF
Input / Output capacitance	C _{I/O}	V _{I/O} = 0 V			10	pF

Remarks 1. VIN: Input voltage

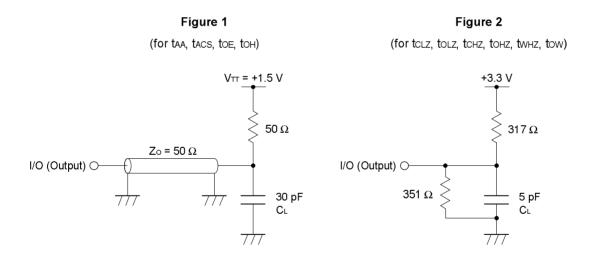
VI/O: Input / Output voltage


2. These parameters are periodically sampled and not 100% tested.


AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)

AC Test Conditions

Input Waveform (Rise and Fall Time ≤ 3 ns)

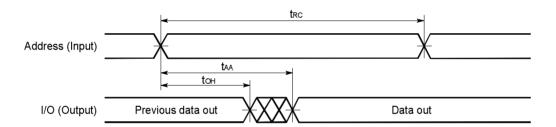


Output Waveform

Output Load

AC characteristics directed with the note should be measured with the output load shown in **Figure 1** or **Figure 2**.

Remark CL includes capacitances of the probe and jig, and stray capacitances.

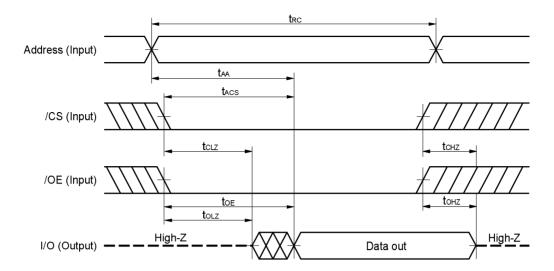


Read Cycle

Parameter	Symbol	-A15		-A17		-A20		Unit	Notes
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Read cycle time	trc	15		17		20		ns	
Address access time	taa		15		17		20	ns	1
/CS access time	tacs		15		17		20	ns	
/OE access time	toe		7		8		10	ns	
Output hold from address change	tон	3		3		3		ns	
/CS to output in low impedance	touz	3		3		3		ns	2, 3
/OE to output in low impedance	toız	0		0		0		ns	
/CS to output in high impedance	tснz		7		8		8	ns	
/OE to output hold in high impedance	tонz		7		8		8	ns	

- Notes 1. See the output load shown in Figure 1.
 - 2. Transition is measured at ± 200 mV from steady-state voltage with the output load shown in Figure 2.
 - 3. These parameters are periodically sampled and not 100% tested.

Read Cycle Timing Chart 1 (Address Access)



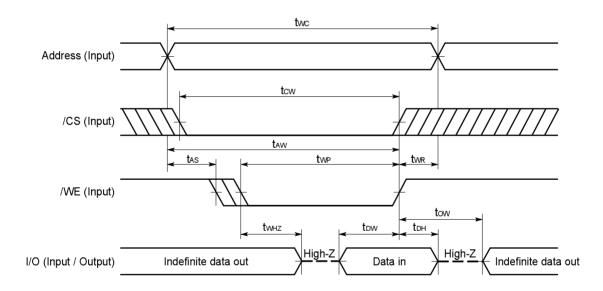
Remarks 1. In read cycle, /WE should be fixed to high level.

2. /CS = /OE = VIL

Read Cycle Timing Chart 2 (/CS Access)

Caution Address valid prior to or coincident with /CS low level input.

Remark In read cycle, /WE should be fixed to high level.

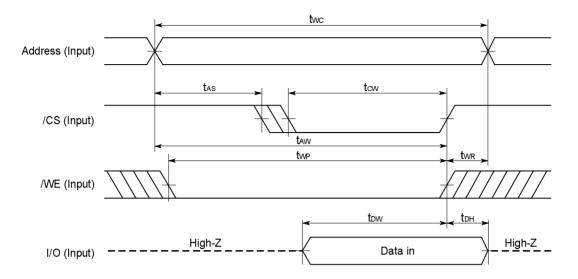

Write Cycle

Parameter	Symbol	-A15		-A17		-A20		Unit	Notes
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Write cycle time	twc	15		17		20		ns	
/CS to end of write	tcw	10		11		12		ns	
Address valid to end of write	tavv	10		11		12		ns	
Write pulse width	twp	10		11		12		ns	
Data valid to end of write	tow	7		8		9		ns	
Data hold time	tон	0		0		0		ns	
Address setup time	tas	0		0		0		ns	
Write recovery time	twr	1		1		1		ns	
/WE to output in high impedance	t wHz		7		8		8	ns	1, 2
Output active from end of write	tow	3		3		3	·	ns	

Notes 1. Transition is measured at ± 200 mV from steady-state voltage with the output load shown in **Figure 2**.

2. These parameters are periodically sampled and not 100% tested.

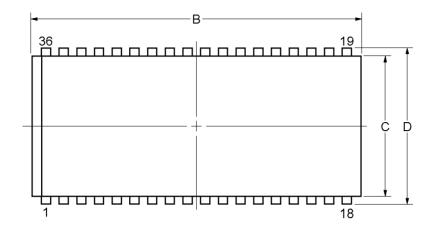
Write Cycle Timing Chart 1 (/WE Controlled)

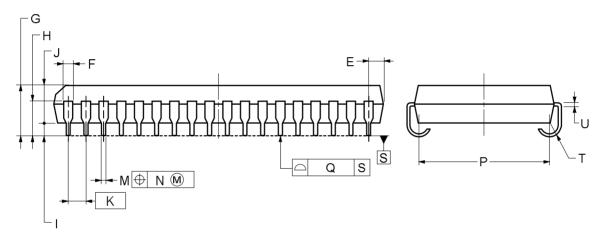

Caution /CS or /WE should be fixed to high level during address transition.

Remarks 1. Write operation is done during the overlap time of a low level /CS and a low level /WE.

- 2. During twHz, I/O pins are in the output state, therefore the input signals must not be applied to the output.
- 3. When ME is at low level, the I/O pins are always high impedance. When ME is at high level, read operation is executed. Therefore /OE should be at high level to make the I/O pins high impedance.

Write Cycle Timing Chart 2 (/CS Controlled)




Caution /CS or /WE should be fixed to high level during address transition.

Remark Write operation is done during the overlap time of a low level /CS and a low level /WE.

Package Drawing

36-PIN PLASTIC SOJ (10.16mm (400))

NOTE

Each lead centerline is located within 0.12 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
В	23.6±0.20
С	10.16±0.1
D	11.18±0.2
Е	1.005±0.1
F	0.74
G	3.5±0.2
Н	2.545±0.2
ı	0.8 MIN.
J	2.6
K	1.27 (T.P.)
М	$0.42^{+0.08}_{-0.07}$
N	0.12
Р	9.4±0.20
Q	0.1
Т	R 0.85
U	0.22 ^{+0.08} -0.07
	P36LE-400A-2

Recommended Soldering Conditions

Please consult with our sales offices for soldering conditions of the μ PD434008AL.

Type of Surface Mount Device

 μ PD434008ALLE : 36-pin plastic SOJ (10.16 mm (400))

Revision History

Edition/	Page		Page		Type of	Location	Description
Date	This Previous		revision		(Previous edition $ ightarrow$ This edition)		
	edition	edition					
6th edition/	p.15	p.15	Modification	NOTES FOR CMOS DEVICES	②HANDLING OF UNUSED INPUT PINS		
Oct. 2002					FOR CMOS		

NEC μ PD434008AL

[MEMO]

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

HANDLING OF THE APPLIED WAVEFORM OF INPUT PINS AND THE UNUSED INPUT PINS FOR CMOS

Note:

Input levels of CMOS devices must be fixed. CMOS devices behave differently than Bipolar or NMOS devices. For CMOS devices, through-current may flow inside and cause malfunction if a middle-level input due to noise etc. is applied to an input pin. Therefore, when the input waveform is fixed, and also when the waveform changes, it is recommended to use the CMOS device under AC test conditions. For unused input pins in particular, CMOS devices should not be operated in a state where nothing is connected, so input levels of CMOS devices must be fixed to high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

- The information in this document is current as of October, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries. (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4