SOLID STATE DEVICES, INC.
14830 Valley View Blvd * La Mirada, Ca 90638
Phone: (562) 404-7855 * Fax: (562) 404-1773

Designer's Data Sheet

FEATURES:

- Hyper Fast Recovery: 5 nsec maximum
- Subminiature Surface Mount Package
- Round Tab Mounting (Square Tabs Available)
- Hermetically Sealed
- Planar Passivated Chip
- For High Efficiency Applications
- TX, TXV, and Space Level Screening Available

Maximum Ratings	SYMBOL	VALUE	UNITS
Peak Repetitive Reverse and DC Blocking Voltage	$\mathbf{V}_{\mathbf{R R M}}$ $\mathbf{V}_{\mathbf{R W M}}$ $\mathbf{V}_{\mathbf{R}}$	$\mathbf{7 5}$	Volts
Average Rectified Forward Current (Resistive Load, 60 Hz, Sine Wave, $\mathrm{T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$	$\mathbf{I o}$	$\mathbf{2 0 0}$	$\mathbf{m A m p s}$
Peak Surge Current (8.3 ms Pulse, Half Sine Wave Superimposed on Io, allow junction to reach equilibrium between pulses, $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathbf{I}_{\mathbf{F S M}}$	$\mathbf{2}$	Amps
Operating and Storage Temperature	$\mathbf{T}_{\mathbf{O P}} \& \mathbf{T}_{\mathbf{S T G}}$	$\mathbf{- 6 5} \mathbf{T O}+\mathbf{2 0 0}$	${ }^{\circ} \mathbf{C}$
Maximum Thermal Resistance Junction to End Tab	$\mathbf{R}_{\theta \mathbf{J E}}$	$\mathbf{0 . 3 5}$	${ }^{\circ} \mathbf{C / m W}$

1N4148SM

Electrical Characteristics	SYMBOL	MAXIMUM	UNITS
Instantaneous Forward Voltage Drop $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ $\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 300-500 \mu \mathrm{~s}\right.$ Pulse $)$ $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	$\begin{aligned} & \mathbf{V}_{\mathrm{F} 1} \\ & \mathbf{V}_{\mathrm{F} 2} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.2 \end{aligned}$	$\mathbf{V}_{\text {DC }}$
$\begin{array}{lr}\text { Instantaneous Forward Voltage Drop } & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C} \\ (300-500 \mu \mathrm{~s} \text { Pulse) } & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\end{array}$	$\begin{aligned} & \mathbf{V}_{\text {F3 }} \\ & \mathbf{V}_{\mathrm{F} 4} \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.3 \end{aligned}$	$\mathbf{V}_{\text {DC }}$
Reverse Leakage Current $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$ $\left(\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 300 \mu \mathrm{~s}\right.$ minimum Pulse) $\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$	$\begin{aligned} & \mathbf{I}_{\mathbf{R} 1} \\ & \mathbf{I}_{\mathbf{R} 2} \end{aligned}$	$\begin{gathered} 25 \\ 500 \end{gathered}$	nA
Reverse Leakage Current $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$ $\left(\mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}, 300 \mu\right.$ s minimum Pulse $)$ $\mathrm{V}_{\mathrm{R}}=75 \mathrm{~V}$	$\begin{aligned} & \mathbf{I}_{\mathbf{R} 3} \\ & \mathbf{I}_{\mathbf{4}} \end{aligned}$	$\begin{aligned} & 35 \\ & 75 \end{aligned}$	$\mu \mathbf{A}$
Junction Capacitance $\left(\mathrm{V}_{\mathrm{R}}=1.5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}\right)$	C_{J}	2.8	pF
Reverse Recovery Time $\left(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{RR}}=1 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	trR	5	nsec

CASE OUTLINE:

ROUND TAB "SM"

DIMENSIONS		
DIM	MIN.	MAX.
A	$.130 "$	$.146^{\prime \prime}$
B	$.0566^{\prime \prime}$	$.064^{\prime \prime}$
C	$.010^{\prime \prime}$	$.022^{\prime \prime}$

