International IER Rectifier

Major Ratings and Characteristics

Characteristics	10MQ060N	Units
$\mathrm{I}_{\mathrm{F}} \quad \mathrm{DC}$	2.1	A
$\mathrm{~V}_{\mathrm{RRM}}$	60	V
$\mathrm{I}_{\mathrm{FSM}}$ @tp $=5 \mu \mathrm{ssine}$	40	A
$\mathrm{~V}_{\mathrm{F}} \quad @ 1.5 \mathrm{Apk}, \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.63	V
$\mathrm{~T}_{\mathrm{J}} \quad$ range	-55 to 150	${ }^{\circ} \mathrm{C}$

Description/Features

The 10MQ060N surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

DeviceMarking: IR1H

(1) POLARITY (2) PART NUMBER

SOLDERING PAD

Dimensions in millimeters and (inches)
For recommended footprint and soldering techniques refer to application note \#AN-994

Voltage Ratings

Part number	10MQ060N
$\mathrm{V}_{\mathrm{R}} \quad$ Max. DC Reverse Voltage (V)	60
$\mathrm{~V}_{\mathrm{RWM}}$ Max. Working Peak Reverse Voltage (V)	60

Absolute Maximum Ratings

Parameters		10MQ	Units	Conditions	
$\mathrm{I}_{\text {(AV) }}$	Max.AverageForwardCurrent *SeeFig. 4	1.5	A	50% dutycycle @ $T_{L}=120^{\circ} \mathrm{C}$, rectangularwaveform. OnPCboard $9 \mathrm{~mm}^{2}$ island(.013mmthickcopperpad area)	
$\mathrm{I}_{\text {FSM }}$	Max.PeakOneCycleNon-Repetitive SurgeCurrent *SeeFig. 6	40	A	5μ s Sine or $3 \mu \mathrm{~s}$ Rect. pulse	Following any rated load condition and with rated $\mathrm{V}_{\text {RRM }}$ applied
		10		10 ms Sine or 6 ms Rect. pulse	
$\mathrm{E}_{\text {AS }}$	Non-RepetitiveAvalancheEnergy	4.0	mJ	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {AS }}=1 \mathrm{~A}, \mathrm{~L}=10 \mathrm{mH}$	
$\mathrm{I}_{\text {AR }}$	RepetitiveAvalancheCurrent	0.4	A		

Electrical Specifications

	Parameters	10MQ	Units	Conditions		
$V_{\text {FM }}$	Max. Forward Voltage Drop * See Fig. 1	0.63	V	@ 1A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	
		0.71	V	@ 1.5A		
		0.57	V	@ 1A	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	
		0.63	V	@ 1.5A		
	Max. Reverse Leakage Current (1)	0.5	mA	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$V_{R}=$ rated V_{R}	
	* See Fig. 2	7.5	mA	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		
$\mathrm{V}_{\mathrm{F} \text { (TO) }}$	Threshold Voltage	0.45	V	$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ max.		
r_{t}	Forward Slope Resistance	86.8	$\mathrm{m} \Omega$			
$\mathrm{C}_{\text {T }}$	Typical Junction Capacitance	31	pF	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, test signal $=1 \mathrm{Mhz}$		
L_{s}	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage Rate of Change	10000	V/ s	$\text { (Rated } \mathrm{V}_{\mathrm{R}} \text {) }$		

(1) Pulse Width < $300 \mu \mathrm{~s}$, Duty Cycle < 2\%

Thermal-Mechanical Specifications

Parameters	10 MQ	Units	Conditions	
T_{J}	Max.JunctionTemperatureRange (*)	-55 to 150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Max.StorageTemperatureRange	-55 to 150	${ }^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {thJA }}$	Max.ThermalResistanceJunction toAmbient	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$	DCoperation
wt	ApproximateWeight	$0.07(0.002)$	$\mathrm{g}(\mathrm{oz})$.	
CaseStyle	SMA		SimilarD-64	
DeviceMarking				IR1H

$\left(^{*}\right) \frac{\mathrm{dPtot}}{\mathrm{dTj}}<\frac{1}{\operatorname{Rth}(\mathrm{j}-\mathrm{a})}$ thermal runaway condition for a diode on its own heatsink

Fig. 1-Maximum Forward Voltage Drop Characteristics

Fig. 2-Typical Peak Reverse Current Vs. Reverse Voltage

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

Fig.4-Maximum Average Forward Current Vs. Allowable Lead Temperature

Fig.5-Maximum Average Forward Dissipation Vs. Average Forward Current

Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration
(2) Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) \times R_{\text {thJC }}$;
$P d=$ Forward Power Loss $=I_{F(A V)} \times V_{F M} @\left(I_{F(A V)} / D\right)$ (see Fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse Power Loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R} 1}=80 \%$ rated V_{R}

Tape \& Reel Information

NOTE:

1. OUTLINE CONFORMS TO EIA-481.

Dimensionsinmillimetersand(inches)

Marking \& Identification
Each devicehas 8 characters, configurated 4 digits ontwo rows, foridentification. The firstrow designates the device as manufactured by International Rectifierasindicated by theletters"IR", andthePartNumber(indicates the current rating andvoltage/process). The secondrowindicates the yearand the week ofmanufacturing.
 Voltage/ Process

Ordering Information
10MQSERIES - TAPE AND REEL
WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 7500 PIECES).

EXAMPLE: 10MQ060TR-15000PIECES

10MQSERIES -BULK QUANTITIES

WHEN ORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 1000 PIECES).

EXAMPLE: 10MQ060-2000PIECES

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 02/02

