About M32C/83 Group

The M32C/83 group of single-chip microcomputers are built using a high-performance silicon gate CMOS process uses a M32C/80 Series CPU core and are packaged in a 144-pin and 100-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 16M bytes of address space, they are capable of executing instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communications, industrial equipment, and other high-speed processing applications.

Applications

Audio, cameras, office equipment, communications equipment, portable equipment, etc.

Index

About M32C/83 Group	1	Three-phase motor control timers' functions.	155
Central Processing Unit (CPU)		Serial I/O	168
Reset	24	CAN Module	198
SFR		Intelligent I/O	235
Software Reset		Base timer (group 0 to 3)	240
Processor Mode		Time measurement (group 0 and 1)	247
Bus Settings		WG function (group 0 to 3)	252
Bus Control	55	Serial I/O (group 0 to 2)	264
System Clock	65	A-D Converter	281
Power Saving	76	D-A Converter	296
Protection		CRC Calculation Circuit	298
Interrupt Outline		X-Y Converter	300
INT Interrupts		DRAM Controller	303
NMI Interrupt		Programmable I/O Ports	310
Key Input Interrupt		VDC	334
Address Match Interrupt		Usage Precaution	335
Intelligent I/O and CAN Interrupt	101	Electrical characteristics	344
Precautions for Interrupts		Outline Performance	381
Watchdog Timer		Flash Memory	383
DMAC	109	CPU Rewrite Mode	384
DMAC II	121	Outline Performance of CPU Rewrite Mode .	384
Timer	129	Inhibit Rewriting Flash Memory Version	397
Timer A		Parallel I/O Mode	399
Timer B	147	Standard serial I/O mode	400

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error.

Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

Performance Outline

Table 1.1.1 and 1.1.2 are performance outline of M32C/83 group.

Table 1 1 1	Performance outline of	f M32C/83 group ((144-nin	version)	1/2	
		i mozoros group	(1 4 4 - pini		1/2/	

	Item	Performance
CPU	Number of basic instructions	108 instructions
	Shortest instruction execution time	33 ns(f(XIN)=30MHz)
	Operation mode	Single-chip, memory expansion and microprocessor modes
	Memory space	16 M bytes
	Memory capacity	See ROM/RAM expansion figure.
Peripher	al function	
	I/O port	123 pins (P0 to P15 except P85)
	Input port	1 pin (P85)
	Multifunction timer Output	16 bits x 5 (TA0, TA1, TA2, TA3, TA4)
	Input	16 bits x 6 (TB0, TB1, TB2, TB3, TB4, TB5)
	Intelligent I/O	4 groups
	Time measurement	8 channels (group 0) + 4 channels (group 1)
	Waveform generation	4 channels (group 0) + 8 channels X 3 (group 1, 2 and 3)
	Bit-modulation PWM	8 channels X 2 (group 2 and 3)
	Real time port	8 channels X 2 (group 2 and 3)
	Communication function	 Clock synchronous serial I/O, UART (group 0 and 1)
		HDLC data process (group 0 and 1)
		 Clock synchronous variable length serial I/O (group 2)
		• IE bus ^(Note 1) (group 2)
	Serial I/O	5 channels (UART0 to UART4)
		IE Bus (Note 1, 3), I ² C Bus (Note 2, 3)
	CAN module	1 channel, 2.0B specification
	A-D converter	10-bit A-D x 2 circuits, standard 18 inputs, max 34 inputs
	D-A converter	8-bit D-A x 2 circuits
	DMAC	4 channels
	DMAC II	Start by all variable vector interrupt factor
		Immediate transfer, operation transfer and chain transfer function
	DRAM controller	CAS before RAS refresh, self-refresh, EDO, FP
	CRC calculation circuit	CRC-CCITT
	X-Y converter	16 bits X 16 bits
	Watchdog timer	15 bits x 1 (with prescaler)
	Interrupt	42 internal and 8 external sources, 5 software sources, interrupt
		priority level 7 levels
	Clock generating circuit	3 built-in clock generation circuits
		Main/sub-clock generating circuit :built-in feedback resistance, and
		external ceramic or quartz oscillator
		 Ring oscillator for detecting main clock oscillation stop

Table 1.1.1. Performance outline of M32C/83 group (144-pin version) (2/2)

Electric	characteristics
	onaraotonotioo

	ila actoristics			
	Supply voltage	4.2 to 5.5V (f(XIN)=30MHz without wait), 3.0 to 3.6V (f(XIN)=20MHz without wait)		
	Power consumption	26mA (f(XIN)=20MHz without software wait,Vcc=5V)		
		38mA (f(XIN)=30MHz without software wait,Vcc=5V)		
	I/O characteristics	I/O withstand voltage :5V		
		I/O current :5mA		
Operating ambient temperature		-40 to 85°C		
Device configuration		CMOS high performance silicon gate		
Package		144-pin plastic mold QFP		

Note 1 :IE Bus is a trademark of NEC corporation.

Note 2 : I²C Bus is a registered trademark of Philips.

Note 3 :This function is executed by using software and hardware.

Table 1.1.2. Performance outline of M32C/83 group (100-pin version) (1/2)

	Item	Performance		
CPU	Number of basic instructions	108 instructions		
	Shortest instruction execution time	33 ns (f(XIN)=30MHz)		
	Operation mode	Single-chip, memory expansion and microprocessor modes		
	Memory space	16 M bytes		
	Memory capacity	See ROM/RAM expansion figure.		
Periphera	al function			
	I/O port	87 pins (P0 to P10 except P85)		
	Input port	1 pin (P85)		
	Multifunction timer Output	16 bits x 5 (TA0, TA1, TA2, TA3, TA4)		
	Input	16 bits x 6 (TB0, TB1, TB2, TB3, TB4, TB5)		
	Intelligent I/O	4 groups		
	Time measurement	3 channels (group 0) + 2 channels (group 1)		
	Waveform generation	2 channels X 2 (group 0 and 3) + 3 channels X 2 (group 1 and 2)		
	Bit-modulation PWM	3 channels (group 2) + 2 channels (group 3)		
	Real time port	3 channels (group 2) + 2 channels (group 3)		
	Communication function	 Clock synchronous serial I/O, UART (group 0 and 1) 		
		HDLC data process (group 0 and 1)		
		 Clock synchronous variable length serial I/O (group 2) 		
		• IE bus ^(Note 1) (group 2)		
	Serial I/O	5 channels (UART0 to UART4)		
		IE Bus (Note 1, 3), I ² C Bus (Note 2, 3)		
	CAN module	1 channel, 2.0B specification		
	A-D converter	10 bits A-Dx 2 circuits, standard 10 inputs, max 26 inputs		
	D-A converter	8 bits D-A x 2 circuits		
	DMAC	4 channels		
	DMAC II	Start by all variable vector interrupt factor		
		Immediate transfer, operation function and chain transfer function		
	DRAM controller	CAS before RAS refresh, self-refresh, EDO, FP		
	CRC calculation circuit	CRC-CCITT		

	X-Y converter	16 bits X 16 bits		
	Watchdog timer	15 bits x 1 (with prescaler)		
	Interrupt	42 internal and 8 external sources, 5 software sources, interrupt priority		
		level 7 levels		
	Clock generating circuit	3 built-in clock generation circuits		
		Main/sub-clock generating circuit :built-in feedback resistance, and		
		external ceramic or quartz oscillator		
		Ring oscillator for detecting main clock oscillation stop		
Electric of	characteristics			
	Supply voltage	4.2 to 5.5V (f(XIN)=30MHz without wait), 3.0 to 3.6V (f(XIN)=20MHz without wait)		
	Power consumption	26mA (f(XIN)=20MHz without software wait, Vcc=5V)		
		38mA (f(XIN)=30MHz without software wait,Vcc=5V)		
	I/O characteristics	I/O withstand voltage :5V		
		I/O current :5mA		
Operatin	g ambient temperature	–40 to 85°C		
Device c	onfiguration	CMOS high performance silicon gate		
Package		100-pin plastic mold QFP		

Table 1.1.2. Performance outline of M32C/83 group (100-pin version) (2/2)

Note 1 :IE Bus is a trademark of NEC corporation.

Note 2 :I²C Bus is a registered trademark of Philips.

Note 3 :This function is executed by using software and hardware.

Mitsubishi plans to release the following products in the M32C/83 group:

- (1) Support for mask ROM version and flash memory version
- (2) ROM capacity
- (3) Package

100P6S-A	: Plastic molded QFP	(mask ROM version	and flash memory	version)
----------	----------------------	-------------------	------------------	----------

100P6Q-A : Plastic molded QFP (mask ROM version and flash memory version)

144P6Q-A : Plastic molded QFP (mask ROM version and flash memory version)

Figure 1.1.1. ROM expansion

The M32C/83 group products currently supported are listed in Table 1.1.3.

Table 1.1.3. M32C/83 group

As of Nov. 2001

Туре No		ROM capacity	RAM capacity	Package type	Remarks
M30835MJGP	***			144P6Q-A	
M30833MJGP	***			100P6Q-A	Mask ROM version
M30833MJFP	***	512K	31K	100P6S-A	
M30835FJGP	**	01210	ont	144P6Q-A	
M30833FJGP	**			100P6Q-A	Flash memory version
M30833FJFP	**			100P6S-A	

** :Under development

*** :Under planning

Figure 1.1.2. Type No., memory size, and package

Pin Configuration and Pin Description

Figure 1.1.3 to 1.1.5 show the pin configurations (top view), Table 1.1.3 list pin names, and Table 1.1.4 list pin description.

Figure 1.1.3. 144-pin version pin configuration (top view)

Pin No	Control	Port	Interrupt	Timer	UART/CAN	Intelligent I/O	Analog	Bus control
1		P96			TxD4/SDA4/SRxD4		ANEX1	
2		P95			CLK4		ANEX0	
3		P94		TB4IN	CTS4/RTS4/SS4		DA1	
4		P93		TB3IN	CTS3/RTS3/SS3		DA0	
5		P92		TB2IN	TxD3/SDA3/SRxD3	OUTC20/IEOUT		
6		P91		TB1IN	RxD3/SCL3/STxD3	IEIN		
7		P90		TB0IN	CLK3			
8		P146						
9		P145						
10		P144						
11		P143				INPC17/OUTC17		
12		P142				INPC16/OUTC16		
13		P141				OUTC15		
14		P140				OUTC14		
15	BYTE							
16	CNVss							
17	XCIN/VCONT	P87						
18	Хсоит	P86						
19	RESET							
20	Хоит							
21	Vss							
22	Xin							
23	Vcc							
24		P85	NMI					
25		P84	INT2					
26		P83	INT1		CANIN			
27		P82	INT0		CANOUT	OUTC32		
28		P81		TA4ın/Ū		OUTC30		
29		P80		TA4out/U		INPC02/ISRxD0/BE0IN		
30		P77		TA3IN	CANIN	INPC01/OUTC01/ISCLK0		
31		P76		TA3out	CANOUT	INPC00/OUTC00/ISTxD0/BE0out		
32		P75		TA2IN/W		INPC12/OUTC12/ISRxD1/BE1IN		
33		P74		TA2out/W		INPC11/OUTC11/ISCLK1		
34		P73		TA1IN/V	CTS2/RTS2/SS2	OUTC10/ISTxD1/BE1OUT		
35		P72		TA1out/V	CLK2			
36		P71		TB5IN/TA0IN	RxD2/SCL2/STxD2	OUTC22/ISRxD2/IEIN		
37		P70		TA0out	TxD2/SDA2/SRxD2	OUTC20/ISTxD2/IEout		
38		P67			TxD1/SDA1/SRxD1			
39	Vcc							
40		P66			RxD1/SCL1/STxD1			
41	Vss							
42		P65			CLK1			
43		P64			CTS1/RTS1/SS1	OUTC21/ISCLK2		
44		P63			TxD0/SDA0/SRxD0			
45		P62			RxD0/SCL0/STxD0			
46		P61			CLK0			
47		P60	ļ		CTS0/RTS0/SS0			
48		P137				OUTC27		

Table 1.1.4. 144-pin version pin description (1/3)

Table 1.1.5.	144-pin	version	pin	description	(2/3)
--------------	---------	---------	-----	-------------	-------

Pin No	Control	Port	Interrupt	Timer	UART/CAN	Intelligent I/O	Analog	Bus control
49		P136				OUTC21/ISCLK2		
50		P135				OUTC22/ISRxD2/IEIN		
51		P134				OUTC20/ISTxD2/IEOUT		
52		P57						RDY
53		P56						ALE/RAS
54		P55						HOLD
55		P54						HLDA/ALE
56		P133				OUTC23		
57	Vss							
58		P132				OUTC26		
59	Vcc							
60		P131				OUTC25		
61		P130				OUTC24		
62		P53						CLKOUT/BCLK/ALE
63		P52						RD/DW
64		P51						WRH/BHE/CASH
65		P50						WRL/WR/CASL
66		P127				OUTC37		
67		P126				OUTC36		
68		P125				OUTC35		
69		P47						CS0/A23
70		P46						CS1/A22
71		P45						CS2/A21
72		P44						CS3/A20(MA12)
73		P43						A19(MA11)
74	Vcc							
75		P42						A18(MA10)
76	Vss							
77		P41						A17(MA9)
78		P40						A16(MA8)
79		P37						A15(MA7)(/D15)
80		P36						A14(MA6)(/D14)
81		P35						A13(MA5)(/D13)
82		P34						A12(MA4)(/D12)
83		P33						A11(MA3)(/D11)
84		P32						A10(MA2)(/D10)
85		P31						A9(MA1)(/D9)
86		P124				OUTC34		
87		P123				OUTC33		
88		P122				OUTC32		
89		P121				OUTC31		
90		P120				OUTC30		
91	Vcc							
92		P30						A8(MA0)(/D8)
93	Vss							
94		P27					AN37	A7(/D7)
95		P26					AN36	A6(/D6)
96		P25					AN35	A5(/D5)

Table 1.1.6. 144-pin version pin description (3/3)

Pin No	Control	Port	Interrupt	Timer	UART/CAN	Intelligent I/O	Analog	Bus control
97		P24					AN24	A4(/D4)
98		P23					AN23	A3(/D3)
99		P22					AN22	A2(/D2)
100		P21					AN21	A1(/D1)
101		P20					AN20	A0(/D0)
102		P17	INT5					D15
103		P16	INT4					D14
104		P15	INT3					D13
105		P14						D12
106		P13						D11
107		P12						D10
108		P11						D9
109		P10						D8
110		P07					AN07	D7
111		P06					AN06	D6
112		P05					AN05	D5
113		P04					AN04	D4
114		P114						
115		P113				OUTC13		
116		P112				INPC12/OUTC12/ISRxD1/BE1IN		
117		P111				INPC11/OUTC11/ISCLK1		
118		P110				OUTC10/ISTxD1/BE1OUT		
119		P03					AN03	D3
120		P02					AN02	D2
121		P01					AN01	D1
122		P00					AN00	Do
123		P157				INPC07	AN157	
124		P156				INPC06	AN156	
125		P155				INPC05/OUTC05	AN155	
126		P154				INPC04/OUTC04	AN154	
127		P153				INPC03	AN153	
128		P152				INPC02/ISRxD0/BE0IN	AN152	
129		P151				INPC01/OUTC01/ISCLK0	AN151	
130	Vss							
131		P150				INPC00/OUTC00/ISTxD0/BE0OUT	AN150	
132	Vcc							
133		P107	Klз				AN7	
134		P106	Kl2				AN ₆	
135		P105	KI1				AN5	
136		P104	Klo				AN4	
137		P103					ANз	
138		P102					AN ₂	
139		P101					AN1	
140	AVss							
141		P100					AN ₀	
142	Vref							
143	AVcc							
144		P97			RxD4/SCL4/STxD4		ADTRG	

Under proof reading

Figure 1.1.4. 100-pin version pin configuration (top view)

Under proof reading

Figure 1.1.5. 100-pin version pin configuration (top view)

Table 1.1.7. 100-pin version pin description (1/2)

Pac Pir	kage No	Control	Port	Interrupt	Timer	UART/CAN	Intelligent I/O	Analog	Bus control
FP	GP								
1	99		P96			TxD4/SDA4/SRxD4		ANEX1	
2	100		P95		TB4IN	CLK4		ANEX0	
3	1		P94		TB3IN	CTS4/RTS4/SS4		DA1	
4	2		P93		TB2IN	CTS3/RTS3/SS3		DA0	
5	3		P92		TB1IN	TxD3/SDA3/SRxD3	OUTC20/IEout		
6	4		P91		TB0in	RxD3/SCL3/STxD3	IEIN		
7	5		P90			CLK3			
8	6	BYTE							
9	7	CNVss							
10	8	XCIN/VCONT	P87						
11	9	Хсоит	P86						
12	10	RESET							
13	11	Xout							
14	12	Vss							
15	13	Xin							
16	14	Vcc							
17	15		P85	NMI					
18	16		P84	INT2					
19	17		P83	INT1		CANIN			
20	18		P82	INT0	TA4IN/U	CANOUT	OUTC32		
21	19		P81		TA4out/Ū		OUTC30		
22	20		P80		TA3IN		INPC02/ISRxD0/BE0IN		
23	21		P77		TA3OUT	CANIN	INPC01/OUTC01/ISCLK0		
24	22		P76		TA2IN/W	CANOUT	INPC00/OUTC00/ISTxD0/BE0out		
25	23		P75		TA2ουτ/W		INPC12/OUTC12/ISRxD1/BE1IN		
26	24		P74		TA1IN/V		INPC11/OUTC11/ISCLK1		
27	25		P73		TA1ουτ/V	CTS2/RTS2/SS2	OUTC10/ISTxD1/BE1out		
28	26		P72		TB5IN/TA0IN	CLK2			
29	27		P71		TA0out	RxD2/SCL2/STxD2	OUTC22/ISRxD2/IEIN		
30	28		P70			TxD2/SDA2/SRxD2	OUTC20/ISTxD2/IEOUT		
31	29		P67			TxD1/SDA1/SRxD1			
32	30		P66			RxD1/SCL1/STxD1			
33	31		P65			CLK1			
34	32		P64			CTS1/RTS1/SS1	OUTC21/ISCLK2		
35	33		P63			TxD0/SDA0/SRxD0			
36	34		P62			RxD0/SCL0/STxD0			
37	35		P61			CLK0			
38	36		P60			CTS0/RTS0/SS0			
39	37		P57						RDY
40	38		P56						ALE/RAS
41	39		P55						HOLD
42	40		P54						HLDA/ALE
43	41		P53						CLKOUT/BCLK/AI F
44	42		P52						RD/DW
45	43		P51						WRH/BHE/CASH
46	44		P50						WRL/WR/CASI
47	45		P47						$\overline{CS0}/A_{23}$
48	46		P46						$\overline{CS1}/A_{22}$
49	47		P45						$\overline{CS2}/A_{21}$
50	48		P44						$\overline{CS3}/A_{20}(MA_{12})$
100	I 'Ŭ	1		1				1	

Table 1.1.8. 100-pin version pin description (2/2)

Pack	age No				— :				
FP	GP	Control	Port	Interrupt	Timer	UART/CAN	Intelligent I/O	Analog	Bus control
51	49		P43						A19(MA11)
52	50		P42						A18(MA10)
53	51		P41						A17(MA9)
54	52		P40						A16(MA8)
55	53		P37						A15(MA7)(/D15)
56	54		P36						A14(MA6)(/D14)
57	55		P35						A13(MA5)(/D13)
58	56		P34						A12(MA4)(/D12)
59	57		P33						A11(MA3)(/D11)
60	58		P32						A10(MA2)(/D10)
61	59		P31						A9(MA1)(/D9)
62	60	Vcc							
63	61		P30						A8(MA0)(/D8)
64	62	Vss							
65	63		P27					AN27	A7(/D7)
66	64		P26					AN26	A6(/D6)
67	65		P25					AN25	A5(/D5)
68	66		P24					AN24	A4(/D4)
69	67		P23					AN23	A3(/D3)
70	68		P22					AN22	A2(/D2)
71	69		P21					AN21	A1(/D1)
72	70		P20					AN20	Ao(/Do)
73	71		P17	INT5					D15
74	72		P16	INT4					D14
75	73		P15	INT3					D13
76	74		P14						D12
77	75		P13						D11
78	76		P12						D10
79	77		P11						D9
80	78		P10						D8
81	79		P07					AN07	D7
82	80		P06					AN06	D6
83	81		P05					AN05	D5
84	82		P04					AN04	D4
85	83		P03					AN03	D3
86	84		P02					AN02	D2
87	85		P01					AN01	D1
88	86		P00	<u> </u>				AN00	Do
89	87		P107	Kl3				AN7	
90	88		P106	Kl ₂				AN6	
91	89		P105	KI1				AN5	
92	90		P104	Klo				AN4	
93	91		P103					AN3	
94	92		P102					AN2	
95	93	A) /	P101					AN1	
96	94	AVSS	.						
97	95	1/2	P100					AN ₀	
98	96	VREF							
99	97	AVCC	DC.			D. D. ((C.). ()= =			
100	98		P97			RxD4/SCL4/STxD4		AUTRG	

Table 1.1.9. Pin description (1/4)

Port	Function	Pin name	I/O type	Description
	Power supply input	Vcc Vss	l	4.2 to 5.5 V or 3.0V to 3.6V. 0 V.
	CPU mode switch	CNVss	I	Connect it to Vss : Single-chip or memory expansion mode Connect it to Vcc : Microprocessor mode
	External data bus width select input	BYTE	I	Selects the width of the data bus for external memory. Connect it to Vss : A 16-bit width Connect it to Vcc : An 8-bit width
	Reset input	RESET	I	A "L" on this input resets the microcomputer.
	Clock input	Xin	I	These pins are provided for the main clock generating circuit.
	Clock output	Хоит	0	the XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.
	Analog power supply input	AVcc AVss	l	Connect this pin to Vcc. Connect this pin to Vss.
	Reference voltage input	Vref	I	This pin is a reference voltage input for the A-D converter.
P0	I/O port	P00 to P07	I/O	An 8-bit CMOS I/O port. It has an input/output port direction register that allows the user to set each pin for input or output individually. The user can specify in units of four bits via software whether or not they are tied to a pull-up resistor.
	Data bus	Do to D7	I/O	When set as a separate bus, these pins input and output 8 low-order data bits.
	Analog input port	AN00 to AN07	I	P00 to P07 are analog input ports for the A-D converter.
P1	I/O port	P10 to P17	I/O	This is an 8-bit I/O port equivalent to P0.
	External interrupt input port	INT3 to INT5	I	P15 to P17 function as external interrupt pins.
	Data bus	D8 to D15	I/O	When set as a separate bus, these pins input and output 8 high-order data bits.
P2	I/O port	P20 to P27	I/O	This is an 8-bit I/O port equivalent to P0.
	Address bus	Ao to A7	0	These pins output 8 low-order address bits.
	Address bus/data bus	Ao/Do to A7/D7	I/O	If a multiplexed bus is set, these pins input and output data and output 8 low-order address bits separated in time by multiplexing.
	Analog input port	AN20 to AN27	I	P20 to P27 are analog input ports for the A-D converter.
P3	I/O port	P30 to P37	I/O	This is an 8-bit I/O port equivalent to P0.
	Address bus	A8 to A15	0	These pins output 8 middle-order address bits.
	Address bus/data bus	A8/D8 to A15/D15	I/O	If the external bus is set as a 16-bit wide multiplexed bus, these pins output 8 middle-order address bits, and input and output 8 middle-order data separated in time by multiplexing.
	Address bus	MA0 to MA7	0	If accessing to DRAM area, these pins output row address and column address separated in time by multiplexing.
P4	I/O port	P40 to P47	I/O	This is an 8-bit I/O port equivalent to P0.
	Address bus	A16 to A22 A23	0	These pins output 8 high-order address bits. Highest address bit (A23) outputs inversely.
	Chip select	CS0 to CS3	0	P40 to P47 are chip select output pins to specify access area.
	Address bus	MA8 to MA12	0	If accessing to DRAM area, these pins output row address and column address separated in time by multiplexing.

Table 1.1.10. Pin description (2/4)

Port	Function	Pin name	I/O type	Description
P5	I/O port	P50 to P57	I/O	This is an 8-bit I/O port equivalent to P0.
	Clock output	CLKOUT	I/O	P53 in this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of the same frequency as XCIN.
	Bus control	WRL / WR, WRH / BHE, RD BCLK, HOLD, HLDA ALE,	000	 Output WRL, WRH and RD, or WR, BHE and RD bus control signals. WRL, WRH, and RD selected In 16-bit data bus, data is written to even addresses when the WRL signal is "L". Data is written to odd addresses when the WRH signal is "L". Data is read when RD is "L". WR, BHE, and RD selected Data is written when WR is "L". WR, BHE, and RD selected Data is read when RD is "L". Odd addresses are accessed when BHE is "L". Even addresses are accessed when BHE is "H". Use WR, BHE, and RD when all external memory is an 8-bit data bus. Output operation clock for CPU. While the input level at the HOLD pin is "L", the microcomputer is placed in the hold state. While in the hold state, HLDA outputs a "L" level. ALE is used to latch the addresse.
		RDY	Ĭ	While the input level of the RDY pin is "L", the microcomputer is in the ready state.
	Bus control for DRAM	DW, CASL, CASH, RAS	0 0 0 0	When $\overline{\text{DW}}$ signal is "L", write to DRAM. Timing signal when latching to line address of even address. Timing signal when latching to line address of odd address. Timing signal when latching to row address.
P6	I/O port	P60 to P67	I/O	This is an 8-bit I/O port equivalent to P0.
	UART port	CTS/RTS/SS CLK RxD/SCL/STxD TxD/SDA/SRxD	I/O	P60 to P63 are I/O ports for UART0. P64 to P67 are I/O ports for UART1.
	Intelligent I/O port	OUTC/ISCLK	I/O	ISCLK is a clock I/O port for intelligent I/O communication. OUTC is an output port for waveform generation function.
P7	I/O port	P70 to P77	I/O	This is an 8-bit I/O port equivalent to P0. However, P70 and P71 are N-channel open drain outputs.
	Timer A port	TAOUT TAIN	0 	P70 to P77 are I/O ports for timers A0–A3.
	Timer B port	TBIN	I	P71 is an input port for timer B5.
	Three phase motor control output port	V, \overline{V} W, \overline{W}	0	P72 and P73 are V phase outputs. P74 and P75 are W phase outputs.
	UART port	CTS/RTS/SS CLK RxD/SCL/STxD TxD/SDA/SRxD	I/O	P70 to P73 are I/O ports for UART2.
	Intelligent I/O port	INPC/OUTC ISCLK/ISTxD/ ISRxD IEOUT/IEIN BEOUT/BEIN	I/O	INPC is an input port for time measurement function. OUTC is an output port for waveform generation function. ISCLK is a clock I/O port for intelligent I/O communication. ISTxD/IEOUT/BEOUT is transmit data output port for intelligent I/O communication. ISRxD/IEIN/BEIN is receive data input port for intelligent I/O communication.
	CANOUT CANIN	CAN	0	P76 and P77 are I/O ports for CAN communication function.

Table 1.1.11. Pin description (3/4)

Port	Function	Pin name	I/O type	Description
P8	I/O port	P80-P84, P86, P87	I/O	This is a 7-bit I/O port equivalent to P0.
	Sub clock input	XCIN	I	P86 and P87 function as I/O ports for the sub clock
	Sub clock output	Хсоит	0	the XCIN and the XCOUT pins.
	Low-pass filter connect pin for PLL frequency synthesizer	VCOUT	0	When using PLL frequency synthesizer, connect P87 to a low-pass filter. To stabilize PLL frequency, connect P86 to Vss.
	Timer A port	TA40UT TA4IN	0 1	P80 to P81 are I/O ports for timer A4.
	Three phase motor control output port	U, Ū	0	P80 and P81 are U phase output ports.
	External interrupt input port	INTo to INT2	I	P82 to P84 are external interrupt input ports.
	Intelligent I/O port	INPC/ISRxD/BEIN	I	INPC is an input port for time measurement function. ISRxD/BEIN is receive data input port for intelligent I/O communication.
	Input port	P85/NMI	I	Input port and input ports for $\overline{\text{NMI}}$ interrupt.
P9	I/O port	P90 to P97	I/O	This is an 8-bit I/O port equivalent to P0.
	Timer B port	TB0IN to TB4IN	I	P90 to P94 are input port for timer B4.
	UART port	CTS/RTS/SS CLK RxD/SCL/STxD TxD/SDA/SRxD	/O /O /O /O	P90 to P93 are I/O ports for UART3. P94 to P97 are I/O ports for UART4.
	D-A output port	DA0, DA1	0	P93 and P94 are D-A output ports.
	A-D related port	ANEX1, ANEX2 ADTRG	l	P95 to P96 are expanded input port for A-D converter. P97 is A-D trigger input port.
	Intelligent I/O port	OUTC/IEOUT	I/O I	OUTC is an output port for waveform generation function. IEOUT is transmit data output port for intelligent I/O communication. IEIN is receive data input port for intelligent I/O communication.
	The protect register prev	vents a false write to	P9 directi	on register and function select register A3.
P10	I/O port	P100 to P107	I/O	This is an 8-bit I/O port equivalent to P0.
	Key input interrupt port	KI0 to KI3	I	P104 to P107 are key input interrupt ports.
	Analog input port	AN ₀ to AN ₇	I	P100 to P107 are analog input ports for A-D convertor.

Table 1.1.12. Pin description (4/4)

Port	Function	Pin name	I/O type	Description
P11	I/O port	P110 to P114	I/O	This is an 5-bit I/O port equivalent to P0.
(Note)	Intelligent I/O port	INPC/OUTC ISCLK ISTxD/ISRxD BEOUT/BEIN	1/0 1/0 1/0	INPC is an input port for time measurement function. OUTC is an output port for waveform generation function. ISCLK is a clock I/O port for intelligent I/O communication. ISTxD/BEOUT is transmit data output port for intelligent I/O communication. ISRxD/BEIN is receive data input port for intelligent I/O communication.
P12	I/O port	P120 to P127	I/O	This is an 8-bit I/O port equivalent to P0.
(Note)	Intelligent I/O port	OUTC	0	OUTC is an output port for waveform generation function.
P13	I/O port	P130 to P137	I/O	This is an 8-bit I/O port equivalent to P0.
(Note)	Intelligent I/O port	OUTC ISCLK/ISTxD/ ISRxD IEOUT/IEIN	1/0 1/0 1/0 1/0	OUTC is an output port for waveform generation function. ISCLK is a clock I/O port for intelligent I/O communication. ISTxD/IEOUT is transmit data output port for intelligent I/O communication. ISRxD/IEIN is receive data input port for intelligent I/O communication.
P14	I/O port	P140 to P146	I/O	This is a 7-bit I/O port equivalent to P0.
(Note)	Intelligent I/O port	INPC/OUTC	I/O	INPC is an input port for time measurement function. OUTC is an output port for waveform generation function.
P15	I/O port	P150 to P157	I/O	This is an 8-bit I/O port equivalent to P0.
(Note)	Intelligent I/O port	INPC/OUTC ISCLK/ISTxD/ ISRxD BEOUT/BEIN	I/O I/O I/O	INPC is an input port for time measurement function. OUTC is an output port for waveform generation function. ISCLK is a clock I/O port for intelligent I/O communication. ISTxD/BEOUT is transmit data output port for intelligent I/O communication. ISRxD/BEIN is receive data input port for intelligent I/O communication.
	Analog input port	AN150 to AN157	I	P150 to P157 are analog input ports for A-D convertor.

Note :Port P11 to P15 exist in 144-pin version.

Block Diagram

The M32C/83 group includes the following devices in a single-chip. ROM and RAM for code instructions and data, storage, CPU for executing operation and peripheral functions such as timer, serial I/O, D-A converter, DMAC, CRC operation circuit, A-D converter, DRAM controller, intelligent I/O and I/O ports. Figure 1.1.6 is a block diagram of the M32C/83 group (144-pin version).

Figure 1.1.6. Block diagram of the M32C/83 group (144-pin version)

Memory

Figure 1.2.1 is a memory map of the M32C/83 group. The address space extends 16 Mbytes from address 00000016 to FFFFF16. From FFFFF16 down is ROM. For example, in the M30835FJGP, there are 512K bytes of internal ROM from F8000016 to FFFFF16. The vector table for fixed interrupts such as the reset and $\overline{\text{NMI}}$ are mapped to FFFFDC16 to FFFFF16. The starting address of the interrupt routine is stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the internal register (INTB). See the section on interrupts for details.

From 00040016 up is RAM. For example, in the M30835FJGP, 31 Kbytes of internal RAM are mapped to the space from 00040016 to 007FFF16. In addition to storing data, the RAM also stores the stack used when calling subroutines and when interrupts are generated.

The SFR area is mapped from 00000016 to 0003FF16. This area accommodates the control registers for peripheral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Any part of the SFR area that is not occupied is reserved and cannot be used for any other purpose.

The special page vector table is mapped from FFFE0016 to FFFFDB16. If the starting addresses of subroutines or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions can be used as 2-byte instructions, reducing the number of program steps.

In memory expansion mode and microprocessor mode, a part of the spaces are reserved and cannot be used.

Figure 1.2.1. Memory map

Central Processing Unit (CPU)

The CPU has a total of 28 registers shown in Figure 1.3.1. Eight of these registers (R0, R1, R2, R3, A0, A1, SB and FB) come in two sets; therefore, these have two register banks.

Figure 1.3.1. Central processing unit register

(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, R3, R2R0 and R3R1)

Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and arithmetic/logic operations.

Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H/R1H), and low-order bits as (R0L/R1L). Registers R2 and R0, as well as R3 and R1 can function as 32-bit data registers (R2R0/R3R1).

(2) Address registers (A0 and A1)

Address registers (A0 and A1) are configured with 24 bits, and have functions equivalent to those of data registers. These registers can also function as address register, indirect addressing and address register relative addressing.

(3) Static base register (SB)

Static base register (SB) is configured with 24 bits, and is used for SB relative addressing.

(4) Frame base register (FB)

Frame base register (FB) is configured with 24 bits, and is used for FB relative addressing.

(5) Program counter (PC)

Program counter (PC) is configured with 24 bits, indicating the address of an instruction to be executed.

(6) Interrupt table register (INTB)

Interrupt table register (INTB) is configured with 24 bits, indicating the start address of an interrupt vector table.

(7) User stack pointer (USP), interrupt stack pointer (ISP)

Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each configured with 24 bits.

The desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag). This flag is located at bit 7 in the flag register (FLG).

To execute efficienly set USP and ISP to an even number.

(8) Save flag register (SVF)

This register consists of 16 bits and is used to save the flag register when a high-speed interrupt is generated.

(9) Save PC register (SVP)

This register consists of 24 bits and is used to save the program counter when a high-speed interrupt is generated.

This register consist of 24 bits and is used to indicate a jump address when a high-speed interrupt is generated.

(10) Vector register (VCT)

This register consists of 24 bits and is used to indicate the jump address when a high-speed interrupt is generated.

(11) DMA mode registers (DMD0/DMD1)

These registers consist of 8 bits and are used to set the transfer mode, etc. for DMA.

(12) DMA transfer count registers (DCT0/DCT1)

These registers consist of 16 bits and are used to set the number of DMA transfers performed.

(13) DMA transfer count reload registers (DRC0/DRC1)

These registers consist of 16 bits and are used to reload the DMA transfer count registers.

(14) DMA memory address registers (DMA0/DMA1)

These registers consist of 24 bits and are used to set a memory address at the source or destination of DMA transfer.

(15) DMA SFR address registers (DSA0/DSA1)

These registers consist of 24 bits and are used to set a fixed address at the source or destination of DMA transfer.

(16) DMA memory address reload registers (DRA0/DRA1)

These registers consist of 24 bits and are used to reload the DMA memory address registers.

(17) Flag register (FLG)

Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 1.3.2 shows the flag register (FLG). The following explains the function of each flag:

• Bit 0: Carry flag (C)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

• Bit 1: Debug flag (D)

This flag enables a single-step interrupt.

When this flag is "1", a single-step interrupt is generated after instruction execution. This flag is cleared to "0" when the interrupt is acknowledged.

• Bit 2: Zero flag (Z)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, cleared to "0".

• Bit 3: Sign flag (S)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, cleared to "0".

• Bit 4: Register bank select flag (B)

This flag chooses a register bank. Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

• Bit 5: Overflow flag (O)

This flag is set to "1" when an arithmetic operation resulted in overflow; otherwise, cleared to "0".

• Bit 6: Interrupt enable flag (I)

This flag enables a maskable interrupt.

An interrupt is disabled when this flag is "0", and is enabled when this flag is "1". This flag is cleared to "0" when the interrupt is acknowledged.

• Bit 7: Stack pointer select flag (U)

Interrupt stack pointer (ISP) is selected when this flag is "0"; user stack pointer (USP) is selected when this flag is "1".

This flag is cleared to "0" when a hardware interrupt is acknowledged or an INT instruction of software interrupt Numbers. 0 to 31 is executed.

• Bits 8 to 11: Reserved area

• Bits 12 to 14: Processor interrupt priority level (IPL)

Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt is enabled.

• Bit 15: Reserved area

Figure 1.3.2. Flag register (FLG)

Reset

There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset. (See "Software Reset" for details of software resets.) This section explains hardware resets.

When the supply voltage is in the range where operation is guaranteed, a reset is enabled by holding the reset pin Low (0.2Vcc max.) for at least 20 cycles. When the reset pin level is then returned to High while main clock is stable, the reset status is cancelled and program execution resumes from the address in the reset vector table.

Since the value of RAM is indeterminate when power is applied, the initial values must be set. Also, if a reset signal is input during write to RAM, the access to the RAM will be interrupted. Consequently, the value of the RAM being written may change to an unintended value due to the interruption.

Figure 1.4.1 shows the example reset circuit. Figure 1.4.2 shows the reset sequence.

Table 1.4.1 shows the status of other pins while the RESET pin level is Low. Figures 1.4.3 and 1.4.4 show the internal status of the microcomputer immediately after the reset is cancelled.

Figure 1.4.1. Example reset circuit

development **Rev.B2 for proof reading**

Under

Reset

Figure 1.4.2. Reset sequence

	Status					
Pin name		CNVss = Vcc				
	CINVSS = VSS	BYTE = Vss	BYTE = Vcc			
P0	Input port (floating)	Data input (floating)				
P1	Input port (floating)	Data input (floating)	Input port (floating)			
P2, P3, P4	Input port (floating)	Address output (undefined)				
P50	Input port (floating)	WR output ("H" level output)				
P51	Input port (floating)	BHE output (undefined)				
P52	Input port (floating)	RD output ("H" level output)				
P53	Input port (floating)	BCLK output				
P54	Input port (floating)	HLDA output (The output value HOLD pin)	depends on the input to the			
P55	Input port (floating)	HOLD input (floating)				
P56	Input port (floating)	RAS output				
P57	Input port (floating)	RDY input (floating)				
P6 to P15 ^(Note)	Input port (floating)	Input port (floating)				

Table 1.4.1. Pin status when RESET pin level is "L"

Note :Port P11 to P15 exists in 144-pin version.

(1)	Processor mode register 0 (Note	1) (000416) 8016	(26)	UART2 receive /ACK interrupt control register	(006B16) XXXX?000
(2)	Processor mode register 1	(000516) X00000XX	(27)	Timer A0 interrupt control register	(006C16) XXXX?000
(3)	System clock control register 0	(000616) 0000 000	(28)	UART3 receive/ACK interrupt control register	(006D16) XXXX?000
(4)	System clock control register 1	(000716) 2016	(29)	Timer A2 interrupt control register	(006E16) XXXX?000
(5)	Wait control register	(000816) FF16	(30)	UART4 receive/ACK interrupt control register	(006F16) XXX2000
(6)	Address match interrupt control register	(000916) XXXX0000	(31)	Timer A4 interrupt control register	(007016) XXX2000
(7)	Protect register	(000A16) XXXX00000	(32)	UART0/UART3 bus collision detection interrupt control register	(007116) XXX2?000
(8)	External data bus width control register (Note	2) (000B16) XXXXX000	(33)	UART0 receive/ACK interrupt control register	(007216) XXXX?000
(9)	Main clock divided register	(000C16) XXX01000	(34)	A-D0 interrupt control register	(007316) XXXX?000
(10)	Oscillation stop detect register	(000D16) 0016	(35)	UART1 receive/ACK interrupt control register	(007416) 🗙 🗙 🎗 2000
(11)	Watchdog timer start register	(000E16) ??16	(36)	Intelligent I/O interrupt control register 0	(007516) 🗙 🗙 🗙 (000
(12)	Watchdog timer control register	(000F16) 000??????	(37)	Timer B1 interrupt control register	(007616) XXXX?000
(13)	Address match interrupt register 0	(001016) 0016	(38)	Intelligent I/O interrupt control register 2	(007716) XXXX?000
		(001116) 0016	(39)	Timer B3 interrupt control register	(007816) 🗙 🗙 🗙 (000
		(001216) 0016	(40)	Intelligent I/O interrupt control register 4	(007916) XXXX?000
(14)	Address match interrupt register 1	(001416) 0016	(41)	INT5 interrupt control register	(007A16) XX00?000
		(001516) 0016	(42)	Intelligent I/O interrupt control register 6	(007B16) XXX2?000
		(001616) 0016	(43)	INT3 interrupt control register	(007C16) XX00?000
(15)	VDC control register for PLL	(001716) XXXXX01	(44)	Intelligent I/O interrupt control register 8	(007D16) XXXX?000
(16)	Address match interrupt register 2	(001816) 0016	(45)	INT1 interrupt control register	(007E16) XX00?000
		(001916) 0016	(46)	Intelligent I/O interrupt control register 10/ CAN interrupt 1 control register	(007F16) XXX2?000
		(001A16) 0016	(47)	Intelligent I/O interrupt control register 11/ CAN interrupt 2 control register	(008116) XXXX?000
(17)	VDD control register 1	(001B16) 0016	(48)	A-D1 interrupt control register	(008616) XXXX?000
(18)	Address match interrupt register 3	(001C16) 0016	(49)	DMA1 interrupt control register	(008816) XXXX?000
		(001D16) 0016	(50)	UART2 transmit /NACK interrupt control register	(008916) XXXX?000
		(001E16) 0016	(51)	DMA3 interrupt control register	(008A16) XXX2?000
(19)	VDD control register 1	(001F16) 0016	(52)	UART3 transmit /NACK interrupt control register	(008B16) XXXX?000
(20)	DRAM control register	(004016) ?XXX?????	(53)	Timer A1 interrupt control register	(008C16) XXX2?000
(21)	DRAM refresh interval set register	(004116) ??16	(54)	UART4 transmit /NACK interrupt control register	(008D16) XXXX?0000
(22)	Flash memory control register 0	(005716) 🛛 🗐 00000	(55)	Timer A3 interrupt control register	(008E16) XXXX?000
(23)	DMA0 interrupt control register	(006816) XXXX?000	(56)	UART2 bus collision detection interrupt control register	(008F16) XXXX?000
(24)	Timer B5 interrupt control register	(006916) XXXX?000	(57)	UART0 transmit /NACK interrupt control register	(009016) XXXX?000
(25)	DMA2 interrupt control register	(006A16) XXXX?000	(58)	UART1/UART4 bus collision detection interrupt control register	(009116)
	othing is manned to this hit				

x : Nothing is mapped to this bit ? : Undefined

The content of other registers and RAM is undefined when the microcomputer is reset. The initial values must therefore be set. Note 1: When the Vcc level is applied to the CNVss pin, it is 0316 at a reset. Note 2: When the BYTE pin is "L", bit 3 is "1". When the BYTE pin is "H", bit 3 is "0".

Figure 1.4.3. Device's internal status after a reset is cleared (1/10)

(00B716) 0XX00000 (00B816) 00X0000 (00B916) 0XXX0000 (00BA16) 0XXX0000 (00BB16) 0XX00000

??16

??16

??16

??16

??16

??16

??16

??16 ??16

??16

??16

??16

??16 ??16

??16

??16

0016

0016

0016

0016

0016

0016 0016

0016

(00D016) 0X00X000 (00D116) 0X00X000 (00D416) 0X00X000 (00D516) 0X00X000

(00C016)

(00C116)

(00C216)

(00C316)

(00C416)

(00C516)

(00C616)

(00C716)

(00C816)

(00C916)

(00CA16) (00CB16)

(00CC16)

(00CD16) (00CE16)

(00CF16)

(00D816)

(00D916)

(00DA16)

(00DB16)

(00DC16)

(00DD16)

(00DE16) (00DF16)

development Reset

Γ

Under

(= 0)			(00)	
(59)	UART1 transmit/NACK interrupt control register	(009216) <u>XXXX? 0 0 0</u>	(92)	Interrupt enable register 7
(60)	Key input interrupt control register	(009316) 🗙 🗙 🖓 (0000)	(93)	Interrupt enable register 8
61)	Timer B0 interrupt control register	(009416) XXX2?000	(94)	Interrupt enable register 9
62)	Intelligent I/O interrupt control register 1	(009516) XXX2?000	(95)	Interrupt enable register 10
3)	Timer B2 interrupt control register	(009616) XXXX?000	(96)	Interrupt enable register 11
54)	Intelligent I/O interrupt control register 3	(009716) XXX2?000	(97)	Group 0 time measurement/waveform
5)	Timer B4 interrupt control register	(009816) XXX2?000		
6)	Intelligent I/O interrupt control register 5	(009916) XXXX?000	(98)	Group 0 time measurement/waveform
7)	INT4 interrupt control register	(009A16) XX00?000		
8)	Intelligent I/O interrupt control register 7	(009B16) XXXX?000	(99)	Group 0 time measurement/waveform
9)	INT2 interrupt control register	(009C16) XX00?000		
0)	Intelligent I/O interrupt control register 9/ CAN interrupt 0 control register	(009D16) XXXX?000	(100)	Group 0 time measurement/waveform
1)	INT0 interrupt control register	(009E16) XX00?000		generate register 3
2)	Exit priority register	(009F16) XX0X0000	(101)	Group 0 time measurement/waveform
3)	Interrupt request register 0	(00A016) XX00X00X		generate register 4
4)	Interrupt request register 1	(00A116) XX00X00X	(102)	Group 0 time measurement/waveform
5)	Interrupt request register 2	(00A216) XX00X0XX		generate register 5
6)	Interrupt request register 3	(00A316) XX00000X	(103)	Group 0 time measurement/waveform
7)	Interrupt request register 4	(00A416) 00X0000X		generate register 6
B)	Interrupt request register 5	(00A516) XXX0000X	(104)	Group 0 time measurement/waveform
9)	Interrupt request register 6	(00A616) XXX0000X		generate register 7
0)	Interrupt request register 7	(00A716) 0XX0000X	(105)	Group 0 waveform generate control register (
1)	Interrupt request register 8	(00A816) 00X0000X	(106)	Group 0 waveform generate control register
2)	Interrupt request register 9	(00A916) 0XX0000X	(107)	Group 0 waveform generate control register
3)	Interrupt request register 10	(00AA16) 0XX0000X	(108)	Group 0 waveform generate control register \$
4)	Interrupt request register 11	(00AB16) 0XX0000X	(109)	Group 0 time measurement control register 0
35)	Interrupt enable register 0	(00B016) XX00X000	(110)	Group 0 time measurement control register 1
36)	Interrupt enable register 1	(00B116) XX00X000	(111)	Group 0 time measurement control register 2
37)	Interrupt enable register 2	(00B216) XX00X0X0	(112)	Group 0 time measurement control register 3
38)	Interrupt enable register 3	(00B316) XX000000	(113)	Group 0 time measurement control register 4
9)	Interrupt enable register 4	(00B416) 00X00000	(114)	Group 0 time measurement control register 5
90)	Interrupt enable register 5	(00B516) XXX00000	(115)	Group 0 time measurement control register 6
	Interrupt enable register 6	(00B616) XXXAAAAA	(116)	Group 0 time measurement control register 7
(91)				

Figure 1.4.3. Device's internal status after a reset is cleared (2/10)

gene	
Reset	

(117) Group 0 base timer register	(00E016) ??16	(144) Group 1 time measurement/waveform	(010416) ??16
	(00E116) ??16	g	(010516) ??16
(118) Group 0 base timer control register 0	(00E216) 0016	(145) Group 1 time measurement/waveform	(010616) ??16
(119) Group 0 base timer control register 1	(00E316) 0016	generale register 3	(010716) ??16
(120) Group 0 time measurement prescaler register 6	(00E416) 0016	(146) Group 1 time measurement/waveform	(010816) ??16
(121) Group 0 time measurement prescaler register 7	(00E516) 0016	generale register 4	(010916) ??16
(122) Group 0 function enable register	(00E616) 0016	(147) Group 1 time measurement/waveform	(010A16) ??16
(123) Group 0 function select register	(00E716) 0016	generale register 5	(010B16) ??16
(124) Group 0 SI/O receive buffer register	(00E816) ??16	(148) Group 1 time measurement/waveform	(010C16) ??16
	(00E916)	generale register o	(010D16) ??16
(125) Group 0 transmit buffer/receive data register	(00EA16) ??16	(149) Group 1 time measurement/waveform	(010E16) ??16
(126) Group 0 receive input register	(00EC16) ??16	generate register 7	(010F16) ??16
(127) Group 0 SI/O communication mode register	(00ED16) 0016	(150) Group 1 waveform generate control register 0	(011016) 000000
(128) Group 0 transmit output register	(00EE16) ??16	(151) Group 1 waveform generate control register 1	(011116) 000000
(129) Group 0 SI/O communication control register	(00EF16) 0000X011	(152) Group 1 waveform generate control register 2	(011216) 00000
(130) Group 0 data compare register 0	(00F016) ??16	(153) Group 1 waveform generate control register 3	(011316) 000000
(131) Group 0 data compare register 1	(00F116) ??16	(154) Group 1 waveform generate control register 4	(011416) 000000
(132) Group 0 data compare register 2	(00F216) ??16	(155) Group 1 waveform generate control register 5	(011516) 0X00X000
(133) Group 0 data compare register 3	(00F316) ??16	(156) Group 1 waveform generate control register 6	(011616) 000000
(134) Group 0 data mask register 0	(00F416) ??16	(157) Group 1 waveform generate control register 7	(011716) 0X00X000
(135) Group 0 data mask register 1	(00F516) ??16	(158) Group 1 time measurement control register 1	(011916) 0016
(136) Group 0 receive CRC code register	(00F816) ??16	(159) Group 1 time measurement control register 2	(011A16) 0016
	(00F916) ??16	(160) Group 1 time measurement control register 6	(011E16) 0016
(137) Group 0 transmit CRC code register	(00FA16) 0016	(161) Group 1 time measurement control register 7	(011F16) 0016
	(00FB16) 0016	(162) Group 1 base timer register	(012016) ??16
(138) Group 0 SI/O expansion mode register	(00FC16) 0016		(012116) ??16
(139) Group 0 SI/O expansion receive control registe	er (00FD16) 0016	(163) Group 1 base timer control register 0	(012216) 0016
(140) Group 0 SI/O special communication	(00FE16) 00000XX	(164) Group 1 base timer control register 1	(012316) 0016
(141) Group 0 SI/O expansion transmit	(00FF16) 00000XXX		
(142) Group 1 time measurement/waveform	(010016) ??16		
generale register o	(010116) ??16		
(143) Group 1 time measurement/waveform	(010216) ??16		
generale register i	(010316) ??16		
x : Nothing is mapped to this bit ? : Undefined			
The content of other registers and RAM is undef	ined when the microcompute	er is reset. The initial values must therefore be set.	

Figure 1.4.3. Device's internal status after a reset is cleared (3/10)

(165) Group 1 time measurement prescaler register 6	6 (012416) 0016	(191) Group 2 waveform generate register 4	(014816) ??16
(166) Group 1 time measurement prescaler register 7	7 (012516) 0016		(014916) ??16
(167) Group 1 function enable register	(012616) 0016	(192) Group 2 waveform generate register 5	(014A16) ??16
(168) Group 1 function select register	(012716) 0016		(014B16) ??16
(169) Group 1 SI/O receive buffer register	(012816) ??16	(193) Group 2 waveform generate register 6	(014C16) ??16
	(012916) X000XXXX		(014D16) ??16
(170) Group 1 transmit buffer/receive data register	(012A16) ??16	(194) Group 2 waveform generate register 7	(014E16) ??16
(171) Group 1 receive input register	(012C16) ??16		(014F16) ??16
(172) Group 1 SI/O communication mode register	(012D16) 0016	(195) Group 2 waveform generate control register 0	(015016) 0016
(173) Group 1 transmit output register	(012E16) ??16	(196) Group 2 waveform generate control register 1	(015116) 0016
(174) Group 1 SI/O communication control register	(012F16) 0000X011	(197) Group 2 waveform generate control register 2	(015216) 0016
(175) Group 1 data compare register 0	(013016) ??16	(198) Group 2 waveform generate control register 3	(015316) 0016
(176) Group 1 data compare register 1	(013116) ??16	(199) Group 2 waveform generate control register 4	(015416) 0016
(177) Group 1 data compare register 2	(013216) ??16	(200) Group 2 waveform generate control register 5	(015516) 0016
(178) Group 1 data compare register 3	(013316) ??16	(201) Group 2 waveform generate control register 6	(015616) 0016
(179) Group 1 data mask register 0	(013416) ??16	(202) Group 2 waveform generate control register 7	(015716) 0016
(180) Group 1 data mask register 1	(013516) ??16	(203) Group 2 base timer register	(016016) ??16
(181) Group 1 receive CRC code register	(013816) ??16		(016116) ??16
	(013916) ??16	(204) Group 2 base timer control register 0	(016216) 0016
(182) Group 1 transmit CRC code register	(013A16) 0016	(205) Group 2 base timer control register 1	(016316) 0016
	(013B16) 0016	(206) Base timer start register	(016416) XXXX0000
(183) Group 1 SI/O expansion mode register	(013C16) 0016	(207) Group 2 function enable register	(016616) 0016
(184) Group 1 SI/O expansion receive control register	(013D16) 0016	(208) Group 2 RTP output buffer register	(016716) 0016
(185) Group 1 SI/O special communication	(013E16) 00000XX	(209) Group 2 SI/O communication mode register	(016A16) 00XXX000
interrupt detect register (186) Group 1 SI/O expansion transmit control register	r (013F16) 00000XXX	(210) Group 2 SI/O communication control register	(016B16) 0000X110
(187) Group 2 waveform generate register 0	(014016) ??16	(211) Group 2 SI/O transmit buffer register	(016C16) ??16
	(014116) ??16		(016D16) <u>???XX???</u>
(188) Group 2 waveform generate register 1	(014216) ??16	(212) Group 2 SI/O receive buffer register	(016E16) ??16
	(014316) ??16		(016F16) XXX?XXX
(189) Group 2 waveform generate register 2	(014416) ??16	(213) Group 2 IEBus address register	(017016) ??16
	(014516) ??16		(0171 ₁₆) XXXX?????
(190) Group 2 waveform generate register 3	(014616) ??16	(214) Group 2 IEBus control register	(017216) 00XXX000
	(014716) ??16		
x : Nothing is mapped to this bit ? : Undefined			
The content of other registers and RAM is undefin	ned when the microcomput	er is reset. The initial values must therefore be set.	

Figure 1.4.3. Device's internal status after a reset is cleared (4/10)

develor	
Reset	

(215) Group 2 IEBus transmit interrupt	(017316) XXX00000	(238) Group 3 waveform generate mask reg	ister 4 (019816) ??16
(216) Group 2 IEBus receive interrupt	(017416) XXX00000		(019916) ??16
(217) Input function select register	(017816) 0016	(239) Group 3 waveform generate mask reg	ister 5 (019A16) ??16
(218) Group 3 SI/O communication mode register	(017A16) 00XX0000		(019B16) ??16
(219) Group 3 SI/O communication control registe	r (017B16) 00?0X??0	(240) Group 3 waveform generate mask reg	ister 6 (019C16) ??16
(220) Group 3 SI/O transmit buffer register	(017C16) ??16		(019D16) <u>??16</u>
	(017D16) ??16	(241) Group 3 waveform generate mask reg	ister 7 (019E16) ??16
(221) Group 3 SI/O receive buffer register	(017E16) ??16		(019F16) ??16
	(017F16) ??16	(242) Group 3 base timer register	(01A016) ??16
(222) Group 3 waveform generate register 0	(018016) ??16		(01A116) ??16
	(018116) ??16	(243) Group 3 base timer control register 0	(01A216) 0016
(223) Group 3 waveform generate register 1	(018216) ??16	(244) Group 3 base timer control register 1	(01A316) 0XX0X000
	(018316) ??16	(245) Group 3 function enable register	(01A616) 0016
(224) Group 3 waveform generate register 2	(018416) ??16	(246) Group 3 RTP output buffer register	(01A716) 0016
	(018516) ??16	(247) Group 3 high-speed HDLC	
(225) Group 3 waveform generate register 3	(018616) ??16	(248) Group 3 high-speed HDLC	(01AC16) 0016
	(018716) ??16	(249) Group 3 high-speed HDLC	(01AD16) ??16
(226) Group 3 waveform generate register 4	(018816) ??16	(250) Group 3 high-speed HDLC transmit co	punter (01AE16) 0016
	(018916) ??16		(01AF16) 0016
(227) Group 3 waveform generate register 5	(018A16) ??16	(251) Group 3 high-speed HDLC data	(01B016) 0016
	(018B16) ??16	compare register	(01B116) 0016
(228) Group 3 waveform generate register 6	(018C16) ??16	(252) Group 3 high-speed HDLC data	(01B216) 0016
	(018D16) ??16	mask register o	(01B316) 0016
(229) Group 3 waveform generate register 7	(018E16) ??16	(253) Group 3 high-speed HDLC data	(01B416) 0016
	(018F16) ??16	compare register	(01B516) 0016
(230) Group 3 waveform generate control register 0	(019016) 0016	(254) Group 3 high-speed HDLC data	(01B616) 0016
(231) Group 3 waveform generate control register 1	(019116) 0016	mask register 1	(01B716) 0016
(232) Group 3 waveform generate control register 2	(019216) 0016	(255) Group 3 high-speed HDLC data	(01B816) 0016
(233) Group 3 waveform generate control register 3	(019316) 0016	compare register	(01B916) 0016
(234) Group 3 waveform generate control register 4	(019416) 0016	(256) Group 3 high-speed HDLC data	(01BA16) 0016
(235) Group 3 waveform generate control register 5	(019516) 0016	mask register 2	(01BB16) 0016
(236) Group 3 waveform generate control register 6	(019616) 0016	(257) Group 3 high-speed HDLC data	(01BC16) 0016
(237) Group 3 waveform generate control register 7	(019716) 0016	compare register	o (01BD16) 0016
x : Nothing is mapped to this bit ? : Undefined The content of other registers and RAM is undefir	ned when the microcompute	r is reset. The initial values must therefore be	e set.

(258) Group 3 high-speed HDLC data mask register 3	(01BE16) 0016	(282) CAN0 message slot buffer 0 data 6	(01EC16) ??16 (Note)
	(01BF16) 0016	(283) CAN0 message slot buffer 0 data 7	(01ED16) ??16
(259) A-D1 register 0	(01C016) ??16	(284) CAN0 message slot buffer 0 time stamp hig	h (01EE16) ??16
	(01C116) ??16	(285) CAN0 message slot buffer 0 time stamp low	v (01EF16) ??16
(260) A-D1 register 1	(01C216) ??16	(286) CAN1 message slot buffer 0 standard ID 0	(01F016) XXX??????
	(01C316) ??16	(287) CAN1 message slot buffer 0 standard ID 1	(01F116) XX????????
(261) A-D1 register 2	(01C416) ??16	(288) CAN1 message slot buffer 0 extended ID 0	(01F216) XXXX?????
	(01C516) ??16	(289) CAN1 message slot buffer 0 extended ID 1	(01F316) ??16
(262) A-D1 register 3	(01C616) ??16	(290) CAN1 message slot buffer 0 extended ID 2	(01F416) XX????????
	(01C7 ₁₆) ?? ₁₆	(291) CAN1 message slot buffer 0 data length cod	e (01F516) XXXX?????
(263) A-D1 register 4	(01C816) ??16	(292) CAN1 message slot buffer 0 data 0	(01F616) ??16
	(01C916) ??16	(293) CAN1 message slot buffer 0 data 1	(01F716) ??16
(264) A-D1 register 5	(01CA16) ??16	(294) CAN1 message slot buffer 0 data 2	(01F816) ??16
	(01CB16) ??16	(295) CAN1 message slot buffer 0 data 3	(01F916) ??16
(265) A-D1 register 6	(01CC16) ??16	(296) CAN1 message slot buffer 0 data 4	(01FA16) ??16
	(01CD16) ??16	(297) CAN1 message slot buffer 0 data 5	(01FB16) ??16
(266) A-D1 register 7	(01CE16) ??16	(298) CAN1 message slot buffer 0 data 6	(01FC16) ??16
	(01CF16) ??16	(299) CAN1 message slot buffer 0 data 7	(01FD16) ??16
(267) A-D1 control register 2	(01D416) X00XX000	(300) CAN1 message slot buffer 0 time stamp hig	h (01FE16) ??16
(268) A-D1 control register 0	(01D616) 0016	(301) CAN1 message slot buffer 0 time stamp lov	(Note) v (01FF16) ??16
(269) A-D1 control register 1	(01D716) XX000000	(302) CAN0 control register 0	(020016) XX010X01
(270) CAN0 message slot buffer 0 standard ID 0	(01E016) XXX???????		(020116) XXXX0000
(271) CAN0 message slot buffer 0 standard ID 1	(01E116) XX?????????	(303) CAN0 status register	(020216) 0016
(272) CAN0 message slot buffer 0 extended ID 0	(01E216) XXXX?????		(1000) (020316) X0000X01
(273) CAN0 message slot buffer 0 extended ID 1	(01E316) ??16	(304) CAN0 expansion ID register	(020416) 0016
(274) CAN0 message slot buffer 0 extended ID 2	(01E416) XX?????????		(020516) 0016
(275) CAN0 message slot buffer 0 data length cod	e (01E516) XXXX?????	(305) CAN0 configuration register	
(276) CAN0 message slot buffer 0 data 0	(01E616) ??16		(020716) 0016
(277) CAN0 message slot buffer 0 data 1	(01E716) ??16	(306) CAN0 time stamp register	(020816) 0016
(278) CAN0 message slot buffer 0 data 2	(01E816) ??16		(020916) 0016
(279) CAN0 message slot buffer 0 data 3	(01E916) ??16	(307) CAN0 transmit error count register	(020A16) 0016
(280) CAN0 message slot buffer 0 data 4	(01EA16) ??16	(308) CAN0 receive error count register	(020B16) 0016
(281) CAN0 message slot buffer 0 data 5	(01EB16) ??16		(Note)
x : Nothing is mapped to this bit ? : Undefined			
The content of other registers and RAM is undef Note: This applies when the CAN module is supplied to the term of	ined when the microcompu	ter is reset. The initial values must therefore be set. the sleep mode control bit (bit 0 at address 024216) to 1 after reset.

Figure 1.4.3. Device's internal status after a reset is cleared (6/10)

(309) CAN0 slot interrupt status register	(020C16) 0016 (Note)	(339) X0 register/Y0 register	(02C016) ??16
	(020D16) 0016		(02C116) ??16
(310) CAN0 slot interrupt mask register	(021016) 0016	(340) X1 register/Y1 register	(02C216) ??16
	(021116) 0016		(02C316) ??16
(311) CAN0 error interrupt mask register	(021416) XXXX0000	(341) X2 register/Y2 register	(02C416) ??16
(312) CAN0 error interrupt status register	(021516) XXXX0000 (Note)		(02C516) ??16
(313) CAN0 baud rate prescaler	(021716) 0116 (Note)	(342) X3 register/Y3 register	(02C616) ??16
(314) CAN0 global mask register standard ID0	(022816) XXX00000		(02C716) ??16
(315) CAN0 global mask register standard ID1	(022916) XX000000 (Note)	(343) X4 register/Y4 register	(02C816) ??16
(316) CAN0 global mask register extended ID0	(022A16) ??16		(02C916) ??16
(317) CAN0 global mask register extended ID1	(022B16) ??16	(344) X5 register/Y5 register	(02CA16) ??16
(318) CAN0 global mask register extended ID2	(022C16) ??16		(02CB16) ??16
(319) CAN0 message slot 0 control register / CAN0 local mask register A standard ID0	(023016) XXX000000 (Note)	(345) X6 register/Y6 register	(02CC16) ??16
(320) CAN0 message slot 1 control register / CAN0 local mask register A standard ID1	(023116) XX000000 (Note)		(02CD16) ??16
(321) CAN0 message slot 2 control register / CAN0 local mask register A extended ID0	(023216) 0016 (Note)	(346) X7 register/Y7 register	(02CE16) ??16
(322) CAN0 message slot 3 control register / CAN0 local mask register A extended ID1	(023316) 0016 (Note)		(02CF16) ??16
(323) CAN0 message slot 4 control register / CAN0 local mask register A extended ID2	(023416) 0016 (Note)	(347) X8 register/Y8 register	(02D016) ??16
(324) CAN0 message slot 5 control register	(023516) 0016		(02D116) ??16
(325) CAN0 message slot 6 control register	(023616) 0016	(348) X9 register/Y9 register	(02D216) ??16
(326) CAN0 message slot 7 control register	(023716) 0016 (Note)		(02D316) ??16
(327) CAN0 message slot 8 control register / CAN0 local mask register B standard ID0	(023816) XXX00000 (Note)	(349) X10 register/Y10 register	(02D416) ??16
(328) CAN0 message slot 9 control register / CAN0 local mask register B standard ID1	(023916) XX000000 (Note)		(02D516) ??16
(329) CAN0 message slot 10 control register / CAN0 local mask register B extended ID0	(023A16) 0016	(350) X11 register/Y11 register	(02D616) ??16
(330) CAN0 message slot 11 control register / CAN0 local mask register B extended ID1	(023B16) 0016 (Note)		(02D716) ??16
(331) CAN0 message slot 12 control register / CAN0 local mask register B extended ID2	(023C16) 0016 (Note)	(351) X12 register/Y12 register	(02D816) ??16
(332) CAN0 message slot 13 control register	(023D16) 0016		(02D916) ??16
(333) CAN0 message slot 14 control register	(023E16) 0016	(352) X13 register/Y13 register	(02DA16) ??16
(334) CAN0 message slot 15 control register	(023F16) 0016 (Note)		(02DB16) ??16
(335) CAN0 slot buffer select register	(024016) 0016 (Note)	(353) X14 register/Y14 register	(02DC16) ??16
(336) CAN0 control register 1	(024116) XX0000XX (Note)		(02DD16) ??16
(337) CANO sleep control register	(024216) XXXXXX0 (Note)	(354) X15 register/Y15 register	(02DE16) ??16
(338) CAN0 acceptance filter support register	(024416) 0016 (Note)		(02DF16) ??16
	(024516) 0116	(355) XY control register	(02E016) XXXXX00
x : Nothing is mapped to this bit			

The content of other registers and RAM is undefined when the microcomputer is reset. The initial values must therefore be set.

Note: This applies when the CAN module is supplied with a clock by setting the sleep mode control bit (bit 0 at address 024216) to 1 after reset.

Reset

(356) UART1 special mode register 4	(02E416) 0016	(382) Three-phase output buffer register 0	(030A16) XX000000
(357) UART1 special mode register 3	(02E516) 0016	(383) Three-phase output buffer register 1	(030B16) XX000000
(358) UART1 special mode register 2	(02E616) 0016	(384) Dead time timer	(030C16) ??16
(359) UART1 special mode register	(02E716) 0016	(385) Timer B2 interrupt occurrence	(030D16) XXXX?????
(360) UART1 transmit-receive mode register	(02E816) 0016	(386) Timer B3 register	(031016) ??16
(361) UART1 bit rate generator	(02E916) ??16		(031116) ??16
(362) UART1 transmit buffer register	(02EA16) ??16	(387) Timer B4 register	(031216) ??16
	(02EB16) XXXXXXX		(031316) ??16
(363) UART1 transmit-receive control register 0	(02EC16) 0816	(388) Timer B5 register	(031416) ??16
(364) UART1 transmit-receive control register 1	(02ED16) 0216		(031516) ??16
(365) UART1 receive buffer register	(02EE16) ??16	(389) Timer B3 mode register	(031B16) 00?X0000
	(02EF16) ?????XX?	(390) Timer B4 mode register	(031C16) 00?X0000
(366) UART4 special mode register 4	(02F416) 0016	(391) Timer B5 mode register	(031D16) 00?00000
(367) UART4 special mode register 3	(02F516) 0016	(392) External interrupt cause select register	(031F16) 0016
(368) UART4 special mode register 2	(02F616) 0016	(393) UART3 special mode register 4	(032416) 0016
(369) UART4 special mode register	(02F716) 0016	(394) UART3 special mode register 3	(032516) 0016
(370) UART4 transmit-receive mode register	(02F816) 0016	(395) UART3 special mode register 2	(032616) 0016
(371) UART4 bit rate generator	(02F916) ??16	(396) UART3 special mode register	(032716) 0016
(372) UART4 transmit buffer register	(02FA16) ??16	(397) UART3 transmit-receive mode register	(032816) 0016
	(02FB16) XXXXXXX	(398) UART3 bit rate generator	(032916) ??16
(373) UART4 transmit-receive control register 0	(02FC16) 0816	(399) UART3 transmit buffer register	(032A16) ??16
(374) UART4 transmit-receive control register 1	(02FD16) 0216		(032B16) XXXXXX?
(375) UART4 receive buffer register	(02FE16) ??16	(400) UART3 transmit-receive control register 0	(032C16) 0816
	(02FF16) ?????XX?	(401) UART3 transmit-receive control register 1	(032D16) 0216
(376) Timer B3,B4,B5 count start flag	(030016) 000 X X X X	(402) UART3 receive buffer register	(032E16) ??16
(377) Timer A1-1 register	(030216) ??16		(032F16) ?????XX?
	(030316) ??16	(403) UART2 special mode register 4	(033416) 0016
(378) Timer A2-1 register	(030416) ??16	(404) UART2 special mode register 3	(033516) 0016
	(030516) ??16	(405) UART2 special mode register 2	(033616) 0016
(379) Timer A4-1 register	(030616) ??16	(406) UART2 special mode register	(033716) 0016
	(030716) ??16	(407) UART2 transmit-receive mode register	(033816) 0016
(380) Three-phase PWM control register 0	(030816) 0016	(408) UART2 bit rate generator	(033916) ??16
(381) Three-phase PWM control register 1	(030916) 0016		
x : Nothing is mapped to this bit ? : Undefined			
The content of other registers and RAM is unde	fined when the microcompu	ter is reset. The initial values must therefore be set.	

Figure 1.4.3. Device's internal status after a reset is cleared (8/10)

Rev.B2 for proof reading

Under opment

Reset

(409) UART2 transmit buffer register	(033A16) ??16	(432) Timer B1 mode register	(035C16) 00?X0000
	(033B16) XXXXXX	(433) Timer B2 mode register	(035D16) 00?X0000
(410) UART2 transmit/receive control register 0	(033C16) 0816	(434) Timer B2 special mode register	(035E16) XXXXXX
(411) UART2 transmit/receive control register 1	(033D16) 0216	(435) Count source prescaler register	(035F16) 0XXX0000
(412) UART2 receive buffer register	(033E16) ??16	(436) UART0 pecial mode register 4	(036416) 0016
	(033F16) ?????XX?	(437) UART0 special mode register 3	(036516) 0016
(413) Count start flag	(034016) 0016	(438) UART0 special mode register 2	(036616) 0016
(414) Clock prescaler reset flag	(034116) 0XXXXXX	(439) UART0 special mode register	(036716) 0016
(415) One-shot start flag	(034216) 0016	(440) UART0 transmit/receive mode register	(036816) 0016
(416) Trigger select register	(034316) 0016	(441) UART0 bit rate generator	(036916) ??16
(417) Up-down flag	(034416) 0016	(442) UART0 transmit buffer register	(036A16) ??16
(418) Timer A0	(034616) ??16		(036B16) XXXXXXX
	(034716) ??16	(443) UART0 transmit/receive control register 0	(036C16) 0816
(419) Timer A1	(034816) ??16	(444) UART0 transmit/receive control register 1	(036D16) 0216
	(034916) ??16	(445) UART0 receive buffer register	(036E16) ??16
(420) Timer A2	(034A16) ??16		(036F16) ?????XX?
	(034B16) ??16	(446) PLL control register 0	(037616) 00110100
(421) Timer A3	(034C16) ??16	(447) DMA0 cause select register	(037816) 0X000000
	(034D16) ??16	(448) DMA1 cause select register	(037916) 0X000000
(422) Timer A4	(034E16) ??16	(449) DMA2 cause select register	(037A16) 0X000000
	(034F16) ??16	(450) DMA3 cause select register	(037B16) 0X000000
(423) Timer B0	(035016) ??16	(451) CRC data register	(037C16) ??16
	(035116) ??16		(037D16) ??16
(424) Timer B1	(035216) ??16	(452) CRC input register	(037E16) ??16
	(035316) ??16	(453) A-D0 register 0	(038016) ??16
(425) Timer B2	(035416) ??16		(038116) ??16
	(035516) ??16	(454) A-D0 register 1	(038216) ??16
(426) Timer A0 mode register	(035616) 000000000		(038316) ??16
(427) Timer A1 mode register	(035716) 000000000	(455) A-D0 register 2	(038416) ??16
(428) Timer A2 mode register	(035816) 000000000		(038516) ??16
(429) Timer A3 mode register	(035916) 000000000	(456) A-D0 register 3	(038616) ??16
(430) Timer A4 mode register	(035A16) 00000X00		(038716) ??16
(431) Timer B0 mode register	(035B16) 00?00000		
x : Nothing is mapped to this bit ? : Undefined			
The content of other registers and RAM are unde	efined when the microcomp	uter is reset. The initial values must therefore be se	et.

Figure 1.4.3. Device's internal status after a reset is cleared (9/10)

oe Reset

(457) A-D0 register 4		(038816) ??16	(486) Port P9		(03C516) ??16
		(038916) ??16	(487) Port P8 direction register		(03C616) 00X00000
(458) A-D0 register 5		(038A16) ??16	(488) Port P9 direction register		(03C716) 0016
		(038B16) ??16	(489) Port P10		(03C816) ??16
(459) A-D0 register 6		(038C16) ??16	(490) Port P11	(Note)	(03C916) XXX??????
		(038D16) ??16	(491) Port P10 direction register	(Note)	(03CA16) 0016
(460) A-D0 register 7		(038E16) ??16	(492) Port P11 direction register	(Note)	(03CB16) XXX000000
		(038F16) ??16	(493) Port P12	(Note)	(03CC16) ??16
(461) A-D0 control register 2		(039416) X0000000	(494) Port P13	(Note)	(03CD16) ??16
(462) A-D0 control register 0		(039616) 0016	(495) Port P12 direction register	(Note)	(03CE16) 0016
(463) A-D0 control register 1		(039716) 0016	(496) Port P13 direction register	(Note)	(03CF16) 0016
(464) D-A register 0		(039816) ??16	(497) Port P14	(Note)	(03D016) X????????
(465) D-A register 1		(039A16) ??16	(498) Port P15	(Note)	(03D116) ??16
(466) D-A control register		(039C16) XXXXX00	(499) Port P14 direction register	(Note)	(03D216) X000000
(467) Function select register A8	(Note)	(03A016) XXX0000	(500) Port P15 direction register	(Note)	(03D316) 0016
(468) Function select register A9	(Note)	(03A116) 0016	(501) Pull-up control register 2		(03DA16) 0016
(469) Function select register C		(03AF16) 00X00000	(502) Pull-up control register 3		(03DB16) 0016
(470) Function select register A0		(03B016) 0016	(503) Pull-up control register 4	(Note)	(03DC16) XXX00000
(471) Function select register A1		(03B116) 0016	(504) Port P0		(03E016) ??16
(472) Function select register B0		(03B216) 0016	(505) Port P1		(03E116) ??16
(473) Function select register B1		(03B316) 0016	(506) Port P0 direction register		(03E216) 0016
(474) Function select register A2		(03B416) XXXX0000	(507) Port P1 direction register		(03E316) 0016
(475) Function select register A3		(03B516) 0016	(508) Port P2		(03E416) ??16
(476) Function select register B2		(03B616) XXXX0000	(509) Port P3		(03E516) ??16
(477) Function select register B3		(03B716) 0016	(510) Port P2 direction register		(03E616) 0016
(478) Function select register A5	(Note)	(03B916) XXXX0000	(511) Port P3 direction register		(03E716) 0016
(479) Function select register A6	(Note)	(03BC16) 0016	(512) Port P4		(03E816) ??16
(480) Function select register A7	(Note)	(03BD16) 0016	(513) Port P5		(03E916) ??16
(481) Port P6		(03C016) ??16	(514) Port P4 direction register		(03EA16) 0016
(482) Port P7		(03C116) ??16	(515) Port P5 direction register		(03EB16) 0016
(483) Port P6 direction register		(03C216) 0016	(516) Pull-up control register 0		(03F016) 0016
(484) Port P7 direction register		(03C316) 0016	(517) Pull-up control register 1		(03F116) XXX0000
(485) Port P8		(03C416) ??16	(518) Port control register		(03FF16) XXXXXX
x : Nothing is mapped to this bit ? : Undefined The content of other registers and RAM is Note :This register exists in 144-pin versio	undefined who	en the microcomputer is reset	The initial values must therefore be set.		

Figure 1.4.3. Device's internal status after a reset is cleared (10/10)

SFR

SFR

Address	Register	
000016		
000116		
000216		
000316		
000416	Processor mode register 0	PM0
000516	Processor mode register 1	PM1
000616	System clock control register 0	CM0
000716	System clock control register 1	CM1
000816	Wait control register	WCR
000916	Address match interrupt control register	AIER
000A16	Protect register	PRCR
000B16	External data bus width control register	DS
000C16	Main clock divided register	MCD
000D16	Oscillation stop detect register	CM2
000E16	Watchdog timer start register	WDTS
000F16	Watchdog timer control register	WDC
001016		
001116	Address match interrupt register 0	RMAD0
001216		
001316		
001416		
001516	Address match interrupt register 1	RAMD1
001616		
001716	VDC control register for PLL	PLV
001816		
001916	Address match interrupt register 2	RAMD2
001A16		
001B16	VDC control register 1	VDC1 *
001C16		
001D16	Address match interrupt register 3	RAMD3
001E16		
001F16	VDC control register 0	VDC0 *
002016		
002116	Emulator interrupt vector table register	EIAD0 *
002216		
002316	Emulator interrupt detect register	EITD *
002416	Emulator protect register	EPRR *
002516		
002616		
002716		
002816		
002916		
002A16		
002B16		
002C16		
002D16		
002E16		
002F16		

Address	Register	
003016	ROM area set register	ROA *
003116	Debug moritor area set register	DBA *
003216	Expansion area set register 0	EXA0 *
003316	Expansion area set register 1	EXA1 *
003416	Expansion area set register 2	EXA2 *
003516	Expansion area set register 3	EXA3 *
003616		
003716		
003816		
003916		
003A16		
003B16		
003C16		
003D16		
003E16		
003F16		
004016	DRAM control register	DRAMCONT
004116	DRAM refresh interval set register	REFCNT
004216		
004316		
004416		
004516		
004616		
004716		
004816		
004916		
004A16		
004B16		
004C16		
004D16		
004E16		
004F16		
005016		
005116		
005216		
005316		
005416		
005516	Flash memory control register 2	FMR2 *
005616	Flash memory control register 1	FMR1 *
005716	Flash memory control register 0	FMR0
005816	· •	
005916		
005A16		
005B16		
005C16		
005D16		
005E16		
005F16		

The blank area is reserved and cannot be used by user.

*: User cannot use this. Do not access to the register.

SFR

Address	Register	
006016		
006116		
006216		
006316		
006416		
006516		
006616		
006716		
006816	DMA0 interrupt control register	DM0IC
006916	Timer B5 interrupt control register	TB5IC
006A16	DMA2 interrupt control register	DM2IC
006B16	UART2 receive /ACK interrupt control register	S2RIC
006C16	Timer A0 interrupt control register	TAOIC
006D16	LIART3 receive /ACK interrupt control register	S3RIC
006E16	Timer A2 interrupt control register	TA2IC
006E16	LIARTA receive /ACK interrupt control register	54RIC
007016	Timor A4 interrupt control register	
007016	IIIABTO/IIABT2 bus colligion detection interrupt control register	
007716	UARTO/DARTS bus comision detection interrupt control register	
007216	UAR TO receive/ACK Interrupt control register	SURIC
007316	A-D0 Interrupt control register	ADUIC
007416	UART1 receive/ACK interrupt control register	SIRIC
007516	Intelligent I/O interrupt control register 0	TIOUIC
007616	Timer B1 interrupt control register	TB1IC
007716	Intelligent I/O interrupt control register 2	IIO2IC
007816	Timer B3 interrupt control register	TB3IC
007916	Intelligent I/O interrupt control register 4	IIO4IC
007A16	INT5 interrupt control register	INT5IC
007B16	Intelligent I/O interrupt control register 6	IIO6IC
007C16	INT3 interrupt control register	INT3IC
007D16	Intelligent I/O interrupt control register 8	IIO8IC
007E16	INT1 interrupt control register	INT1IC
007F16	Intelligent I/O interrupt control register 10/	IIO10IC
	CAN interrupt 1 control register	CAN1ICI
008016		
008116	Intelligent I/O interrupt control register 11/	IIO11IC
	CAN interrupt 2 control register	CAN2IC
008216	· · ·	
008316		
008416		
008516		
008616	A-D1 interrupt control register	AD1IC
008716		
008816	DMA1 interrupt control register	DM1IC
008916	LIART2 transmit /NACK interrunt control register	S2TIC
008416	DMA3 interrupt control register	DM3IC
008840	LIART3 transmit /NACK interrupt control register	
000016	Timor A1 interrupt control register	TA410
000016		TATIC SATIC
008D16	UAR 14 transmit /NACK interrupt control register	54110
008E16	I imer A3 interrupt control register	I A3IC
008F16	UART2 bus collision detection interrupt control register	BCN2IC

Address	Register	
009016	UART0 transmit /NACK interrupt control register	S0TIC
009116	UART1/UART4 bus collision detection interrupt control register	BCN1IC
009216	UART1 transmit/NACK interruptcontrol register	S1TIC
009316	Key input interrupt control register	KUPIC
009416	Timer B0 interrupt control register	TB0IC
009516	Intelligent I/O interrupt control register 1	IIO1IC
009616	Timer B2 interrupt control register	TB2IC
009716	Intelligent I/O interrupt control register 3	IIO3IC
009816	Timer B4 interrupt control register	TB4IC
009916	Intelligent I/O interrupt control register 5	IIO5IC
009A16	INT4 interrupt control register	INT4IC
009B16	Intelligent I/O interrupt control register 7	IIO7IC
009C16	INT2 interrupt control register	INT2IC
009D16	Intelligent I/O interrupt control register 9/	IIO9IC
	CAN interrupt 0 control register	CAN0ICI
009E16	INT0 interrupt control register	INT0IC
009F16	Exit priority register	RLVL
00A016	Interrupt request register 0	IIO0IR
00A116	Interrupt request register 1	II01IR
00A216	Interrupt request register 2	IIO2IR
00A316	Interrupt request register 3	IIO3IR
00A416	Interrupt request register 4	IIO4IR
00A516	Interrupt request register 5	IIO5IR
00A616	Interrupt request register 6	IIO6IR
00A716	Interrupt request register 7	II07IR
00A816	Interrupt request register 8	IIO8IR
00A916	Interrupt request register 9	IIO9IR
00AA16	Interrupt request register 10	IIO10IR
00AB16	Interrupt request register 11	IIO11IR
00AC16		
00AD16		
00AE16		
00AF16		
00B016	Interrupt enable register 0	IIO0IE
00B116	Interrupt enable register 1	IIO1IE
00B216	Interrupt enable register 2	IIO2IE
00B316	Interrupt enable register 3	IIO3IE
00B416	Interrupt enable register 4	IIO4IE
00B516	Interrupt enable register 5	IIO5IE
00B616	Interrupt enable register 6	IIO6IE
00B716	Interrupt enable register 7	IIO7IE
00B816	Interrupt enable register 8	IIO8IE
00B916	Interrupt enable register 9	IIO9IE
00BA16	Interrupt enable register 10	IIO10IE
00BB16	Interrupt enable register 11	IIO11IE
00BC16		
00BD16		
00BE16		
00BF16		

SFR

Address Register	
00C016 00C116 Group 0 TM /WG register 0 G0 ⁻	TM0/G0PO0
00C216 00C316 Group 0 TM /WG register 1 G0 ⁻	TM1/G0PO1
00C416 00C516 Group 0 TM /WG register 2 G0 ⁻	TM2/G0PO2
00C616 00C716 Group 0 TM /WG register 3 G0 ⁻	TM3/G0PO3
00C816 00C916 Group 0 TM /WG register 4 G0 ⁻	TM4/G0PO4
00CA16 00CB16 Group 0 TM /WG register 5 G0 ⁻	TM5/G0PO5
00CC16 00CD16 Group 0 TM /WG register 6 G0 ⁻	TM6/G0PO6
00CE16 00CF16 Group 0 TM /WG register 7 G0 ⁻	TM7/G0PO7
00D016 Group 0 waveform generate control register 0	G0POCR0
00D116 Group 0 waveform generate control register 1	G0POCR1
00D216	
00D316	
00D416 Group 0 waveform generate control register 4	G0POCR4
00D516 Group 0 waveform generate control register 5	G0POCR5
00D616	
00D716	
00D816 Group 0 time measurement control register 0	G0TMCR0
00D916 Group 0 time measurement control register 1	G0TMCR1
00DA16 Group 0 time measurement control register 2	G0TMCR2
00DB16 Group 0 time measurement control register 3	G0TMCR3
00DC16 Group 0 time measurement control register 4	G0TMCR4
00DD16 Group 0 time measurement control register 5	G0TMCR5
00DE16 Group 0 time measurement control register 6	G0TMCR6
00DF16 Group 0 time measurement control register 7	G0TMCR7
00E016 00E116 Group 0 base timer register	G0BT
00E216 Group 0 base timer control register 0	G0BCR0
00E316 Group 0 base timer control register 1	G0BCR1
00E416 Group 0 time measurement prescaler register (6 G0TPR6
00E516 Group 0 time measurement prescaler register	7 G0TPR7
00E616 Group 0 function enable register	G0FE
00E716 Group 0 function select register	G0FS
00E816 00E916 Group 0 SI/O receive buffer register	G0BF
00EA16 Group 0 transmit buffer/receive data register	G0DR
00EB16	
00EC16 Group 0 receive input register	G0RI
00ED16 Group 0 SI/O communication mode register	G0MR
00EE16 Group 0 transmit output register	G0TO
00EF16 Group 0 SI/O communication control register	G0CR

Addroce	Pogistor		
	Group 0 data compare register 0	CO	
00E116	Group 0 data compare register 0	60	
00F116	Group 0 data compare register 1	60	
00F216	Croup 0 data compare register 2	00	
00F316	Group 0 data compare register 3	GU	
00F416	Group 0 data mask register 0	GU	MOKA
00F516	Group o data mask register 1	GU	IVISKI
00F016			
00F716			
00F816	Group 0 receive CRC code register	G0	RCRC
00F916			
00FA16	Group 0 transmit CRC code register	G0	TCRC
00FB16			
00FC16	Group 0 SI/O expansion mode register	G	0EMR
00FD16	Group 0 SI/O expansion receive control regist	ter G	0ERC
00FE16	Group 0 SI/O special communication interrupt detect reg	gister	GOIRF
00FF16	Group 0 SI/O expansion transmit control regis	ster G	50ETC
010016	Group 1 TM /WG register 0	1.1.1.0/0	
010116	Gloup 1 Hill/WG legister 0 G	T TIVIO/C	
010216	Group 1 TM (WG register 1	1 TM1/C	1001
010316	Gloup I Thir/WG legister I G	r rivir/e	
010416	Crown 1 TM ANC register 2	1 TN 10/C	1000
010516	Group 1 TM / WG register 2 G	1111/2/0	JIP02
010616			
010716	Group 1 TM /WG register 3 G	111/13/0	51PU3
010816			
010916	Group 1 TM /WG register 4 G	111/14/0	51PO4
010A16			
010B16	Group 1 TM /WG register 5 G	111/15/0	51PO5
010C16			
010D16	Group 1 TM /WG register 6 G	1 TM6/G	51PO6
010E16			
010F16	Group 1 TM /WG register 7 G	1TM7/C	51PO7
011016	Group 1 waveform generate control register 0	G1P	OCR0
011116	Group 1 waveform generate control register 1	G1P	OCR1
011216	Group 1 waveform generate control register 2	G1P	OCR2
011316	Group 1 waveform generate control register 3	G1P	OCR3
011416	Group 1 waveform generate control register 4	G1P	OCR4
011516	Group 1 waveform generate control register 5	G1P	OCR5
011616	Group 1 waveform generate control register 6	G1P	OCR6
011716	Group 1 waveform generate control register 7	G1P	OCR7
011816	<u> </u>		
011916	Group 1 time measurement control register 1	G1T	MCR1
011A16	Group 1 time measurement control register 2	G1T	MCR2
011R16			
011016			
011010			
011540	Group 1 time measurement control register 6	C1T	MCDE
	Group 1 time measurement control register 6		
	Group i une measurement control register /	GII	IVIOR/

SFR

Address	Register	
012016		0.457
012116	Group 1 base timer register	G1B1
012216	Group 1 base timer control register 0	G1BCR0
012316	Group 1 base timer control register 1	G1BCR1
012416	Group 1 time measurement prescaler register 6	G1TPR6
012516	Group 1 time measurement prescaler register 7	G1TPR7
012616	Group 1 function enable register	G1FE
012716	Group 1 function select register	G1FS
012816		0405
012916	Group 1 SI/O receive buffer register	GIBF
012A16	Group 1 transmit buffer/receive data register	G1DR
012B16		
012C16	Group 1 receive input register	G1RI
012D16	Group 1 SI/O communication mode register	G1MR
012E16	Group 1 transmit output register	G1TO
012F16	Group 1 SI/O communication control register	G1CR
013016	Group 1 data compare register 0	G1CMP0
013116	Group 1 data compare register 1	G1CMP1
013216	Group 1 data compare register 2	G1CMP2
013316	Group 1 data compare register 3	G1CMP3
013416	Group 1 data mask register 0	G1MSK0
013516	Group 1 data mask register 1	G1MSK1
013616		
013716		
013816	Croup 1 reasive CBC and register	CIRCRC
013916	Gloup Treceive CRC code register	GIRCRC
013A16	Group 1 transmit CPC code register	C1TCPC
013B16	Gloup I transmit CRC code register	GIICKC
013C16	Group 1 SI/O expansion mode register	G1EMR
013D16	Group 1 SI/O expansion receive control register	G1ERC
013E16	Group 1 SI/O special communication interrupt detect register	r G1IRF
013F16	Group 1 SI/O expansion transmit control register	G1ETC
014016	Group 2 waveform generate register 0	G2P00
014116		021 00
014216	Group 2 waveform generate register 1	G2PO1
014316		021 01
014416	Group 2 waveform generate register 2	G2PO2
014516		021 02
014616	Group 2 waveform generate register 3	G2PO3
014716		
014816	Group 2 waveform generate register 4	G2PO4
014916		
014A16	Group 2 waveform generate register 5	G2PO5
014B16	,	
014C16	Group 2 waveform generate register 6	G2PO6
014D16		
014E16	Group 2 waveform generate register 7	G2PO7
014F16		

Address	Register	
015016	Group 2 waveform generate control register 0	G2POCR0
015116	Group 2 waveform generate control register 1	G2POCR1
015216	Group 2 waveform generate control register 2	G2POCR2
015316	Group 2 waveform generate control register 3	G2POCR3
015416	Group 2 waveform generate control register 4	G2POCR4
015516	Group 2 waveform generate control register 5	G2POCR5
015616	Group 2 waveform generate control register 6	G2POCR6
015716	Group 2 waveform generate control register 7	G2POCR7
015816	1 0 0	
015916		
015A16		
015B16		
015C16		
015D16		
015E16		
015E16		
015016		
010016	Group 2 base timer register	G2BT
010116	Oracum O hanna timore an atral un ninter O	000000
016216	Group 2 base timer control register 0	G2BCRU
016316	Group 2 base timer control register 1	G2BCR1
016416	Base timer start register	BISR
016516		
016616	Group 2 function enable register	G2FE
016716	Group 2 RTP output buffer register	G2RTP
016816		
016916		
016A16	Group 2 SI/O communication mode register	G2MR
016B16	Group 2 SI/O communication control register	G2CR
016C16	Crown 2 CI/O transmit huffer register	COTD
016D16	Group 2 SI/O transmit burier register	GZIB
016E16		0000
016F16	Group 2 SI/O receive buffer register	G2RB
017016		
017116	Group 2 IEBus address register	IEAR
017216	Group 2 IEBus control register	IECR
017316	Group 2 IEBus transmit interrupt cause detect register	r IETIF
017416	Group 2 IEBus receive interrupt cause detect register	IERIF
017516		
017616		
017716		
017816	Input function select register	IPS
017916		
017416	Group 3 SI/O communication mode register	G3MP
017840	Group 3 SI/O communication control register	C30P
017040	Group 5 51/O communication control register	GOUR
017016	Group 3 SI/O transmit buffer register	G3TB
017016	-	
017E16	Group 3 SI/O receive buffer register	G3RB
U17F16		

SFR

Address	Register	
018016		00000
018116	Group 3 waveform generate register 0	G3PO0
018216	Crown 2 wayafarm ganarata registar 1	02004
018316	Group 3 waveform generate register 1	G3PU1
018416		00000
018516	Group 3 waveform generate register 2	G3PO2
018616	Crown 2 was afore and rate as sister 2	00000
018716	Group 3 waveform generate register 3	G3PU3
018816	Crown 2 was afore and rate and inter 4	00004
018916	Group 3 wavelorm generate register 4	G3P04
018A16		00005
018B16	Group 3 wavelorm generate register 5	63205
018C16	Crown 2 wayafarm ganarata registar 6	C2DO6
018D16	Group 3 waveform generate register 6	G3PO6
018E16	Crown 2 was afore and rate and inter 7	00007
018F16	Group 3 waveform generate register 7	G3PO7
019016	Group 3 waveform generate control register 0	G3POCR0
019116	Group 3 waveform generate control register 1	G3POCR1
019216	Group 3 waveform generate control register 2	G3POCR2
019316	Group 3 waveform generate control register 3	G3POCR3
019416	Group 3 waveform generate control register 4	G3POCR4
019516	Group 3 waveform generate control register 5	G3POCR5
019616	Group 3 waveform generate control register 6	G3POCR6
019716	Group 3 waveform generate control register 7	G3POCR7
019816		0014/4
019916	Group 3 waveform generate mask register 4	G3MK4
019A16		0014/5
019B16	Group 3 waveform generate mask register 5	G3MK5
019C16		0014/0
019D16	Group 3 waveform generate mask register 6	G3MKb
019E16	Orana 2 manufarra ana anto maali anaista 7	00141/7
019F16	Group 3 waveform generate mask register 7	G3MK7
01A016	Crown 2 hoos timer register	CODT
01A116	Group 3 base timer register	GSDI
01A216	Group 3 base timer control register 0	G3BCR0
01A316	Group 3 base timer control register 1	G3BCR1
01A416		
01A516		
01A616	Group 3 function enable register	G3FE
01A716	Group 3 RTP output buffer register	G3RTP
01A816		
01A916		
01AA16		
01AB16	Group 3 high-speed HDLC communication control register	1 HDLC1
01AC16	Group 3 high-speed HDLC communication control register	HDLC
01AD16	Group 3 high-speed HDLC communication regi	ster HDLCF
01AE16	One of the second UDL O terror it second	
01AF16	Group 3 high-speed HDLC transmit counter	HULCC

Address	Register	
01B016		
01B116	Group 3 high-speed HDLC data compare register 0	HDLCCPU
01B216	Group 3 high-speed HDLC data mask register 0	
01B316		TIDEOWIN
01B416	Group 3 high-speed HDLC data compare register1	HDLCCP1
01B516		
018616	Group 3 high-speed HDLC data mask register 1	HDLCMK1
01B716		
01B916	Group 3 high-speed HDLC data compare register 2	HDLCCP2
01BA16		
01BB16	Group 3 high-speed HDLC data mask register 2	HDLCMK2
01BC16		
01BD16	Group 3 high-speed HDLC data compare register 3	HDLCCP3
01BE16	Crown 2 high annead UDLC data maak register 2	
01BF16	Group 3 high-speed HDLC data mask register 3	HDLCIVING
01C016	A-D1 register 0	
01C116		ADTO
01C216	A-D1 register 1	AD11
01C316	- 3	
01C416	A-D1 register 2	AD12
01C516		
01C716	A-D1 register 3	AD13
01C816		
01C916	A-D1 register 4	AD14
01CA16		
01CB16	A-D1 register 5	AD15
01CC16	A D4 register C	
01CD16	A-D1 Tegister 6	AD16
01CE16	A-D1 register 7	17م
01CF16		ADTI
01D016		
01D116		
01D216		
01D316	A D1 control register 2	
01D416		ADICONZ
01D616	A-D1 control register 0	AD1CON0
01D716	A-D1 control register 1	AD1CON1
01D816		
01D916		
01DA16		
01DB16		
01DC16		
01DD16		
01DE16		
01DF16		

SFR

Address D-site	1	A _1,	Deviate -	
Address Register		Addres	s Register	
01E016 CANO message slot buller 0 standard IL	$1 COSLOTO_0$	021016	CAN0 slot interrupt mask register	C0SIMKR
01E116 CANO message slot buffer 0 standard IL		021116		
01E216 CANO message slot buller 0 extend ID0		021216		
01E316 CANO message slot buffer 0 extend ID1		021316		
01E416 CANO message slot buffer 0 extend ID2	COSLOTO_4	021416	CANO error Interrupt mask register	
01E516 CANO message slot buffer 0 data length	code CUSLOTO_5	021516	CANU error interrupt status register	CUEISTR
01E616 CANO message slot buffer 0 data 0		021616		
01E/16 CANO message slot buffer 0 data 1		021716	CANU baud rate prescaler	COBPR
01E816 CAN0 message slot buffer 0 data 2	COSLOTO_8	021816		
01E916 CANO message slot buffer 0 data 3	COSLOTO_9	021916		
01EA16 CAN0 message slot buffer 0 data 4	COSLOTO_10	021A16		
01EB16 CAN0 message slot buffer 0 data 5	COSLOT0_11	021B16		
01EC16 CAN0 message slot buffer 0 data 6	C0SLOT0_12	021C16		
01ED16 CAN0 message slot buffer 0 data 7	COSLOT0_13	021D16		
01EE16 CAN0 message slot buffer 0 time stamp	highC0SLOT0_14	021E16		
01EF16 CAN0 message slot buffer 0 time stamp	low C0SLOT0_15	021F16		
01F016 CAN0 message slot buffer 1 standard IE	0 C0SLOT1_0	022016		
01F116 CAN0 message slot buffer 1 standard IE	D1 C0SLOT1_1	022116		
01F216 CAN0 message slot buffer 1 extend ID0	C0SLOT1_2	022216		
01F316 CAN0 message slot buffer 1 extend ID1	C0SLOT1_3	022316		
01F416 CAN0 message slot buffer 1 extend ID2	C0SLOT1_4	022416		
01F516 CAN0 message slot buffer 1 data length	code C0SLOT1_5	022516		
01F616 CAN0 message slot buffer 1 data 0	C0SLOT1_6	022616		
01F716 CAN0 message slot buffer 1 data 1	C0SLOT1_7	022716		
01F816 CAN0 message slot buffer 1 data 2	C0SLOT1_8	022816	CAN0 global mask register standard ID0	C0GMR0
01F916 CAN0 message slot buffer 1 data 3	C0SLOT1_9	022916	CAN0 global mask register standard ID1	C0GMR1
01FA16 CAN0 message slot buffer 1 data 4	C0SLOT1_10	022A16	CAN0 global mask register extend ID0	C0GMR2
01FB16 CAN0 message slot buffer 1 data 5	C0SLOT1_11	022B16	CAN0 global mask register extend ID1	C0GMR3
01FC16 CAN0 message slot buffer 1 data 6	C0SLOT1_12	022C16	CAN0 global mask register extend ID2	C0GMR4
01FD16 CAN0 message slot buffer 1 data 7	C0SLOT1_13	022D16		
01FE16 CAN0 message slot buffer 1 time stamp	highC0SLOT1_14	022E16		
01FF16 CAN0 message slot buffer 1 time stamp	low C0SLOT1_15	022F16		
020016		023016	CAN0 message slot 0 control register /	COMCTL0/
020116 CAN0 control register 0	COCTLRO		CAN0 local mask register A standard ID0	C0LMAR0
020216		023116	CAN0 message slot 1 control register /	C0MCTL1/
CAN0 status register	COSTR		CAN0 local mask register A standard ID1	C0LMAR1
020416		023216	CAN0 message slot 2 control register /	C0MCTL2/
CAN0 expansion ID register	C0IDR		CAN0 local mask register A extend ID0	C0LMAR2
020616		023316	CAN0 message slot 3 control register /	COMCTL3/
CAN0 configuration register	C0CONR		CAN0 local mask register A extend ID1	C0LMAR3
020816		023416	CAN0 message slot 4 control register /	COMCTL4/
020916 CAN0 time stamp register	C0TSR		CAN0 local mask register A extend ID2	C0LMAR4
020A16 CAN0 transmit error count register	COTEC	023516	CAN0 message slot 5 control register	COMCTL 5
020B16 CAN0 receive error count register	COREC	023616	CAN0 message slot 6 control register	COMCTL 6
020C16		023716	CAN0 message slot 7 control register	COMCTI 7
CAN0 slot interrupt status register	COSISTR	023816	CAN0 message slot 8 control register /	COMCTL 8/
020E16			CANO local mask register R standard IDO	COL MRR0
020E16		L	e, interiodal material register Distandard ID0	COLIVIDIO

The blank area is reserved and cannot be used by user.

Note 1: CAN0 message slot i control registers (i=0 to 15) are allocated to addresses 023016 to 023F16 by switching banks.

SFR

Add	dress Register			Address Register	
023	916 CAN0 message slot 9 control register /	COMCTL9/		02C016	
	CAN0 local mask register B standard ID1	C0LMBR1		02C116 X0 register/Y0 register	X0R/Y0R
023	A16 CAN0 message slot 10 control register /	COMCTL10/		02C216	
	CAN0 local mask register B extend ID0	C0LMBR2		02C316 X1 register/Y1 register	X1R/Y1R
023	B16 CAN0 message slot 11 control register /	COMCTL11/		02C416	
	CAN0 local mask register B extend ID1	COLMBR3		02C516 X2 register/Y2 register	X2R/Y2R
023	C16 CAN0 message slot 12 control register /	C0MCTL12/		02C616	
	CANO local mask register B extend ID2	C0LMBR4		02C716 X3 register/Y3 register	X3R/Y3R
023	D16 CANO message slot 13 control register	COMCTI 13		02C816	
023	E16 CAN0 message slot 14 control register	COMCTI 14		02C916 X4 register/Y4 register	X4R/Y4R
023	F16 CAN0 message slot 15 control register	COMCTI 15		02CA16	
024	016 CANO slot buffer select register	COSBS		X5 register/Y5 register	X5R/Y5R
024	116 CANO control register 1	COCTLR1		02CC16	
024	216 CANO sleep control register	COSLPR		02CD16 X6 register/Y6 register	X6R/Y6R
024	316	OUDER IX		02CE16	
024	416			02CE16 X7 register/Y7 register	X7R/Y7R
024	CAN0 acceptance filter support register	COAFS		02D016	
024				X8 register/Y8 register	X8R/Y8R
				02D216	
				02D216 X9 register/Y9 register	X9R/Y9R
				02D416	
				02D516 X10 register/Y10 register	X10R/Y10R
				02D616	
				02D716 X11 register/Y11 register	X11R/Y11R
			L	02D816	
Ť			ř	X12 register/Y12 register	X12R/Y12R
				02DA16	
				02DB16 X13 register/Y13 register	X13R/Y13R
				02DC16	
				02DD16 X14 register/Y14 register	X14R/Y14R
				02DE16	
				02DE16 X15 register/Y15 register	X15R/Y15R
				02E016 XY control register	XYC
				02E116	×10
				02E216	
				02E316	
				02E416 LIART1 special mode register 4	LI1SMR4
				02E516 UART1 special mode register 3	
				02E616 LIART1 special mode register 2	
				02E716 UART1 special mode register	
				02E816 UART1 transmit-receive mode register	
				02E016 UART1 transmit receive mode register	
					OTDIXO
				UART1 transmit buffer register	U1TB
				02EC16 LIAPT1 transmit.receive control register 0	11100
				02ED16 UART1 transmit-receive control register 0	
					0101
				UART1 receive buffer register	U1RB
				UZEF16	

SFR

Address	s Register	
02F016		
02F116		
02F216		
02F316		
02F416	UART4 special mode register 4	J4SMR4
02F516	UART4 special mode register 3	J4SMR3
02F616	UART4 special mode register 2	J4SMR2
02F716	UART4 special mode register	U4SMR
02F816	UART4 transmit-receive mode register	U4MR
02F916	UART4 bit rate generator	U4BRG
02FA16		
02FB16	UART4 transmit buffer register	U4TB
02FC16	UART4 transmit-receive control register 0	U4C0
02FD16	UART4 transmit-receive control register 1	U4C1
02FE16	UART4 receive buffer register	U4RB
02FF16		
030016	Timer B3,B4,B5 count start flag	TBSR
030116		
030216	Timer A1-1 register	TA11
030316		
030416	Timer A2-1 register	TA21
030516		1721
030616	Timer A4.1 register	TA 44
030716	Timer A4-1 Tegister	1A41
030816	Three-phase PWM control register 0	INVC0
030916	Three-phase PWM control register 1	INVC1
030A16	Three-phase output buffer register 0	IDB0
030B16	Three-phase output buffer register 1	IDB1
030C16	Dead time timer	DTT
030D16	Timer B2 interrupt occurrence frequency set counter	ICTB2
030E16		
030F16		
031016		
031116	Timer B3 register	TB3
031216		
031316	Timer B4 register	TB4
031416		
031516	Timer B5 register	TB5
031616		
031716		
031816		
031916		
031416		
031R16	Timer B3 mode register	TB3MD
031016	Timer B4 mode register	TRAMP
021010	Timer D4 mode register	
021540		IDUIVIK
031E16	Evitornal interrupt cause calent register	
031F16	External interrupt cause select register	IFSR

Address	Register	
032016		
032116		
032216		
032316		
032416	UART3 special mode register 4	U3SMR4
032516	UART3 special mode register 3	U3SMR3
032616	UART3 special mode register 2	U3SMR2
032716	UART3 special mode register	U3SMR
032816	UART3 transmit-receive mode register	U3MR
032916	UART3 bit rate generator	U3BRG
032A16	LIAPT2 transmit huffer register	
032B16		0316
032C16	UART3 transmit-receive control register 0	U3C0
032D16	UART3 transmit-receive control register 1	U3C1
032E16	LIART3 receive buffer register	LISPB
032F16	OARTS TECEIVE Duller Tegister	03KB
033016		
033116		
033216		
033316		
033416	UART2 special mode register 4	U2SMR4
033516	UART2 special mode register 3	U2SMR3
033616	UART2 special mode register 2	U2SMR2
033716	UART2 special mode register	U2SMR
033816	UART2 transmit-receive mode register	U2MR
033916	UART2 bit rate generator	U2BRG
033A16	LIART2 transmit buffer register	LI2TB
033B16		0210
033C16	UART2 transmit/receive control register 0	U2C0
033D16	UART2 transmit/receive control register 1	U2C1
033E16	LIART2 receive buffer register	LI2RB
033F16		02110
034016	Count start flag	TABSR
034116	Clock prescaler reset flag	CPSRF
034216	One-shot start flag	ONSF
034316	Trigger select register	TRGSR
034416	Up-down flag	UDF
034516		
034616	Timer A0 register	ТАО
034716		
034816	Timer A1 register	TA1
034916		
034A16	Timer A2 register	TA2
034B16		
034C16	Timer A3 register	TA3
034D16		
034E16	Timer A4 register	TA4
U34F16		

Under proof reading

Address	s Register	
035016 035116	Timer B0 register	тво
035216 035316	Timer B1 register	TA1
035416 035516	Timer B2 register	TA2
035616	Timer A0 mode register	TA0MR
035716	Timer A1 mode register	TA1MR
035816	Timer A2 mode register	TA2MR
035916	Timer A3 mode register	TA3MR
035A16	Timer A4 mode register	TA4MR
035B16	Timer B0 mode register	TB0MR
035C16	Timer B1 mode register	TB1MR
035D16	Timer B2 mode register	TB2MR
035E16	Timer B2 special mode register	TB2SC
035F16	Count source prescaler register	TCSPR
036016		
036116		
036216		
036316		
036416	UART0 special mode register 4	U0SMR4
036516	UART0 special mode register 3	U0SMR3
036616	UART0 special mode register 2	U0SMR2
036716	UART0 special mode register	U0SMR
036816	UART0 transmit/receive mode register	U0MR
036916	UART0 bit rate generator	U0BRG
036A16		
036B16	UAR I U transmit buner register	0018
036C16	UART0 transmit/receive control register 0	U0C0
036D16	UART0 transmit/receive control register 1	U0C1
036E16	LIADTO receive huffer register	
036F16	UAR TO receive buffer register	UURB
037016		
037116		
037216		
037316		
037416		
037516		
037616	PLL control register 0	PLC0
037716		
037816	DMA0 cause select register	DM0SL
037916	DMA1 cause select register	DM1SL
037A16	DMA2 cause select register	DM2SL
037B16	DMA3 cause select register	DM3SL
037C16 037D16	CRC data register	CRCD
037E16	CRC input register	CRCIN
037F16		
-		

Address	Register	
038016	A D0 register 0	4 000
038116	A-D0 register 0	AD00
038216	A D0 register 1	4001
038316	A-D0 register 1	ADUT
038416	A D0 register 2	4002
038516	A-D0 legister 2	AD02
038616	A D0 register 3	
038716	A-D0 register 3	AD03
038816	A D0 register 4	
038916	A-D0 register 4	AD04
038A16	A D0 register 5	
038B16	A-D0 register 5	AD03
038C16	A D0 register 6	
038D16	A-D0 register 0	AD00
038E16	A D0 register 7	
038F16	A-D0 register 7	ADUI
039016		
039116		
039216		
039316		
039416	A-D0 control register 2	AD0CON2
039516		
039616	A-D0 control register 0	AD0CON0
039716	A-D0 control register 1	AD0CON1
039816	D-A register 0	DA0
039916		
039A16	D-A register 1	DA1
039B16		
039C16	D-A control register	DACON
039D16		
039E16		
039F16		

<144-pin version>

Address Register		Address Register	
03A016 Function select register A8	PS8	03D016 Port P14 register	P14
03A116 Function select register A9	PS9	03D116 Port P15 register	P15
03A216		03D216 Port P14 direction register	PD14
03A316		03D316 Port P15 direction register	PD15
03A416		03D416	
03A516		03D516	
03A616		03D616	
03A716		03D716	
03A816		03D816	
03A916		03D916	
03AA16		03DA16 Pull-up control register 2	PUR2
03AB16		03DB16 Pull-up control register 3	PUR3
03AC16		03DC16 Pull-up control register 4	PUR4
03AD16		03DD16	
03AE16		03DE16	
03AF16 Function select register C	PSC	03DF16	
03B016 Function select register A0	PS0	03E016 Port P0 register	P0
03B116 Function select register A1	PS1	03E116 Port P1 register	P1
03B216 Function select register B0	PSL0	03E216 Port P0 direction register	PD0
03B316 Function select register B1	PSL1	03E316 Port P1 direction register	PD1
03B416 Function select register A2	PS2	03E416 Port P2 register	P2
03B516 Function select register A3	PS2	03E516 Port P3 register	P3
03B616 Function select register B2	PSL2	03E616 Port P2 direction register	PD2
03B716 Function select register B3	PSL3	03E716 Port P3 direction register	PD3
03B816		03E816 Port P4 register	P4
03B916 Function select register A5	PS5	03E916 Port P5 register	P5
03BA16		03EA16 Port P4 direction register	PD4
03BB16		03EB16 Port P5 direction register	PD5
03BC16 Function select register A6	PS6	03EC16	
03BD16 Function select register A7	PS7	03ED16	
03BE16		03EE16	
03BF16		03EF16	
03C016 Port P6 register	P6	03F016 Pull-up control register 0	PUR0
03C116 Port P7 register	P7	03F116 Pull-up control register 1	PUR1
03C216 Port P6 direction register	PD6	03F216	
03C316 Port P7 direction register	PD7	03F316	
03C416 Port P8 register	P8	03F416	
03C516 Port P9 register	P9	03F516	
03C616 Port P8 direction register	PD8	03F616	
03C716 Port P9 direction register	PD9	03F716	
03C816 Port P10 register	P10	03F816	
03C916 Port P11 register	P11	03F916	
03CA16 Port P10 direction register	PD10	03FA16	
03CB16 Port P11 direction register	PD11	03FB16	
03CC16 Port P12 register	P12	03FC16	
03CD16 Port P13 register	P13	03FD16	
03CE16 Port P12 direction register	PD12	03FE16	
03CF16 Port P13 direction register	PD13	03FF16 Port control register	PCR

<100-pin version>

03A016 03D16 03A116 03D16 03A216 03D16 03A316 03D216 03A416 03D416 03A516 03D416 03A616 03D516 03A716 03D716 03A816 03D716 03A416 03D16 03A616 03D616 03A416 03D716 03A416 03D16 03A416 03D716 03A416 03D16 03A416 03D16 03A416 03D16 03A416 03D16 03A416 03D16 03A516 03D16 03A516 03D16	
03A116 03D116 03A216 03D216 03A316 03D316 03A416 03D416 03A516 03D516 03A616 03D616 03A716 03D716 03A916 03D916 03A416 03D716 03A516 03D716 03A616 03D716 03A916 03D916 03AC16 03D16 03AD16 03D16	JR2 JR3
03A216 03D216 03A316 03D216 03A416 03D416 03A516 03D516 03A616 03D616 03A816 03D716 03A916 03D416 03A416 03D516 03A616 03D716 03A816 03D916 03A416 03D916 03A416 03D616 03A916 03D616 03A616 03D916 03A16 03D616 03A216 03D616 03A216 03D616 03A216 03D616 03A216 03D616	JR2
03A316 03D316 03A416 03D316 03A516 03D516 03A616 03D616 03A716 03D716 03A916 03D416 03A916 03D416 03A516 03D516 03A616 03D716 03A816 03D916 03AA16 03D16 03AC16 03D16 03AD16 03D16	JR2 JR3
03A416 03D416 03A516 03D516 03A616 03D616 03A716 03D716 03A816 03D816 03A416 03D916 03AA16 03D416 Pull-up control register 2 03AB16 03D616 03AA16 03D416 Pull-up control register 3 03AD16 03D16	JR2 JR3
03A516 03D516 03A616 03D616 03A716 03D716 03A816 03D816 03A916 03D416 03A616 03D916 03A616 03D616 03A916 03D816 03A616 03D616 03A616 03D916 03A616 03D616 03A616 03D616 03A616 03D616 03A016 03D16	JR2 JR3
03A616 03D616 03A716 03D716 03A816 03D816 03A916 03D916 03A816 03D916 03A816 03D916 03A816 03D816 03A816 03D916 03A816 03D816 Pull-up control register 2 03A816 03D816 Pull-up control register 3 03AC16 03D216 03AD16 03D516	JR2 JR3
03A716 03D716 03A816 03D916 03A416 03D416 Pull-up control register 2 03A816 03D916 03A816 03D916 03A816 03D916 03A816 03D816 Pull-up control register 2 03A816 03D816 Pull-up control register 3 03A616 03DC16 03AD16 03D16	JR2 JR3
03A816 03D816 03A916 03D916 03AA16 03DA16 Pull-up control register 2 03AB16 03DB16 Pull-up control register 3 03AC16 03DC16 03AD16 03DE16	JR2 JR3
03A916 03D916 03AA16 03DA16 Pull-up control register 2 03AB16 03DB16 Pull-up control register 3 03AC16 03DC16 03AD16 03DD16	JR2 JR3
03AA1603DA16 Pull-up control register 2Pill03AB1603DB16 Pull-up control register 3Pill03AC1603DC1603DD1603AD1603DE16	JR2 JR3
03AB16 03DB16 Pull-up control register 3 Pull 03AC16 03DC16 03DD16 03DD16	JR3
03AC16 03AD16 03AD5	111
03AD16 03DD16 03DE1c	///
02DE40	
03AE16 03DE16	
03AF16 Function select register C PSC 03DF16	
03B016 Function select register A0 PS0 03E016 Port P0 register	P0
03B116 Function select register A1 PS1 03E116 Port P1 register	P1
03B216 Function select register B0 PSL0 03E216 Port P0 direction register	D0°
03B316 Function select register B1 PSL1 03E316 Port P1 direction register	P1م
03B416 Function select register A2 PS2 03E416 Port P2 register	P2
03B516 Function select register A3 PS3 03E516 Port P3 register	P3
03B616 Function select register B2 PSL2 03E616 Port P2 direction register	PD2
03B716 Function select register B3 PSL3 03E716 Port P3 direction register	PD3
03B816 03E816 Port P4 register	P4
03B916 03E916 Port P5 register	P5
03BA16 03EA16 Port P4 direction register	2D4
03BB16 03EB16 Port P5 direction register	D5
03BC16 03EC16	
03BD16 03ED16	
03BE16 03EE16	
03BF16 03EF16	
03C016 Port P6 register P6 03F016 Pull-up control register 0 PI	JR0
03C116 Port P7 register P7 03F116 Pull-up control register 1 Pt	JR1
03C216 Port P6 direction register PD6 03F216	
03C316 Port P7 direction register PD7 03F316	
03C416 Port P8 register P8 03F416	
03C516 Port P9 register P9 03F516	
03C616 Port P8 direction register PD8 03F616	
03C716 Port P9 direction register PD9 03F716	
03C816 Port P10 register P10 03F816	
03C916 03F916	
03CA16 Port P10 direction register PD10 03FA16	
03CB16 03FB16	
03CC16 03FC16	
03CD16 03FD16	
03CE16 ////////////////////////////////////	
03CF16 03FF16 Port control register F	

The blank area is reserved and cannot be used by user.

Note 1: Addresses 03CB16, 03CE16, 03CF16, 03D216, 03D316 does not exist in 100-pin version. Must set "FF16" to the addresses at initial setting.

Note 2: Addresses 03DC16 area does not exist in 100-pin version. Must set "0016" to addresses 03DC16 at initial setting.

Note 3: Addresses 03A016, 03A116, 03B916, 03BC16, 03BD16, 03C916, 03CC16, 03CD16, 03D3016, 03D116

does not exist in 100-pin version.

Software Reset

Writing "1" to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the microcomputer. A software reset has the same effect as a hardware reset. The contents of internal RAM are preserved.

Processor Mode

(1) Types of Processor Mode

One of three processor modes can be selected: single-chip mode, memory expansion mode, and microprocessor mode. The functions of some pins, memory map, and access space differ according to the selected processor mode.

Single-chip mode

In single-chip mode, only internal memory space (SFR, internal RAM, and internal ROM) can be accessed. Ports P0 to P15 can be used as programmable I/O ports or as I/O ports for the internal peripheral functions.

Memory expansion mode

In memory expansion mode, external memory can be accessed in addition to the internal memory space (SFR, internal RAM, and internal ROM).

In this mode, some of the pins function as an address bus, a data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)

Microprocessor mode

In microprocessor mode, the SFR, internal RAM and external memory space can be accessed. The internal ROM area cannot be accessed.

In this mode, some of the pins function as the address bus, the data bus, and as control signals. The number of pins assigned to these functions depends on the bus and register settings. (See "Bus Settings" for details.)

(2) Setting Processor Modes

The processor mode is set using the CNVss pin and the processor mode bits (bits 1 and 0 at address 000416). Do not set the processor mode bits to "102".

Regardless of the level of the CNVss pin, changing the processor mode bits selects the mode. Therefore, never change the processor mode bits when changing the contents of other bits. Also do not attempt to shift to or from the microprocessor mode within the program stored in the internal ROM area.

Applying Vss to CNVss pin

The microcomputer begins operation in single-chip mode after being reset. Memory expansion mode is selected by writing "012" to the processor mode is selected bits.

• Applying VCC to CNVss pin

The microcomputer starts to operate in microprocessor mode after being reset.

Figure 1.6.1 and 1.6.2 show the processor mode register 0 and 1.

Figure 1.6.3 shows the memory maps applicable for each processor modes.

	Symb PM0	ol Address 000416	When reset 8016 (CNVss = "L") 0316 (CNVss = "H")		
	Bit symbol	Bit name	Function	R	V
	PM00	December 1	b1 b0 0 0: Single-chip mode 0 1: Momony ovponsion mode	0	- - - -
	PM01	(Note 2)	1 0: Must not be set 1 1: Microprocessor mode	0	;(
	PM02	R/W mode select bit (Note 3)	0: RD / BHE / WR 1: RD / WRH / WRL	0	-
	PM03	Software reset bit	The device is reset when this bit is set to "1". The value of this bit is "0" when read	0	- - - - -
	PM04	Multiplexed bus space	$\stackrel{b5 \ b4}{0 \ 0}$: Multiplexed bus is not used 0 1 : Allocated to $\overline{CS2}$ space	0	:
	PM05	select bit (Note 4)	0 1 : Allocated to CS1 space 1 1 : Allocated to entire CS space (Note 5)	0	:
		Reserved bit	Must always be set to "0"	0	- - - -
	PM07	BCLK output disable bit (Note 6)	0 : BCLK is output (Note 7) 1 : Function set by bit 0,1 of system clock control register 0	0	:
Note 2: Do not set the p mode bits to 012	or ccessor n or 112 . bit bus wid	node bits and other bits sin Set the other bits first,and Ith in DRAM controler, mu d memory expansion mod	multaneously when setting the process I then change the processor mode bits st set this bit to "1". Jes 1, 2 and 3. Do not use multiplex bu	sor	-

Figure 1.6.1. Processor mode register 0

b7 b6 b5 b4 b3	3 b2 b1 b0	Symbo PM1	ol Address 000516	When r 0X0000	eset)002
		Bit symbol	Bit name	Function	R
		PM10	External memory area	b1 b0 0 0 : Mode 0 (P44 to P47 : A20 to A23) 0 1 : Mode 1 (P44: A20, P45 to P47: CS2 to CS0)	0;0
		PM11	mode bit (Note 2)	1 0 : Mode 2 (P44, P45 : A20, A21, P46, P47 : CS1, CS0) 1 1 : Mode 3 (Note 3) (P44 to P47 : CS3 to CS0)	0;0
		PM12	Internal memory wait bit	0 : No wait state 1 : Wait state inserted	
		PM13	SFR area wait bit 0	0 : One wait state inserted 1 : Two wait states inserted (Note 4)	0;0
		PM14	ALE pin select bit	b5 b4 0 0 : No ALE 0 1 : P53/BCLK (Note 5)	0;0
		PM15	(Note 2)	1 0 : P56/RAS 1 1 : P54/HLDA	
		Nothing i When wr	s assigned. ite, set "0". When read, it	s content is indeterminate.	
		PM17	Reserved bit	Must set to "0"	
Note 1: Se Note 2: Va Note 3: Wh Note 4: Wh	l t bit 1 of the lid in memor nen mode 3 i nen accessin	protect reg y expansic s selected g SFR are	gister (address 000A16) to on mode or in microproces , DRAMC is not used. a for CAN, PM13 must be c cot bits 0 and 1 of syste	"1" when writing new values to this reg sor mode. • set to "1".	gister.

Figure 1.6.2. Processor mode register 1

under proof reading

Figure 1.6.3. Memory maps in each processor mode

Bus Settings

Bus Settings

The BYTE pin, bit 0 to 3 of the external data bus width control register (address 000B16), bits 4 and 5 of the processor mode register 0 (address 000416) and bit 0 and 1 of the processor mode register 1 (address 000516) are used to change the bus settings.

Table 1.7.1 shows the factors used to change the bus settings, figure 1.7.1 shows external data bus width control register and table 1.7.2 shows external area 0 to 3 and external area mode.

Table 1.7.1. Factors for	switching bus	settings
--------------------------	---------------	----------

Bus setting	Switching factor
Switching external address bus width	External data bus width control register
Switching external data bus width	BYTE pin (external area 3 only)
Switching between separate and multiplex bus	Bits 4 and 5 of processor mode register 0
Selecting external area	Bits 0 and 1 of processor mode register 1

(1) Selecting external address bus width

You can select the width of the address bus output externally from the 16 Mbytes address space, the number of chip select signals, and the address area of the chip select signals. (Note, however, that when you select "Full CS space multiplex bus", addresses A0 to A15 are output.) The combination of bits 0 and 1 of the processor mode register 1 allow you to set the external area mode.

When using DRAM controller, the DRAM area is output by multiplexing of the time splitting of the row and column addresses.

(2) Selecting external data bus width

You can select 8-bit or 16-bit for the width of the external data bus for external areas 0, 1, 2, and 3. When the data bus width bit of the external data bus width control register is "0", the data bus width is 8 bits; when "1", it is 16 bits. The width can be set for each of the external areas. The default bus width for external area 3 is 16 bits when the BYTE pin is "L" after a reset, or 8 bits when the BYTE pin is "H" after a reset. The bus width selection is valid only for the external bus (the internal bus width is always 16 bits).

During operation, fix the level of the BYTE pin to "H" or "L".

(3) Selecting separate/multiplex bus

The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0.

Separate bus

In this bus configuration, input and output is performed on separate data and address buses. The data bus width can be set to 8 bits or 16 bits using the external data bus width control register. For all programmable external areas, P0 is the data bus when the external data bus is set to 8 bits, and P1 is a programmable IO port. When the external data bus width is set to 16 bits for any of the external areas, P0 and P1 (although P1 is undefined for any 8-bit bus areas) are the data buses.

When accessing memory using the separate bus configuration, you can select a software wait using the wait control register.

Multiplex bus

In this bus configuration, data and addresses are input and output on a time-sharing basis. For areas for which 8-bit has been selected using the external data bus width control register, the 8 bits D0 to D7 are multiplexed with the 8 bits A0 to A7. For areas for which 16-bit has been selected using the external data bus width control register, the 16 bits D0 to D15 are multiplexed with the 16 bits A0 to A15. When

accessing memory using the multiplex bus configuration, two waits are inserted regardless of whether you select "No wait" or "1 wait" in the appropriate bit of the wait control register.

The default after a reset is a separate bus configuration, and the full \overline{CS} space multiplex bus configuration cannot be selected in microprocessor mode. If you select "Full \overline{CS} space multiplex bus", the 16 bits from A0 to A15 are output for the address

Figure 1.7.1. External data bus width control register

Table 1.7.2. External area 0 to 3 and external area mode	Table 1.7.2.	External	area 0 to	3 and	external	area mode
--	--------------	----------	-----------	-------	----------	-----------

	External area mode (Note 2)	Mode 0	Mode 1	Mode 2	Mode 3
External area 0	Memory expansion mode, Microprocessor mode	00800016 to 1FFFFF16	<cs1 area=""> 00800016 to 1FFFFF16</cs1>	<cs1 area=""> 00800016 to 1FFFFF16</cs1>	<cs1 area=""> 10000016 to 1FFFFF16</cs1>
External area 1	Memory expansion mode, Microprocessor mode	20000016 to 3FFFFF16	<cs2 area=""> 20000016 to 3FFFFF16</cs2>	No area is selected.	<cs2 area=""> 20000016 to 2FFFFF16</cs2>
External area 2	Memory expansion mode, Microprocessor mode	40000016 to BFFFFF16 (Note 1)	<dramc area=""> 40000016 to BFFFFF16</dramc>	<dramc area=""> 40000016 to BFFFFF16</dramc>	<cs3 area=""> C0000016 to CFFFFF16</cs3>
rnal a 3	Memory expansion mode	C0000016 to EFFFFF16	<cs0 area=""> C0000016 to EFFFFF16</cs0>	<cs0 area=""> C0000016 to EFFFFF16</cs0>	<cs0 area=""> E0000016 to EFFFFF16</cs0>
Exte areá	Microprocessor mode	C0000016 to FFFFFF16	<cs0 area=""> E0000016 to FFFFFF16</cs0>	<cs0 area=""> C0000016 to FFFFFF16</cs0>	<cs0 area=""> F0000016 to FFFFFF16</cs0>

Note 1: DRAMC area when using DRAMC.

Note 2: Set the external area mode (modes 0, 1, 2, and 3) using bits 0 and 1 of the processor mode register 1 (address 000516).

Processor mode	Single-chip mode	Memory expansion mode/microprocessor modes				M expan	emory sion mode
Multiplexed bus space select bit		"01", CS1 or CS2 : bus, and the separate bus	"10" : multiplexed other :	"00" Separate bus		"11" (Note 1) All space multiplexed bus	
Data bus width BYTE pin level		All external area is 8 bits	Some external area is 16 bits	All external area is 8 bits	Some external area is 16 bits	All external area is 8 bits	Some external area is 16 bits
P00 to P07	I/O port	Data bus	Data bus	Data bus	Data bus	I/O port	I/O port
P10 to P17	I/O port	I/O port	I/O port	Data bus	I/O port	I/O port	I/O port
P20 to P27	I/O port	Address bus /data bus (Note 2)	Address bus /data bus (Note 2)	Address bus	Address bus	Address bus /data bus	Address bus /data bus
P30 to P37	I/O port	Address bus	Address bus /data bus (Note 2)	Address bus	Address bus	Address bus	Address bus /data bus
P40 to P43	I/O port	Address bus	Address bus	Address bus	Address bus	I/O port	I/O port
P44 to P46	I/O port	CS (chip select) or address bus (A23) (For details, refer to "Bus control") (Note 5)					
P47	I/O port	CS (chip select) or address bus (A23) (For details, refer to "Bus control") (Note 5)					
P50 to P53	I/O port	Outputs RD, WRL, WRH, and BCLK or RD, BHE, WR, and BCLK (For details, refer to "Bus control") (Note 3,4)					
P54	I/O port	HLDA(Note 3)	HLDA(Note 3)	HLDA(Note 3)	HLDA(Note 3)	HLDA(Note 3)	HLDA(Note 3)
P55	I/O port	HOLD	HOLD	HOLD	HOLD	HOLD	HOLD
P56	I/O port	RAS (Note 3)	RAS (Note 3)	RAS (Note 3)	RAS (Note 3)	RAS (Note 3)	RAS (Note 3)
P57	I/O port	RDY	RDY	RDY	RDY	RDY	RDY

Table 1.7.3. Each processor mode and port function

Note 1:The default after a reset is the separate bus configuration, and "Full CS space multiplex bus" cannot be selected in microprocessor mode. When you select "Full CS space multiplex bus" in extended memory mode, the address bus operates with 64 Kbytes boundaries for each chip select.

Note 2: Address bus in separate bus configuration. Note 3: The ALE output pin is selected using bits 4 and 5 of the processor mode register 1. Note 4: When you have selected the DRAM controller and access the DRAM area, these are outputs CASL, CASH, DW, and BCLK

Note 5: The \overline{CS} signal and address bus selection are set by the external area mode.

Bus Control

The following explains the signals required for accessing external devices and software waits. The signals required for accessing the external devices are valid when the processor mode is set to memory expansion mode and microprocessor mode.

(1) Address bus/data bus

There are 24 pins, A0 to A22 and $\overline{A23}$ for the address bus for accessing the 16 Mbytes address space. $\overline{A23}$ is an inverted output of the MSB of the address.

The data bus consists of pins for data IO. The external data bus control register (address 000B16) selects the 8-bit data bus, D0 to D7 for each external area, or the 16-bit data bus, D0 to D15. After a reset, there is by default an 8-bit data bus for the external area 3 when the BYTE pin is High, or a 16-bit data bus when the BYTE pin is Low.

When shifting from single-chip mode to extended memory mode, the value on the address bus is undefined until an external area is accessed.

When accessing a DRAM area with DRAM control in use, a multiplexed signal consisting of row address and column address is output to A8 to A20.

(2) Chip select signals

The chip select signals share A₀ to A₂₂ and $\overline{A_{23}}$. You can use bits 0 and 1 of the processor mode register 1 (address 000516) to set the external area mode, then select the chip select area and number of address outputs.

In microprocessor mode, external area mode 0 is selected after a reset. The external area can be split into a maximum of four Blocks or Areas using the chip select signals. Table 1.7.4 shows the external areas specified by the chip select signals.

Memory space		Drossoor mode	Chip select signal					
	mode	Processor mode	CS0	CS1	CS2	CS3		
	Mode 0		(A23)	(A22)	(A21)	(A20)		
s range	Mode 1	Memory expansion mode	C0000016 to DFFFFF16 (2 Mbytes)	00800016 to 1FFFFF16 (2016 Kbytes)	20000016 to			
address	address	Microprocessor mode	E0000016 to FFFFF16 (2 Mbytes)		(2 Mbytes)	(A20)		
Specified	Mode 2	Memory expansion mode	C0000016 to EFFFF16 (3 Mbytes)	00800016 to				
		Microprocessor mode	essor mode C0000016 to FFFFF16 (4 Mbytes)	(4064 Kbytes)	(A21)	(A20)		
	Mada 2	Memory expansion mode EFFFF (1 Mby		10000016 to	20000016 to	C0000016 to		
	WOULD 3	Microprocessor mode	F0000016 to FFFFFF16 (1 Mbytes)	1FFFF16 (1 Mbytes)	2FFFFF16 (1 Mbytes)	(1 Mbytes)		

Table 1.7.4.	External areas	specified by the	he chip	select signals
	External aload			concer enginane

Rev.B2 for proof reading Mitsubishi Microcomputers M32C/83 group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

The chip select signal turns Low (active) in synchronize with the address bus. However, its turning High depends on the area accessed in the next cycle. Figure 1.7.2 shows the output examples of the address bus and chip select signals.

Figure 1.7.2. Example of address bus and chip select signal outputs (Separate bus)

Under Under development

Bus Control

(3) Read/write signals

With a 16-bit data bus, bit 2 of the processor mode register 0 (address 000416) selects the combinations of \overline{RD} , \overline{BHE} , and \overline{WR} signals or \overline{RD} , \overline{WRL} , and \overline{WRH} signals. With a 8-bit full space data bus, use the combination of \overline{RD} , \overline{WR} , and \overline{BHE} signals as read/write signals. (Set "0" to bit 2 of the processor mode register 0 (address 000416).) When using both 8-bit and 16-bit data bus widths to access a 8-bit data bus area, the \overline{RD} , \overline{WR} and \overline{BHE} signals combination is selected regardless of the value of bit 2 of the processor mode register 0 (address 000416).

Tables 1.7.5 and 1.7.6 show the operation of these signals.

After a reset has been cancelled, the combination of \overline{RD} , \overline{WR} , and \overline{BHE} signals is automatically selected.

When switching to the RD, WRL, and WRH combination, do not write to external memory until bit 2 of the processor mode register 0 (address 000416) has been set ^(Note).

Note 1: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect register (address 000A16) to "1".

Note 2: When using 16-bit data bus width for DRAM controller, select RD, WRL, and WRH signals.

Lable III let opera		nice, and r	inter orginalo	
Data bus width	RD	WRL	WRH	Status of external data bus
	L	Н	Н	Read data
16-bit	Н	L	Н	Write 1 byte of data to even address
	Н	Н	L	Write 1 byte of data to odd address
	Н	L	L	Write data to both even and odd addresses
9 hit	Н	L (Note)	Not used	Write 1 byte of data
0-011	L	H (Note)	Not used	Read 1 byte of data

Table 1.7.5. Operation of RD, WRL, and WRH signals

Note: It becomes \overline{WR} signal.

Table 1.7.6. Operation of RD, WR, and BHE signals

Data bus width	RD	WR	BHE	A0	Status of external data bus
	Н	L	L	Н	Write 1 byte of data to odd address
	L	Н	L	Н	Read 1 byte of data from odd address
16 hit	Н	L	Н	L	Write 1 byte of data to even address
То-ы	L	Н	Н	L	Read 1 byte of data from even address
	Н	L	L	L	Write data to both even and odd addresses
	L	Н	L	L	Read data from both even and odd addresses
0 hit	Н	L	Not used	H/L	Write 1 byte of data
o-Dit	L	Н	Not used	H/L	Read 1 byte of data

(4) ALE signal

The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the ALE signal falls. The ALE output pin is selected using bits 4 and 5 of the processor mode register 1 (address 000516).

The ALE signal is occurred regardless of internal area and external area.

When BYTE pin = "H"	When BYTE pin = "L"
ALE	ALE
Do/Ao to D7/A7 Address Data	(Note 1) D0/A0 to D15/A15 Address Data ^(Note 1)
As to A15 Address	χ
A16 to A19 Address ^(Note 2)	A16 to A19
A20 to A22, A23 Address or CS	A20 to A22, A23
Note 1: Floating when reading Note 2: When full space multip	lexed bus is selected, these are I/O ports.

Figure 1.7.3. ALE signal and address/data bus

(5) Ready signal

The ready signal facilitates access of external devices that require a long time for access. As shown in Figure 1.7.2, inputting "L" to the $\overline{\text{RDY}}$ pin at the falling edge of BCLK causes the microcomputer to enter the ready state. Inputting "H" to the $\overline{\text{RDY}}$ pin at the falling edge of BCLK cancels the ready state. Table 1.7.7 shows the microcomputer status in the ready state. Figure 1.7.4 shows the example of the $\overline{\text{RDY}}$ signal being extended using the $\overline{\text{RDY}}$ signal.

Ready is valid when accessing the external area during the bus cycle in which the software wait is applied. When no software wait is operating, the \overline{RDY} signal is ignored, but even in this case, unused pins must be pulled up.

Table 1.7.7. Microcomputer status in ready state (
--

Item	Status		
Oscillation	On		
RD/WR signal, address bus, data bus, CS	Maintain status when ready signal received		
ALE signal, HLDA, programmable I/O ports			
Internal peripheral circuits	On		

Note: The ready signal cannot be received immediately prior to a software wait.

Figure 1.7.4. Example of RD signal extended by RDY signal

(6) Hold signal

The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting "L" to the \overline{HOLD} pin places the microcomputer in the hold state at the end of the current bus access. This status is maintained and "L" is output from the \overline{HLDA} pin as long as "L" is input to the \overline{HOLD} pin. Table 1.7.8 shows the microcomputer status in the hold state. The bus is used in the following descending order of priority: \overline{HOLD} , DMAC, CPU.

HOLD > DMAC > CPU

Figure 1.7.5. Example of RD signal extended by RDY signal

Table 1.7.8.	Microcomputer	status	in	hold	state
--------------	---------------	--------	----	------	-------

Item	Status
Oscillation	ON
$\overline{RD}/\overline{WR}$ signal, address bus, data bus, \overline{CS} , \overline{BHE}	Floating
Programmable I/O ports: P0 to P15	Maintains status when hold signal is received
HLDA	Output "L"
Internal peripheral circuits	ON (but watchdog timer stops)
ALE signal	Output "L"

(7) External bus status when accessing to internal area

Table 1.7.9 shows external bus status when accessing to internal area

Table Inter External bac clatac inter accessing to internal area
--

Iten	n	SFR accessing status	Internal ROM/RAM accessing status				
Address bus		Remain address of external area ad	Remain address of external area accessed immediately before				
Data bus	When read	Floating					
	When write	Floating					
RD, WR, WRL, WRH		Output "H"					
BHE		Remain external area status accessed immediately before					
CS		Output "H"					
ALE		ALE output					

(8) BCLK output

BCLK output can be selected by bit 7 of the processor mode register 0 (address 000416 :PM07) and bit 1 and bit 0 of the system clock select register 0 (address 000616 :CM01, CM00). Setting PM07 to "0" and CM01 and CM00 to "00" outputs the BCLK signal from P53. However, in single chip mode, BCLK signal is inactive. When setting PM07 to "1", the function is set by CM01 and CM00.

(9) DRAM controller signals (RAS, CASL, CASH, and DW)

Bits 1, 2, and 3 of the DRAM control register (address 000416) select the DRAM space and enable the DRAM controller. The DRAM controller signals are output when the DRAM area is accessed. Table 1.7.10 shows the operation of the respective signals.

	•	-		-	•
Data bus width	RAS	CASL	CASH	DW	Status of external data bus
	L	L	L	Н	Read data from both even and odd addresses
	L	L	Н	Н	Read 1 byte of data from even address
16 hit	L	L	Н	Н	Read 1 byte of data from odd address
10-01	L	L	L	L	Write data to both even and odd addresses
	L	L	Н	L	Write 1 byte of data to even address
	L	Н	L	L	Write 1 byte of data to odd address
9 hit	L	L	Not used	Н	Read 1 byte of data
0-DIL	L	L	Not used	L	Write 1 byte of data

Table 1.7.10. Operation of RAS, CASL, CASH, and DW signals

(10) Software wait

A software wait can be inserted by setting the wait control register (address 000816). Figure 1.7.6 shows wait control register.

You can use the external area i wait bits (where i = 0 to 3) of the wait control register to specify from "No wait" to "3 waits" for the external memory area. When you select "No wait", the read cycle is executed in the BCLK1 cycle. The write cycle is executed in the BCLK2 cycle (which has 1 wait). When accessing external memory using the multiplex bus, access has two waits regardless of whether you specify "No wait" or "1 wait" in the appropriate external area i wait bits in the wait control register.

Software waits in the internal memory (internal RAM and internal ROM) can be set using the internal memory wait bits of the processor mode register 1 (address 000516). Setting the internal memory wait bit = "0" sets "No wait". Setting the internal memory wait bit = "1" specifies a wait.

SFR area is accessed with either "1 wait" (BCLK 2-cycle) or "2 waits" (BCLK 3-cycle) by setting the SFR wait bit (bit 3) of the processor mode register 1 (address 000516). SFR area of CAN must be accessed with "2 waits".

Table 1.7.11 shows the software waits and bus cycles. Figures 1.7.7 and 1.7.8 show example bus timing when using software waits.

7 b6 b5 b4 b3	b2 b1 b0	Symbol WCR	Address 000816	When reset FF16	
		Bit symbol	Bit name	Function	RW
		WCR0	External area 0 wait bit	0 0: Without wait	oc
		WCR1		1 0: With 2 waits 1 1: With 3 waits	oc
		WCR2	External area 1 wait bit	b3 b2 0 0: Without wait	oc
		WCR3		1 0: With 2 waits 1 1: With 3 waits	00
		WCR4	External area 2	^{b5 b4} 0 0: Without wait 0 1: With 1 wait	00
		WCR5		1 0: With 2 waits 1 1: With 3 waits	00
l		WCR6	External area 3	b7 b6 0 0: Without wait	00
		WCR7		1 0: With 2 waits 1 1: With 3 waits	oc
Note 1: Whe spec	n using the	e multiplex bus vait" or "1 wait".	configuration, there are two However, you can specify '	waits regardless of whether '2 waits" or "3 waits".	you have

Figure 1.7.6. Wait control register

Table 1.7.11.	Software	waits and	bus	cycles
---------------	----------	-----------	-----	--------

Area	Bus status	SFR area wait bit	Internal memory wait bit	External memory area i wait bit	Bus cycle
QED		0			2 BCLK cycles
511		1			3 BCLK cycles
Internal			0		1 BCLK cycle
ROM/RAM			1		2 BCLK cycles
				002	Read :1 BCLK cycle Write : 2 BCLK cycles
	Sonarato hus			012	2 BCLK cycles
				102	3 BCLK cycles
External				112	4 BCLK cycles
memory area				002	3 BCLK cycle
				012	3 BCLK cycles
	Multiplex bus			102	3 BCLK cycles
				112	4 BCLK cycles

< Separate bus (no wait) >	Bus cycle (Note)	Bus cycle (Note)
BCLK		
Write signal		
Read signal		
Data bus	Output	(Input)
Address bus (Note 2)	Address	Address
Chip select (Note 2,3)		
< Separate bus (with wait) >	Bus cycle (Note)	Bus cycle (Note)
BCLK		
Write signal		
Read signal		
Data bus		(Input)
Address bus (Note 2)	Address	Address
Chip select (Note 2,3)		
< Separate bus with 2 wait >	Bus cycle (Note 1)	Bus cycle (Note 1)
BCLK		
Write signal		
Read signal		
Data bus	Data output	Input
Address bus (Note 2)	Address	Address
Chip select (Note 2,3)		
Note 1: This timing example show bus cycle. Note 2: Address bus and chip sele queue buffer. Note 3: When accessing same ex continuously.	s bus cycle length. Read o ect may get longer depend ternal area (same CS area	ycle and write cycle may be continued after this ing on the state of CPU such as an instruction) continuously, chip select may output

		Bus cycle (Note)			Bus cycle	e (Note)	
BCLK							
Write signal							
Read signal							
Data bus	<u>}</u> (Data output	χ				-{Inpu
Address (Note 2)		Address	χ		Address	5	
Chip select (Note 2,3)							
< Multiplexed bus	s (with 2 wai	t) >					
		Bus cycle (N	ote)		us cycle (N	ote)	
BCLK							
Write signal							
Read signal							
ALE							
Address		Address	ς γ		Addres	s	-)
Address bus/	Data bus				5		_
(Note 2)							-
(Note 2,3)			.				
< Multiplexed bus	s (with 3 wai	t) >			-		
		Bus cycle (Note)	>		Bus cycle (Note)	_ >
BCLK							
Write signal							
Read signal							
Address	(Address	χ	_χ	Address		
Address bus /Data bus (Note 2)	Address	Data output	X	Address	}	(In	put)
ALE							
Chip select (Note 2,3)							
Note 1: This ti	ming exampl	e shows bus cycle le	ngth. Read cycle	e and write c	ycle may be	e continued	after t
Note 2: Addres	ss bus and c	hip select may get lor	nger depending	on the state	of CPU suc	h as an ins	tructio
	accessing st	ame external area (sa	$\frac{1}{100} \frac{1}{100} \frac{1}$	ntinuously (hin select r	nav outout	

Clock Generating Circuit

System Clock

Clock Generating Circuit

The clock generating circuit contains three oscillator circuits as follows:

- (1) Main clock generating circuit
- (2) Sub clock generating circuit
- (3) Ring oscillator (oscillation stop detect function)

Table 1.8.1 lists the clock generating circuit specifications and Table 1.8.2 lists registers controlling each clock generating circuit. Figure 1.8.1 shows block diagram of the system clock generating circuit. Figure 1.8.2 to 1.8.5 show clock control related registers.

Table	1.8.1.	The	clock	oscillation	circuit s	specifications
labic	1.0.1.	1110	CIOCK	oscination	cil cuit a	peemeanons

ltem	Main clock generating circuit	Sub clock generating circuit	Ring oscillator
Use of clock	 CPU's operating clock source Internal peripheral unit's operating clock source 	CPU's operating clock source Timer A/B's count clock source	CPU's operating clock source when main clock frequency stops
Clock frequency	0 to 30 MHz	32.768 kHz	About 1 MHz
Usable oscillator	 Ceramic oscillator Crystal oscillator 	Crystal oscillator	
Pins to connect oscillator	Xin, Xout	XCIN, XCOUT	
Oscillation stop/ restart function	Presence	Presence	Presence
Oscillator status after reset	Oscillating	Stopped	Stopped
Other	Externally derived cl	ock can be input	

Table 1.8.2. Control registers for each clock generating circuits

Clock generating circuit	Control register
Main clock	System clock control register 0 (address 000616) :CM0
	System clock control register 1 (address 000716) :CM1
	Main clock divide register (address 000C16) : MCD
Sub clock	System clock control register 0 (address 000616) : CM0
	System clock control register 1 (address 000716) :CM1
Oscillation stop detect function	Oscillation stop detect register (address 000D16) : CM2

Note: CM0, CM1, CM2 and MCD registers are protected from a false write by program runaway. When you want to rewrite these registers, set "1" to bit 0 of protect register (address 000A16) to release protect, then rewrite the register.

Under proof reading

Clock Generating Circuit

Under

Figure 1.8.1. Clock generating circuit

System clock control register 0 (Note 1) b5 b4 b3 b2 b1 b0 Symbol Address When reset CM0 000616 0000 X0002 Bit symbol Bit Function RW ^{b1 b0} 0 0 : I/O port P53 Clock output function CM00 00 select bit (Note 2) 01: fc output 10:f8 output CM01 00 1 1 : f32 output WAIT peripheral 0 : Do not stop peripheral clock CM02 function clock stop bit in wait mode 00 1 : Stop peripheral clock in wait mode (Note 3) Nothing is assigned. When write, set "0". When read, their contents are indeterminate. Port Xc select bit 0: I/O port CM04 00 1: XCIN-XCOUT generation (Note 4) Main clock (XIN-XOUT) 0 : Main clock On CM05 00 stop bit (Note 5) 1 : Main clock Off (Note 6) Watchdog timer 0: Watchdog timer interrupt 00 CM06 function select bit 1: Reset (Note 7) System clock select bit 0: XIN, XOUT CM07 00 (Note 8) 1: XCIN, XCOUT Note 1: Set bit 0 of the protect register (address 000A16) to "1" before writing to this register. Note 2: The port P53 dose not function as an I/O port in microprocessor or memory expansion mode When outputting ALE to P53 (bits 5 and 4 of processor mode register 0 is "01"), set these bits to "00". The port P53 function is not selected, even when you set "00" in microprocessor or memory expansion mode and bit 7 of the processor mode register 0 is "1". Note 3: fc32 is not included. When this bit is set to "1", PLL cannot be used in WAIT. Note 4: When XcIN-XcOUT is used, set port P86 and P87 to no pull-up resistance with the input port. Note 5: When entering the power saving mode, the main clock is stopped using this bit. To stop the main clock, set system clock stop bit (CM07) to "1" while an oscillation of sub clock is stable. Then set this bit to "1". When XIN is used after returning from stop mode, set this bit to "0". When this bit is "1", XOUT is "H". Also, the internal feedback resistance remains ON, so XIN is pulled up to XOUT ("H" level) via the feedback resistance. Note 6: When the main clock is stopped, the main clock division register (address 000C16) is set to the division by 8 mode. However, in ring oscillator mode, the main clock division register is not set to the division by 8 mode when XIN-XOUT is stopped by this bit. Note 7: When "1" has been set once, "0" cannot be written by software. Note 8: Set this bit "0" to "1" when sub clock oscillation is stable by setting CM04 to "1". Set this bit "1" to "0" when main clock oscillation is stable by setting CM05 to "0". Do not set CM04 and CM05 simultaneously.

Clock Generating Circuit

	CM1		001000002	
	Bit symbol	Bit	Function	RV
	CM10	All clock stop control bit (Note 2)	0 : Clock on 1 : All clocks off (stop mode) (Note 3)	00
·	 Reserved	bit	Must set to "0"	00
	Reserved	bit	Must set to "1"	00
	Reserved	bit	Must set to "0"	00
ain clock division r	register (No	te 1)	When reset	
	register (No] Symbol MCD	te 1) Address 000C16 Bit name	When reset XXX010002	₹.WI
ain clock division r	egister (No Symbol MCD Bit symbol MCD0	te 1) Address 000C16 Bit name Main clock division select	When reset XXX010002 Function	₹W
	register (No Symbol MCD Bit symbol MCD0 MCD1	te 1) Address 000C16 Bit name Main clock division select bit (Note 2, 4)	When reset XXX010002 Function b4 b3 b2 b1 b0 1 0 0 1 0 : No division mode 0 0 0 1 0 : Division by 2 mode 0 0 0 1 1 : Division by 3 mode	RW DO
ain clock division r	egister (No Symbol MCD Bit symbol MCD0 MCD1 MCD2	te 1) Address 000C16 Bit name Main clock division select bit (Note 2, 4)	When reset XXX010002 Function b4 b3 b2 b1 b0 1 0 0 1 0 : No division mode 0 0 0 1 0 : Division by 2 mode 0 0 0 1 1 : Division by 3 mode 0 0 1 1 0 : Division by 4 mode 0 0 1 1 0 : Division by 6 mode 0 1 0 0 0 : Division by 8 mode	₹₩ 000000000000000000000000000000000000
ain clock division r	register (No Symbol MCD Bit symbol MCD0 MCD1 MCD2 MCD2	te 1) Address 000C16 Bit name Main clock division select bit (Note 2, 4)	When reset XXX010002 Function I b4 b3 b2 b1 b0 1 0 of 1 0 : No division mode 0 1 0 0 1 0 : No division by 2 mode 0	R W O O O O
ain clock division r	egister (No Symbol MCD Bit symbol MCD0 MCD1 MCD2 MCD3 MCD4	te 1) Address 000C16 Bit name Main clock division select bit (Note 2, 4)	When reset XXX010002 Function I b4 b3 b2 b1 b0 10 0 1 0 : No division mode 0 1 0 0 1 0 : Division by 2 mode 0 0 0 0 0 1 0 : Division by 3 mode 0 0 0 0 1 1 : Division by 4 mode 0 0 0 0 1 0 : Division by 6 mode 0 0 0 1 0 0 : Division by 8 mode 0 0 0 1 0 0 : Division by 10 mode 0 0 0 1 0 0 : Division by 12 mode 0 0 0 1 1 0 : Division by 14 mode 0 0 0 0 0 0 : Division by 16 mode 0 0	RW DO DO DO DO DO DO
Main clock division r	register (No Symbol MCD Bit symbol MCD0 MCD1 MCD2 MCD2 MCD3 MCD4	te 1) Address 000C16 Bit name Main clock division select bit (Note 2, 4)	When reset XXX010002 Function I b4 b3 b2 b1 b0 1 0 0 1 0 : No division mode 0 1 0 0 1 0 : Division by 2 mode 0 0 0 0 0 1 1 : Division by 3 mode 0 0 0 0 1 0 : Division by 4 mode 0 0 0 1 0 0 : Division by 8 mode 0 0 0 1 0 0 : Division by 10 mode 0 0 0 1 0 0 : Division by 10 mode 0 0 0 1 1 0 : Division by 12 mode 0 0 0 1 1 0 : Division by 14 mode 0 0 0 0 0 0 : Division by 16 mode 0 0	

Figure 1.8.3. Clock control related registers (2)

L

Clock Generating Circuit

b6 b5 b4 b3 b 0 0 0 0 0	b2 b1 b0	Symbo CM2	ol Address 000D16	When reset 0016	
		Bit symbol	Bit name	Function	RW
		CM20	Oscillation stop detect enable bit	0: Oscillation stop detect function disabled 1: Oscillation stop detect function enabled	0
		CM21	Main clock switching bit (Note 2,3)	0: XIN selected 1: Ring oscillator selected	o¦c
		CM22	Oscillation stop detect flag (Note 4)	0: Ignored 1: Detect oscillation stop	oc
		CM23	Xı∧ clock monitor flag (Note 5)	0: XIN oscillating 1: XIN not oscillating	0
			Reserved bit	Must set to "0"	
Note 1: Set bit Note 2: When After th system Note 3: When Note 4: When	0 of the p XIN oscilla his, althou n clock aft CM20="1" detecting of "0" is writte	rotect regi tition stop is gh XIN sta er XIN rest ' and CM2 oscillation en during) and by road	ster (address 000A16) to " s detected in CM20="1", tl rts oscillating, this bit does arts oscillating, write "0" to 2="1", this bit cannot be w stop, this bit becomes "1" XIN oscillation stop, this bit ion this bit cavaral times it	1" before writing to this register. his bit becomes "1". s not become "0". When you change to b this bit. rritten. . "0" can be written by software. t does not becomes "1" although XIN o o oscillation stop interrupt process proc	o XIN scillati

Figure 1.8.4. Clock control related register (3)

Figure 1.8.5. Clock control related register (4)

(1) Main clock

The main clock is a clock source for CPU operation and peripheral I/O. Figure 1.8.6 shows example of a main clock. When a reset, the clock oscillates and after a reset, the clock is divided by 8 to the BCLK (CPU operating clock).

(a) Main clock On/Off function

- Main clock (XIN-XOUT) stop bit of system control register 0 (bit 5 at address 000616)
 - 0: Main clock On
 - 1: Main clock Off

Also, the clock is stopped by shifting to the stop mode.

- All clock stop control bit of system control register 1 (bit 0 at address 000716)
 - 0: Clock on
 - 1: All clocks off (stop mode)

Figure 1.8.6. Examples of main clock

(2) Sub clock

The sub clock is a clock source for CPU operation and count source for timer A and B. Figure 1.8.7 shows example of sub clock. When the sub clock is used, set ports P86 and P87 to no pull-up resistance with the input port. No sub clock is generated during and after a reset.

(a) Sub clock On/Off function

When you want to use sub clock, set the following bit and sub clock enabled.

- Port Xc select bit of system control register 0 (bit 4 at address 000616)
 - 0: I/O port (sub clock off)
 - 1: XIN-XOUT generation (sub-clock on)

Also, shifting to the stop mode stops the clock.

- All clock stop control bit of system control register 1 (bit 0 at address 000716)
 - 0: Clock On
 - 1: All clock stop (stop mode)

Figure 1.8.7. Examples of sub clock

(3) Oscillation stop detect function (OSD function)

This function monitor the main clock (XIN pin). When main clock is stopped, internal ring oscillator starts ocsillation and replace the main clock. Then oscillation stop detect interrupt process is operated. When frequency of main clock is less or equal than 2MHz, this function does not work.

(a) OSD function enable/disable

- OSD enable bit of oscillation stop detect register (bit 0 at address 000D16)
 - 0: OSD function disabled
 - 1: OSD function enabled

Set OSD enable bit (bit 0) of oscillation stop detect register to "0" to disable OSD function before setting stop mode. Stop mode is canceled before setting this bit to "1".

(b) Operation when oscillation stop detects

- 1) When XIN oscillation stops, a built in ring oscillation starts as a main clock automatically.
- 2) OSD interrupt request is generated, jump to an address FFFF016 to FFFF316 allocated fixed vector table (watchdog timer interrupt vector) and execute program of jump address.
- 3) OSD interrupt shares vector table with watchdog timer interrupt. When using both OSD and watchdog timer interrupts, read and judge OSD flag in interrupt process routine.

OSD flag of oscillation stop detect register (bit 2 at address 000D16)

1: Oscillation stop detects

4) XIN does not become main clock although XIN On after oscillation stop detects. When you want XIN to be main clock, execute a process shown in Figure 1.8.8.

Figure 1.8.8. Main clock switching sequence

CPU clock (BCLK)

Main clock, sub clock or clock from ring oscillator can be selected as clock source for BCLK.

System clock select bit of system clock control register (bit 7 at address 000616)

- 0: Main clock is selected (XIN-XOUT)
- 1: Sub clock is selected (XCIN-XCOUT)

Main clock select bit of oscillation stop detect register (bit 1 at address 000D16)

- 0: Main clock is selected (XIN-XOUT)
- 1: Clock from ring oscillator is selected

Table 1.8.3. BCLK source and setting bit

BCLK source	System clock select bit	Main clock select bit
	(Bit 7 of address 000616)	(Bit 1 of address 000D16)
Main clock (XIN-XOUT)	0	0
Sub clock (XCIN-XCOUT)	1	0
Ring oscillator	0	1

When main clock or ring oscillator clock is selected as clock source for BCLK, the BCLK is the clock derived by dividing the main clock or ring oscillator clock by 1, 2, 3, 4, 6, 8, 10, 12, 14 or 16.

Main clock divide rate select bit of main clock division register (bit 0 to 4 at address 000C16)

The BCLK is derived by dividing the main clock (XIN-XOUT) by 8 after a reset. (Main clock division register = "XXX010002")

When main clock is stopped under changing to stop mode or selecting XIN-XOUT (main clock select bit = "0"), the main clock division register is set to the division by 8 ("XXX010002").

When ring oscillator clock is selected as clock source for BCLK, although main clock is stoped, the contents of main clock division register is maintained.

Peripheral function clock

Main clock, sub clock, PLL clock or ring oscillator clock can be selected as clock source for peripheral function.

(1) f1, f8, f2n

The clock is derived from the main clock or by dividing it by 1, 8 or 2n (n=1 to 15). It is used for the timer A and timer B counts and serial I/O and UART operation clock.

The f2n division rate is set by the count source prescaler register. Figure 1.8.5 shows the count source prescaler register.

(2) fad

This clock has the same frequency as the main clock or ring oscillator clock and is used for A-D conversion.

(3) fC32

This clock is derived by dividing the sub clock by 32. It is used for the timer A and timer B counts.

(4) fpll

This clock is 80 MHz generated by PLL synthesizer. It is used for the intelligent I/O group 3.

Clock Output

You can output clock from the P53 pin.

- BCLK output function select bit of processor mode register 0 (bit 7 at address 000416)
- ALE select bits of processor mode register 1 (bit 4 and 5 at address 000516)
- Clock output function select bits of system clock select register (bits 1 and 0 at address 000616)

Table 1.8.4 shows clock output setting (single chip mode) and Table 1.8.5 shows clock output setting (memory expansion/microprocessor mode).

Table 1.0.4. Clock	Julput setting	g (single cin	J mode)		
BCLK output function select bit	Clock outp sele	out function ect bit	ALE pin	select bit	P53/BCLK/ALE/CLKOUT
PM07	CM01	CM00	PM15	PM14	pin function
Ignored	0	0	Ignored	Ignored	P53 I/O port
1	0	1	Ignored	Ignored	fc output (Note)
1	1	0	Ignored	Ignored	f8 output (Note)
1	1	1	Ignored	Ignored	f32 output (Note)

Table 1.8.4. Clock output setting (single chip mode)

Note : Must use P57 as input port.

BCLK output function select bit	Clock outp sele	out function ct bit	ALE pin	select bit	P53/BCLK/ALE/CLKOUT		
PM07	CM01	CM00	PM15	PM14	pin function		
0	0	0	-		BCLK output		
1	0	0	"0	0"	"L" output (not P53)		
1	0	1	"0, 0" "1, 0" "1, 1"		"1, 0" fc output		
1	1	0			"1, 1" fa		f8 output
1	1	1					f32 output
Ignored	0	0	0	1	ALE output		

Table 1.8.5. Clock output setting (memory expansion/microprocessor mode)

Note: The processor mode register 0 and 1 are protected from false write by program run away. Set bit 1 to "1" at protect register (address 000A16) and release protect before rewriting processor mode register 0 and 1.

Power Saving

There are three power save modes. Figure 1.8.9 shows the clock transition between each of the three modes, (1), (2), and (3).

• Normal operating mode

CPU and peripheral function operate when supplying clock. Power dissipation is reduced by making BCLK slow.

Wait mode

BCLK is stopped. Peripheral function clock is stopped as desired. Main clock and sub clock isn't stopped. Power dissipation is reduced than normal operating mode.

• Stop mode (Note 1)

Main clock, sub clock and PLL synthesizer are stopped. CPU and peripheral function clock are stopped. Power dissipation is the most few in this mode.

Note :When using stop mode, oscillation stop detect function must be canceled.

(1) Normal operating mode

High-speed mode

Main clock one cycle forms CPU operating clock.

Medium-speed mode

The main clock divided into 2, 3, 4, 6, 8, 10, 12, 14, or 16 forms CPU operating clock.

Low-speed mode

Subclock (fc) forms CPU operating clock.

Low power-dissipation mode

This mode is selected when the main clock is stopped from low-speed mode. Only the peripheral functions for which the subclock was selected as the count source continue to run.

Ring oscillator mode

The ring oscillator clock divided into 2, 3, 4, 6, 8, 10, 12, 14, or 16 forms CPU operating clock.

Ring oscillator low power-dissipation mode

This mode is selected when the main clock is stopped from low-speed mode.

When switching BCLK from ring oscillator to main clock, switch clock after main clock oscillates fully stable. After setting divided by 8 (main clock division register =0816) in ring oscilltor mode, switching to the middle mode (divided by 8) is recommended.

(2) Wait mode

In wait mode, BCLK is stopped and CPU and watchdog timer operated by BCLK are halted. The main clock, subclock and ring oscillator clock continue to run.

(a) Shifting to wait mode

Execute WAIT instruction.

(b) Peripheral function clock stop function

The f_1 , f_8 and f_{2n} being supplied to the internal peripheral functions stops. The internal peripheral functions operated by the clock stop.

WAIT peripheral function clock stop bit of system clock control register 0 (bit 2 at address 000616)

- 0: Do not stop f1, f8 and f2n in wait mode and do not stop supplying clock to PLL circuit
- 1: Stop f1, f8 and f2n in wait mode and stop supplying clock to PLL circuit

(c) The status of the ports in wait mode

Table 1.8.6 shows the status of the ports in wait mode.

(d) Exit from wait mode

Wait mode is cancelled by a hardware reset or interrupt. If a peripheral function interrupt is used to cancel wait mode, set the following registers.

Interrupt priority set bits for exiting a stop/wait state of exit priority register (bits 0 to 2 at address 009F16) :RLVL0 to RLVL2

Set the same level as the flag register (FLG) processor interrupt level (IPL). Interrupt priority set bits of interrupt control register (bits 0 to 2)

Set to a priority level above the level set by RLVL0 to RLVL2 bits

Interrupt enable flag of FLG register

l = 1

When using an interrupt to exit Wait mode, the microcomputer resumes operating the clock that was operating when the WAIT command was executed as BCLK from the interrupt routine.

Pin		Memory expansion mode	Single-chip mode
		Memory expansion mode	
		Microprocessor mode	
Address bus, data	a bus, $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$,	Retains status before wait mode	
BHE			
RD, WR, WRL, W	RH, DW, CASL, CASH	"H" ^(Note)	
RAS		"H" (Note)	
HLDA,BCLK		"Н"	
ALE		"L"	
Port		Retains status before wait mode	
CLKOUT	When fc selected	Does not stop	
	When f8, f32 selected	Does not stop when the WAIT peripheral function clock stop bit is	
		"0". When the WAIT peripheral fun	ction clock stop bit is "1", the
		status immediately prior to entering	g wait mode is maint ained.

Table 1.8.6. Port status during wait mode

Note :When self-refresh is done in operating DRAM control, TAS and RAS becomes "L".

(3) Stop mode

All oscillation, main clock, subclock, and PLL synthesizer stop in this mode. Because the oscillation of BCLK and peripheral clock stops in stop mode, peripheral functions such as the A-D converter, timer A and B, serial I/O, intelligent I/O and watchdog timer do not function.

The content of the internal RAM is retained provided that Vcc remains above 2.5V.

When changing to stop mode, the main clock division register (000C16) is set to "XXX010002" (division by 8 mode).

(a) Changing to stop mode

All clock stop control bit of system clock control register 1 (bit 0 at address 000716)

- 0: Clock ON
- 1: All clocks off (stop mode)

Before changing to stop mode, set bit 7 of PLL control register 0 (address 037616) to "0" to stop PLL. Also, set bit 0 of VDC control register for PLL (address 001716) to "1" to turn PLL circuit power off.

(b) The status of the ports in stop mode

Table 1.8.7 shows the status of the ports in stop mode.

(c) Exit from stop mode

Stop mode is cancelled by a hardware reset or interrupt. If a peripheral function interrupt is used to cancel stop mode, set the following registers.

• Interrupt priority set bits for exiting a stop/wait state of exit priority register (bits 0 to 2 at address 009F16) :RLVL0 to RLVL2 Set the same level as the flag register (FLG) processor interrupt level (IPL).

• Interrupt priority set bits of interrupt control register (bits 0 to 2)

Set to a priority level above the level set by RLVL0 to RLVL2 bits

• Interrupt enable flag of FLG register

l = 1

When exiting from stop mode using peripheral interrupt request, CPU operates the following BCLK and the relevant interrupt routine is executed.

- When subclock was set as BCLK before changing to stop mode, subclock is set to BCLK after cancelled stop mode
- When main clock was set as BCLK before changing to stop mode, the main clock division by 8 is set to BCLK after cancelled stop mode.

Pin		Memory expansion mode	Single-chip mode
		Microprocessor mode	
Address bu	is, data bus, \overline{CSO} to $\overline{CS3}$, \overline{BHE}	Retains status before stop mode	
RD, WR, V	VRL, WRH, DW, CASL, CASH	"H" (Note)	
RAS		"H" (Note)	
HLDA, BCI	_K	"H"	
ALE		"Н"	
Port		Retains status before stop mode	
CLKOUT	When fc selected	"H"	
	When f8, f32 selected	Retains status before stop mode	

Table 1.8.7. Port status during stop mode

Note :When self-refresh is done in operating DRAM control, CAS and RAS becomes "L".

Under Rev.B2 for proof reading

Figure 1.8.9. Clock transition

Under Rev.B2 for proof reading

Protection

The protection function is provided so that the values in important registers cannot be changed in the event that the program runs out of control. Figure 1.8.11 shows the protect register. The following registers are protected by the protect register.

- (1) Registers protected by PRC0 (bit 0)
 - System clock control registers 0 and 1 (addresses 000616 and 000716)
 - Main clock division register (address 000C16)
 - Oscillation stop detect register (address 000D16)
 - PLL control register 0 (address 037616)
- (2) Registers protected by PRC1 (bit 1)
 - Processor mode registers 0 and 1 (addresses 000416 and 000516)
 - Three-phase PWM control registers 0 and 1 (addresses 030816 and 030916)
- (3) Registers protected by PRC2 (bit 2)
 - Port P9 direction register (address 03C716)
 - Function select register A3 (address 03B516)
- (4) Registers protected by PRC3 (bit 3)
 - VDC control register for PLL (address 001716)
 - VDC control register 0 (address 001F16)

If, after "1" (write-enabled) has been written to the PRC2, a value is written to any address, the bit automatically reverts to "0" (write-inhibited). Change port P9 input/output and function select register A3 immediately after setting "1" to PRC2. Interrupt and DMA transfer should not be inserted between instructions. However, the PRC0, PRC1 and PRC3 do not automatically return to "0" after a value has been written to an address. The program must therefore be written to return these bits to "0".

Figure 1.8.11. Protect register

Interrupt Outline

Types of Interrupts

- Maskable interrupt
 : An interrupt which can be disabled by the interrupt enable flag (I flag) or
 whose interrupt priority can be changed by priority level.
- Non-maskable interrupt : An interrupt which cannot be disabled by the interrupt enable flag (I flag) or whose interrupt priority **cannot be changed** by priority level.

Figure 1.9.1 lists the types of interrupts.

Figure 1.9.1. Classification of interrupts

Software Interrupts

Software interrupts are generated by some instruction that generates an interrupt request when executed. Software interrupts are nonmaskable interrupts.

(1) Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is 1.

The following lists the instructions that cause the O flag to change:

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB, SUBX

(3) BRK interrupt

This interrupt occurs when the BRK instruction is executed.

(4) BRK2 interrupt

This interrupt occurs when the BRK2 instruction is executed. This interrupt is used exclusively for debugger purposes. You normally do not need to use this interrupt.

(5) INT instruction interrupt

This interrupt occurs when the INT instruction is executed after specifying a software interrupt number from 0 to 63. Note that software interrupt numbers 7 to 54 and 57 are assigned to peripheral I/O interrupts. This means that by executing the INT instruction, you can execute the same interrupt routine as used in peripheral I/O interrupts.

The stack pointer used in INT instruction interrupt varies depending on the software interrupt number. For software interrupt numbers 0 to 31, the U flag is saved when an interrupt occurs and the U flag is cleared to 0 to choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The previous U flag before the interrupt occurred is restored when control returns from the interrupt routine. For software interrupt numbers 32 to 63, such stack pointer switchover does not occur.

However, in peripheral I/O interrupts, the U flag is saved when an interrupt occurs and the U flag is cleared to 0 to choose ISP.

Therefore movement of U flag is different by peripheral I/O interrupt or INT instruction in software interrupt number 32 to 54 and 57.

Hardware Interrupts

There are Two types of hardware Interrupts; special interrupts and Peripheral I/O interrupts.

(1) Special interrupts

Special interrupts are nonmaskable interrupts.

Reset

A reset occurs when the $\overline{\text{RESET}}$ pin is pulled low.

• NMI interrupt

This interrupt occurs when the $\overline{\text{NMI}}$ pin is pulled low.

• Watchdog timer interrupt

This interrupt is caused by the watchdog timer.

Ocsillation stop detect interrupt

This interrupt is caused by the ocsillation stop detect function.

It occurs when detecting the XIN ocsillation is stopped.

• Single-step interrupt

This interrupt is used exclusively for debugger purposes. These interrupts normally do not need to use this interrupt. A single-step interrupt occurs when the D flag is set (= 1); in this case, an interrupt is generated each time an instruction is executed.

Address-match interrupt

This interrupt occurs when the program's execution address matches the contents of the address match register while the address match interrupt enable bit is set (= 1).

This interrupt does not occur if any address other than the start address of an instruction is set in the address match register.

(2) Peripheral I/O interrupts

A peripheral I/O interrupt is generated by one of the built-in peripheral functions. Built-in peripheral functions are dependent on classes of products, so the interrupt factors too are dependent on classes of products. The interrupt vector table is the same as the one for software interrupt numbers 7 through 54 and 57 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.

• UART related interrupt (UART0 to 4)

- UART transmission/NACK interrupt
- UART reception/ACK interrupt
- Bus collision detection, start/stop condition detection interrupts

This is an interrupt that the serial I/O bus collision detection generates. When I²C mode is selected, start, stop condition interrupt is selected.

• DMA0 through DMA3 interrupts

• Key-input interrupt

A key-input interrupt occurs if an "L" is input to the $\overline{\text{KI}}$ pin.

- A-D conversion interrupt (AD0, 1)
- Timer A interrupt (TA0 to 4)
- Timer B interrupt (TB0 to 5)
- INT interrupt (INT0 to INT5)

An INT interrupt selects an edge sense or a level sense. In edge sense, an INT interrupt occurs if either a rising edge or a falling edge is input to the INT pin. In level sense, an INT interrupt occurs if either a "H" level or a "L" level is input to the INT pin.

- Intelligent I/O interrupt
- CAN interrupt

High-speed interrupts

High-speed interrupts are interrupts in which the response is executed at 5 cycles and the return is 3 cycles.

When a high-speed interrupt is received, the flag register (FLG) and program counter (PC) are saved to the save flag register (SVF) and save PC register (SVP) and the program is executed from the address shown in the vector register (VCT).

Execute an FREIT instruction to return from the high-speed interrupt routine.

High-speed interrupts can be set by setting "1" in the high-speed interrupt specification bit allocated to bit 3 of the exit priority register. Setting "1" in the high-speed interrupt specification bit makes the interrupt set to level 7 in the interrupt control register a high-speed interrupt.

You can only set one interrupt as a high-speed interrupt. When using a high-speed interrupt, do not set multiple interrupts as level 7 interrupts. When using high speed interrupt, DMA II cannot be used.

The interrupt vector for a high-speed interrupt must be set in the vector register (VCT).

When using a high-speed interrupt, you can use a maximum of two DMAC channels.

The execution speed is improved when register bank 1 is used with high speed interrupt register selected by not saving registers to the stack but to the switching register bank. In this case, switch register bank mode for high-speed interrupt routine.

Interrupts and Interrupt Vector Tables

If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector table. Set the first address of the interrupt routine in each vector table. Figure 1.9.2 shows the format for specifying the address.

Two types of interrupt vector tables are available — fixed vector table, in which addresses are fixed, and relocatable vector table, in which addresses can be varied by the setting.

Figure 1.9.2. Format for specifying interrupt vector addresses

• Fixed vector tables

The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area extending from FFFFDC16 to FFFFF16. Each vector comprises four bytes. Set the first address of interrupt routine in each vector table. Table 1.9.1 shows the interrupts assigned to the fixed vector tables and addresses of vector tables.

Table 1.9.1.	Interrupt factors	(fixed interrupt	vector addresses)
--------------	-------------------	------------------	-------------------

Interrupt source	Vector table addresses	Remarks
	Address (L) to address (H)	
Undefined instruction	FFFFDC16 to FFFFDF16	Interrupt on UND instruction
Overflow	FFFFE016 to FFFFE316	Interrupt on INTO instruction
BRK instruction	FFFFE416 to FFFFE716	If contents of FFFFE716 is filled with FF16, program
		execution starts from the address shown by the vector in
		the relocatable vector table
Address match	FFFFE816 to FFFFEB16	There is an address-matching interrupt enable bit
Watchdog timer	FFFFF016 to FFFFF316	Share it with watchdog timer and oscillation stop detect
interrupt		
NMI	FFFFF816 to FFFFFB16	External interrupt by input to NMI pin
Reset	FFFFFC16 to FFFFFF16	

Vector table dedicated for emulator

Table 1.9.2 shows interrupt vector address, which is vector table register dedicated for emulator (address 00002016 to 00002216). These instructions are not effected with interrupt enable flag (I flag) (non maskable interrupt).

This interrupt is used exclusively for debugger purposes. You normally do not need to use this interrupt. Do not access the interrupt vector table register dedicated for emulator (address 00002016 to 00002216).

Table 1.9.2. Interrupt vector table register for emulator

Interrupt source	Vector table addresses	Remarks
	Address (L) to address (H)	
BRK2 instruction	Interrupt vector table register for emulator	Interrupt for debugger
Single step	00002016 to 00002216	

• Relocatable vector tables

The addresses in the relocatable vector table can be modified, according to the user's settings. Indicate the first address using the interrupt table register (INTB). The 256-byte area subsequent to the address the INTB indicates becomes the area for the relocatable vector tables. One vector table comprises four bytes. Set the first address of the interrupt routine in each vector table. Table 1.9.3 shows the interrupts assigned to the relocatable vector tables and addresses of vector tables. Set an even address to the start address of vector table setting in INTB so that operating efficiency is increased.

Table 1.9.3. Interrupt causes (variable interrupt vector addresses) (1/2)

Address(L)to address(H) (Note 1) Softwar interrupt number 0 (Note 2) +0 to +3 (00001c to 00031c) BRK instruction Softwar interrupt number 7 +28 to +31 (001C1 to 10 00171c) A-D channel 1 Softwar interrupt number 8 +32 to +33 (00241c to 00271c) DMA0 Softwar interrupt number 1 +43 to +43 (00281c to 00271c) DMA1 Softwar interrupt number 11 +44 to +41 (00221c to 00271c) DMA2 Softwar interrupt number 12 +48 to +51 (00301c to 00371c) Timer A0 Softwar interrupt number 13 +52 to +55 (00341c to 00371c) Timer A1 Softwar interrupt number 14 +66 to +63 (003C1c to 00371c) Timer A3 Softwar interrupt number 15 +66 to +63 (003C1c to 00471c) UART0 transmit/NACK (Note 3) Softwar interrupt number 14 +68 to +67 (00401c to 00471c) UART0 transmit/NACK (Note 3) Softwar interrupt number 20 +88 to +87 (00541c to 00471c) UART0 transmit/NACK (Note 3) Softwar interrupt number 21 +88 to +87 (00541c to 00571c) Timer B1 Softwar interrupt number 21 +98 to +99 (00601c to 00571c) Timer B1 Softwar interrupt number 22 +98 to +99 (00601c to 00571c) Timer B3	Softwear interrupt number	Vector table address	Interruto source
Softwear interrupt number 0 INNE 2 +0 to +3 (00001s to 000316) BRK instruction Softwear interrupt number 7 +28 to +31 (001C1s to 001F16) A-D channel 1 Softwear interrupt number 8 +32 to +33 (00201s to 002716) DMA0 Softwear interrupt number 10 +44 to +43 (00281s to 002716) DMA1 Softwear interrupt number 11 +44 to +47 (00251s to 002716) DMA2 Softwear interrupt number 12 +48 to +51 (00301s to 003316) Timer A0 Softwear interrupt number 13 +52 to +55 (00341s to 003316) Timer A1 Softwear interrupt number 14 +56 to +56 (00341s to 003716) Timer A3 Softwear interrupt number 15 +68 to +71 (00441s to 004716) UART0 transmit/NACK (Nora 3) Softwear interrupt number 19 +76 to +73 (00451s to 004516) UART1 transmit/NACK (Nora 3) Softwear interrupt number 21 +88 to +91 (00551s to 005716) Timer B0 Softwear interrupt number 21 +88 to +91 (00561s to 005716) Timer B1 Softwear interrupt number 24 +96 to +99 (00601s to 006316) Timer B3 Softwear interrupt number 24 +96 to +107 (00641s to 007516) Timer B4 Softwear interrupt number 24 <td></td> <td>Address(L)to address(H) (Note 1)</td> <td></td>		Address(L)to address(H) (Note 1)	
Softwaar interrupt number 7 +28 to +31 (001C16 to 001F16) A-D channel 1 Softwaar interrupt number 9 +38 to +35 (002016 to 002316) DMA0 Softwaar interrupt number 1 +44 to +43 (00281 to 002316) DMA2 Softwaar interrupt number 11 +44 to +44 (00281 to 002316) DMA2 Softwaar interrupt number 12 +48 to +51 (003016 to 003316) Timer A0 Softwaar interrupt number 13 +52 to +55 (003416 to 003716) Timer A1 Softwaar interrupt number 14 +56 to +59 (003816 to 003716) Timer A3 Softwaar interrupt number 15 +60 to +67 (004016 to 004516) UART0 transmit/NACK (Note 3) Softwaar interrupt number 16 +76 to +71 (004416 to 004516) UART1 tracsmit/NACK (Note 3) Softwaar interrupt number 21 +88 to +87 (005516 to 005516) UART1 tracsmit/NACK (Note 3) Softwaar interrupt number 21 +88 to +87 (005516 to 005516) Timer B1 Softwaar interrupt number 24 +99 to 499 (005016 to 005516) Timer B2 Softwaar interrupt number 25 +100 to +103 (006416 to 005516) Timer B3 Softwaar interrupt number 24 +99 to +99 (005016 to 005616) Timer B3 Softwaar interrupt number 24	Softwear interrupt number 0 (Note 2)	+0 to +3 (000016 to 000316)	BRK instruction
Softwaar interrupt number 7 +28 to +31 (001C/s to 0071s) A-D channel 1 Softwaar interrupt number 9 +35 (0020 to 0023 to) DMA0 Softwaar interrupt number 10 +40 to +43 (0028 to 0028 to) DMA1 Softwaar interrupt number 11 +44 to +47 (0022 to 0028 to 0028 to) DMA2 Softwaar interrupt number 12 +44 to +47 (0022 to 0028 to 0028 to) DMA3 Softwaar interrupt number 11 +45 to +56 (0034 to 0028 to) DMA3 Softwaar interrupt number 13 +52 to +56 (0034 to 0037 to) Timer A1 Softwaar interrupt number 14 +56 to +59 (0038 to 0038 to) Timer A3 Softwaar interrupt number 16 +64 to +67 (0040 to 0043 to) UART0 traceiva/ACK (Note 3) Softwaar interrupt number 19 +76 to +75 (0048 to 0055 to) UART1 traceiva/ACK (Note 3) Softwaar interrupt number 21 +84 to +87 (0058 to 0058 to) UART1 traceiva/ACK (Note 3) Softwaar interrupt number 21 +84 to +47 (0026 to 0065 to) Timer B1 Softwaar interrupt number 22 +80 to +99 (0056 to 0056 to) UART1 traceiva/ACK (Note 3) Softwaar interrupt number 24 +96 to +99 (0056 to 0056 to) INT4 Softwaar interrupt number 24	· · · · · · · · · · · · · · · · · · ·	· · · · ·	
Softwarer interrupt number 8 +32 to +35 (002016 to 002316) DMA0 Softwarer interrupt number 10 +40 to +43 (002216 to 002716) DMA1 Softwarer interrupt number 11 +44 to +47 (002216 to 002716) DMA2 Softwarer interrupt number 11 +44 to +47 (002216 to 002716) DMA3 Softwarer interrupt number 12 +48 to +51 (003016 to 003716) Timer A0 Softwarer interrupt number 13 +52 to +55 (003416 to 003716) Timer A3 Softwarer interrupt number 16 +64 to +67 (004016 to 004316) Timer A3 Softwarer interrupt number 17 +68 to +77 (004416 to 004316) UART0 transmit/NACK (Note 3) Softwarer interrupt number 18 +72 to +75 (004616 to 004716) UART0 transmit/NACK (Note 3) Softwarer interrupt number 20 +80 to +83 (005016 to 005316) UART1 transmit/NACK (Note 3) Softwarer interrupt number 21 +84 to +87 (005416 to 006516) Timer B0 Softwarer interrupt number 22 +80 to +91 (005616 to 005516) Timer B3 Softwarer interrupt number 23 +92 to +91 (005616 to 006716) Timer B3 Softwarer interrupt number 24 +96 to 100 to 000616 to 0006716) Timer B3 Softwarer interrupt number 27 </td <td>Softwear interrupt number 7</td> <td>+28 to +31 (001C16 to 001F16)</td> <td>A-D channel 1</td>	Softwear interrupt number 7	+28 to +31 (001C16 to 001F16)	A-D channel 1
Softwaar interrupt number 9 +36 to +39 (0024 to 002716) DMA1 Softwaar interrupt number 11 +44 to +47 (002C to to 002816) DMA2 Softwaar interrupt number 11 +44 to +47 (002C to to 002716) DMA3 Softwaar interrupt number 11 +44 to +47 (002C to to 002716) DMA3 Softwaar interrupt number 13 +52 to +55 (0034 to 003716) Timer A1 Softwaar interrupt number 14 +56 to +59 (0034 to 003716) Timer A3 Softwaar interrupt number 16 +64 to +67 (0040 to 004316) UART0 transmit/NACK (Note 3) Softwaar interrupt number 11 +46 to +75 (0048 to 004816) UART0 transmit/NACK (Note 3) Softwaar interrupt number 19 +76 to +75 (0048 to 004716) UART0 traceive/ACK (Note 3) Softwaar interrupt number 21 +88 to +87 (00541 to 005716) Timer B1 Softwaar interrupt number 22 +88 to +91 (00561 to 005616) Timer B3 Softwaar interrupt number 24 +96 (055 to 005616) ITmer B4 Softwaar interrupt number 27 +108 to +111 (0060 to to 007316) INT3 Softwaar interrupt number 28 +112 to +115 (007016 to 007516) INT4 Softwaar interrupt number 29 +116 to +119 (00714 to 0077	Softwear interrupt number 8	+32 to +35 (002016 to 002316)	DMA0
Softwaar interrupt number 10 +40 to +43 (0028/is to 0028/is) DMA2 Softwaar interrupt number 12 +44 to +47 (0022/is to 0028/is) DMA3 Softwaar interrupt number 13 +52 to +55 (0033/is to 0038/is) Timer A1 Softwaar interrupt number 14 +56 to +59 (0038/is to 0038/is) Timer A3 Softwaar interrupt number 15 +60 to +63 (0032/is to 0038/is) Timer A3 Softwaar interrupt number 16 +64 to +67 (0040/is to 0043/is) UARTO transmit/NACK (Note 3) Softwaar interrupt number 17 +68 to +71 (0044/is to 0044/is) UARTO transmit/NACK (Note 3) Softwaar interrupt number 20 +80 to +83 (0050/is to 0053/is) UARTO transmit/NACK (Note 3) Softwaar interrupt number 21 +84 to +87 (0054/is to 0057/is) Timer B0 Softwaar interrupt number 22 +88 to +99 (0056/is to 0056/is) Timer B3 Softwaar interrupt number 23 +92 to +95 (0056/is to 0056/is) Timer B3 Softwaar interrupt number 26 +1010 to +103 (0064/is to 0076/is) INT4 Softwaar interrupt number 28 +112 to +115 (0070/is to 0077/is) INT4 Softwaar interrupt number 28 +112 to +115 (0070/is to 0077/is) INT4 Softwaar interru	Softwear interrupt number 9	+36 to +39 (002416 to 002716)	DMA1
Softwear interrupt number 11 +44 to +47 (002C16 to 002716) DMA3 Softwear interrupt number 13 +52 to +55 (003316 to 003316) Timer A0 Softwear interrupt number 14 +56 to +59 (003316 to 003316) Timer A1 Softwear interrupt number 15 +60 to +63 (003C16 to 003716) Timer A3 Softwear interrupt number 16 +64 to +67 (004016 to 004316) Timer A3 Softwear interrupt number 17 +68 to +71 (004416 to 004716) UART0 transmit/NACK (Note 3) Softwear interrupt number 18 +72 to +75 (004316 to 0035716) UART1 transmit/NACK (Note 3) Softwear interrupt number 20 +80 to +83 (005516 to 0055716) Timer B1 Softwear interrupt number 21 +84 to +87 (005416 to 005716) Timer B1 Softwear interrupt number 23 +92 to +95 (00551 to 0055716) Timer B1 Softwear interrupt number 24 +96 to +99 (006016 to 006316) Timer B3 Softwear interrupt number 24 +96 to +90 (00616 to 006516) INT4 Softwear interrupt number 27 +100 to +103 (005416 to 006716) INT4 Softwear interrupt number 28 +110 to 01706 to 007316) INT4 Softwear interrupt number 30 +120 to +123 (007816 to	Softwear interrupt number 10	+40 to +43 (002816 to 002B16)	DMA2
Softwear interrupt number 12 +48 to +51 (003016 to 003316) Timer A0 Softwear interrupt number 14 +56 to +59 (003816 to 003716) Timer A1 Softwear interrupt number 15 +60 to +59 (003816 to 003716) Timer A2 Softwear interrupt number 16 +64 to +67 (004016 to 004316) UART0 transmit/NACK (Note 3) Softwear interrupt number 17 +68 to +71 (004416 to 004716) UART1 transmit/NACK (Note 3) Softwear interrupt number 18 +72 to +75 (004816 to 004816) UART1 transmit/NACK (Note 3) Softwear interrupt number 20 +80 to +83 (005016 to 005316) UART1 transmit/NACK (Note 3) Softwear interrupt number 21 +88 to +91 (005816 to 005816) Timer B0 Softwear interrupt number 23 +92 to +95 (005C16 to 005816) Timer B1 Softwear interrupt number 25 +100 to +103 (006416 to 006716) Timer B3 Softwear interrupt number 26 +100 to +1103 (006416 to 006716) ITTT Softwear interrupt number 28 +112 to +115 (007016 to 007316) INT3 Softwear interrupt number 30 +121 to +113 (00716 to 007716) INT2 Softwear interrupt number 31 +124 to +127 (007C16 to 007716) INT0 Softwear interrup	Softwear interrupt number 11	+44 to +47 (002C16 to 002F16)	DMA3
Softwear interrupt number 13 +52 to +55 (0034 is to 0037 is) Timer A1 Softwear interrupt number 15 +60 to +53 (0033 is to 0038 is) Timer A2 Softwear interrupt number 16 +64 to +67 (0040 is to 0043 is) Timer A3 Softwear interrupt number 18 +72 to +75 (0044 is to 0047 is) UART0 transmit/NACK (Note 3) Softwear interrupt number 19 +76 to +79 (0046 is to 0047 is) UART0 transmit/NACK (Note 3) Softwear interrupt number 20 +80 to +87 (0054 is to 0057 is) UART1 transmit/NACK (Note 3) Softwear interrupt number 21 +84 to +87 (0054 is to 0057 is) Timer B0 Softwear interrupt number 22 +98 to +91 (0058 is to 0058 is) Timer B1 Softwear interrupt number 24 +96 to +99 (0060 is to 0063 is) Timer B3 Softwear interrupt number 25 +100 to +103 (0064 is to 0067 is) INT4 Softwear interrupt number 26 +112 to +115 (0074 is to 0077 is) INT3 Softwear interrupt number 30 +122 to +135 (0084 is to 0086 is) INT4 Softwear interrupt number 31 +124 to +127 (0076 is to 0075 is) INT4 Softwear interrupt number 33 +121 to +113 (0080 is to 0083 is) UART2 transmit/NACK (Note 3)	Softwear interrupt number 12	+48 to +51 (003016 to 003316)	Timer A0
Softwear interrupt number 14 +56 to +59 (0038 to 0038 to 0038 to) Timer A2 Softwear interrupt number 16 +66 to +67 (0040 to 0047 to) UART0 transmit/NACK (Note 3) Softwear interrupt number 17 +68 to +71 (0044 to 0047 to) UART0 transmit/NACK (Note 3) Softwear interrupt number 18 +72 to +75 (0048 to 0048 to) UART1 transmit/NACK (Note 3) Softwear interrupt number 19 +76 to +79 (004C1 to 0047 to) UART1 transmit/NACK (Note 3) Softwear interrupt number 20 +88 to +91 (0058 to 0053 to) UART1 transmit/NACK (Note 3) Softwear interrupt number 21 +84 to +87 (0054 to 0057 to) Timer B1 Softwear interrupt number 23 +92 to +95 (005C to 0057 to) Timer B2 Softwear interrupt number 24 +96 to +199 (0060 to 0063 to) Timer B3 Softwear interrupt number 25 +100 to +103 (0064 to 0067 to) Timer B4 Softwear interrupt number 26 +104 to +107 (0068 to 0073 to) INT5 Softwear interrupt number 28 +112 to +115 (0074 to 0077 to) INT0 Softwear interrupt number 30 +122 to +132 (0076 to 0075 to) INT1 Softwear interrupt number 31 +124 to +127 (0076 to 0077 to) INT0 S	Softwear interrupt number 13	+52 to +55 (003416 to 003716)	Timer A1
Softwear interrupt number 15 +60 to +63 (003Cr to 003Fr to) Timer A3 Softwear interrupt number 17 +68 to +67 (0040 to to 0043 to) Timer A4 Softwear interrupt number 18 +72 to +75 (0048 to 0048 to) UART0 transmit/NACK (Note 3) Softwear interrupt number 20 +80 to +83 (0050 to 0053 to) UART1 transmit/NACK (Note 3) Softwear interrupt number 21 +84 to +87 (0054 to 0057 to) UART1 transmit/NACK (Note 3) Softwear interrupt number 23 +92 to +95 (005C1 to 0053 to) Timer B0 Softwear interrupt number 24 +98 to +91 (00561 to 0058 to) Timer B1 Softwear interrupt number 25 +100 to 1+03 (0064 to 0067 to) Timer B3 Softwear interrupt number 26 +100 to 1+03 (0070 to 0073 to) INT4 Softwear interrupt number 27 +108 to +111 (006C1 to 0067 to) INT4 Softwear interrupt number 28 +112 to +115 (0071 to 0073 to) INT3 Softwear interrupt number 30 +120 to +123 (0072 to 10077 to) INT4 Softwear interrupt number 31 +124 to +27 (0084 to 0088 to 0088 to) INT4 Softwear interrupt number 33 +132 to +135 (0084 to 0087 to) INT4 Softwear interrupt number 34	Softwear interrupt number 14	+56 to +59 (003816 to 003B16)	Timer A2
Softwear interrupt number 16 +64 to +67 (00401s to 004316) Timer A4 Softwear interrupt number 17 +68 to +71 (00441s to 004316) UART0 transmit/NACK (Nore 3) Softwear interrupt number 18 +72 to +75 (00431s to 004816) UART1 transmit/NACK (Nore 3) Softwear interrupt number 20 +80 to +83 (00501s to 005316) UART1 transmit/NACK (Nore 3) Softwear interrupt number 21 +84 to +87 (00541s to 005516) UART1 transmit/NACK (Nore 3) Softwear interrupt number 22 +88 to +91 (00561s to 005516) Timer B1 Softwear interrupt number 23 +92 to +95 (005C1s to 005516) Timer B3 Softwear interrupt number 24 +96 to +99 (00601s to 006516) Timer B4 Softwear interrupt number 25 +100 to +103 (00641s to 006716) Timer B4 Softwear interrupt number 26 +104 to +107 (00681s to 007316) INT3 Softwear interrupt number 30 +122 to +132 (00781s to 007816) INT1 Softwear interrupt number 31 +124 to +127 (007C1s to 007816) INT1 Softwear interrupt number 33 +132 to +133 (00881s to 008816) UART2 transmit/NACK (Note 3) Softwear interrupt number 34 +136 to +139 (00881s to 008816) UART2 transmit/NACK (Note 3)	Softwear interrupt number 15	+60 to +63 (003C16 to 003F16)	Timer A3
Softwear interrupt number 17 +68 to +71 (00441s to 004716) UART0 transmit/NACK (Note 3) Softwear interrupt number 19 +76 to +75 (00481s to 00481s) UART0 transmit/NACK (Note 3) Softwear interrupt number 20 +80 to +83 (00501s to 00531s) UART1 transmit/NACK (Note 3) Softwear interrupt number 21 +88 to +87 (00541s to 00551s) Timer B1 Softwear interrupt number 22 +88 to +99 (00501s to 00551s) Timer B1 Softwear interrupt number 23 +92 to +95 (005C1s to 00571s) Timer B1 Softwear interrupt number 24 +96 to +99 (00601s to 00671s) Timer B4 Softwear interrupt number 25 +100 to +103 (00641s to 00671s) INT4 Softwear interrupt number 26 +104 to +107 (00681s to 000731s) INT3 Softwear interrupt number 28 +112 to +115 (0071s to 00731s) INT3 Softwear interrupt number 30 +122 (00781s to 00781s) INT1 Softwear interrupt number 31 +124 to +127 (00761s to 00871s) UART2 transmit/NACK (Note 3) Softwear interrupt number 33 +132 to +133 (00841s to 00881s) UART2 transmit/NACK (Note 3) Softwear interrupt number 34 +136 to +139 (0081s to 00871s) UART3 transmit/NACK (Note 3)	Softwear interrupt number 16	+64 to +67 (004016 to 004316)	Timer A4
Softwear interrupt number 18 +72 to +75 (00481c to 00481c) UART0 receive/ACK (Note 3) Softwear interrupt number 20 +80 to +83 (00501c to 00531c) UART1 transmit/NACK (Note 3) Softwear interrupt number 21 +84 to +87 (00541c to 00551c) UART1 receive/ACK (Note 3) Softwear interrupt number 22 +88 to +91 (00561c to 00557c) Timer B1 Softwear interrupt number 23 +92 to +95 (005C1c to 00567c) Timer B2 Softwear interrupt number 24 +96 to +99 (00601c to 00651c) Timer B3 Softwear interrupt number 25 +100 to +103 (00641c to 00671c) Timer B4 Softwear interrupt number 26 +104 to +107 (00681c to 00671c) INT5 Softwear interrupt number 27 +108 to +111 (00671c to 00771c) INT4 Softwear interrupt number 29 +112 to +115 (00771c to 00771c) INT2 Softwear interrupt number 30 +122 to +123 (00781c to 00871c) INT0 Softwear interrupt number 31 +124 to +127 (007Cic to 00771c) INT1 Softwear interrupt number 32 +132 to +133 (00821c to 00831c) INT2 Softwear interrupt number 33 +132 to +133 (00821c to 00831c) UART2 receive/ACK (Note 3) Softwear interrupt number	Softwear interrupt number 17	+68 to +71 (004416 to 004716)	UART0 transmit/NACK (Note 3)
Softwear interrupt number 19 +76 to +79 (004C16 to 004F16) UART1 transmit/NACK (Note 3) Softwear interrupt number 21 +84 to +83 (005016 to 005316) UART1 transmit/NACK (Note 3) Softwear interrupt number 21 +84 to +87 (005416 to 005716) Timer B0 Softwear interrupt number 23 +92 to +99 (005C16 to 005716) Timer B1 Softwear interrupt number 24 +96 to +99 (006016 to 006316) Timer B3 Softwear interrupt number 25 +100 to +103 (006416 to 006716) INTS Softwear interrupt number 26 +104 to +107 (006816 to 006816) INTS Softwear interrupt number 27 +108 to +111 (007016 to 007316) INT3 Softwear interrupt number 28 +112 to +115 (007016 to 007716) INT3 Softwear interrupt number 30 +122 to 00716 to 007716) INT0 Softwear interrupt number 31 +124 to +127 (007C16 to 007716) INT0 Softwear interrupt number 33 +132 to +133 (008416 to 008316) UART2 transmit/NACK (Note 3) Softwear interrupt number 34 +136 to +139 (008816 to 008716) UART3 transmit/NACK (Note 3) Softwear interrupt number 35 +140 to +143 (00816 to 008716) UART3 transmit/NACK (Note 3) Softw	Softwear interrupt number 18	+72 to +75 (004816 to 004B16)	UART0 receive/ACK (Note 3)
Softwear interrupt number 20 +80 to +83 (00501s to 005316) UART1 receive/ACK (Note 3) Softwear interrupt number 21 +84 to +87 (00541s to 005716) Timer B1 Softwear interrupt number 22 +88 to +91 (00581s to 005816) Timer B1 Softwear interrupt number 23 +92 to +95 (005C1s to 005716) Timer B3 Softwear interrupt number 24 +96 to +99 (00601s to 006316) Timer B4 Softwear interrupt number 25 +100 to +103 (00641s to 006716) Timer B4 Softwear interrupt number 28 +111 (006C1s to 006716) INT4 Softwear interrupt number 28 +112 to +115 (00701s to 007316) INT3 Softwear interrupt number 30 +120 to +123 (00781s to 007716) INT3 Softwear interrupt number 31 +124 to +127 (007C1s to 007716) INT0 Softwear interrupt number 33 +132 to +135 (00841s to 008716) UART3 transmit/NACK (Note 3) Softwear interrupt number 34 +136 to +139 (00826 to 008716) UART3 transmit/NACK (Note 3) Softwear interrupt number 35 +140 to +147 (00941s to 009316) UART3 transmit/NACK (Note 3) Softwear interrupt number 36 +144 to +147 (00941s to 009316) UART3 treceive/ACK (Note 3) S	Softwear interrupt number 19	+76 to +79 (004C16 to 004F16)	UART1 transmit/NACK (Note 3)
Softwear Interrupt Number 21 +84 to +87 (00541s to 00571s) Timer B0 Softwear Interrupt number 23 +82 to +85 (005C1s to 005671s) Timer B1 Softwear interrupt number 23 +92 to +85 (005C1s to 005671s) Timer B3 Softwear interrupt number 25 +100 to +103 (00641s to 00631s) Timer B3 Softwear interrupt number 25 +104 to +107 (00681s to 00681s) INT5 Softwear interrupt number 27 +108 to +111 (006C1s to 00731s) INT4 Softwear interrupt number 28 +112 to +115 (00701s to 00771s) INT2 Softwear interrupt number 30 +120 to +123 (00781s to 00771s) INT1 Softwear interrupt number 31 +124 to +127 (007C1s to 00771s) INT1 Softwear interrupt number 33 +132 to +133 (00881s to 00871s) UART2 transmit/NACK (Note 3) Softwear interrupt number 34 +136 to +139 (00881s to 00871s) UART2 transmit/NACK (Note 3) Softwear interrupt number 35 +144 to +147 (00901s to 00931s) UART3 transmit/NACK (Note 3) Softwear interrupt number 34 +135 to +155 (00981s to	Softwear interrupt number 20	+80 to +83 (005016 to 005316)	UART1 receive/ACK (Note 3)
Softwear Interrupt Number 22 +88 to +91 (005816 to 005F16) Timer B1 Softwear interrupt number 24 +96 to +99 (006016 to 006316) Timer B3 Softwear interrupt number 25 +100 to +103 (006416 to 006716) Timer B4 Softwear interrupt number 26 +104 to +107 (006816 to 006616) INT5 Softwear interrupt number 27 +108 to +111 (006C16 to 006716) INT4 Softwear interrupt number 28 +112 to +115 (007016 to 007716) INT2 Softwear interrupt number 29 +116 to +112 (00716 to 007716) INT2 Softwear interrupt number 30 +122 to +123 (007816 to 008716) INT0 Softwear interrupt number 31 +124 to +127 (007C16 to 007716) INT0 Softwear interrupt number 33 +132 to +133 (008016 to 008316) Timer B5 Softwear interrupt number 34 +136 to +133 (008616 to 008716) UART3 transmit/NACK (Note 3) Softwear interrupt number 35 +140 to +143 (009016 to 009716) UART3 transmit/NACK (Note 3) Softwear interrupt number 34 +152 to +155 (009816 to 009716) <td< td=""><td>Softwear interrupt number 21</td><td>+84 to +87 (005416 to 005716)</td><td>Timer B0</td></td<>	Softwear interrupt number 21	+84 to +87 (005416 to 005716)	Timer B0
Softwear Interrupt number 23 +92 to +95 (005C16 to 005F16) Timer B2 Softwear interrupt number 24 +96 to +99 (006016 to 006316) Timer B3 Softwear interrupt number 25 +1100 to +103 (006416 to 0066716) INT5 Softwear interrupt number 27 +108 to +111 (006C16 to 006716) INT5 Softwear interrupt number 28 +112 to +115 (007016 to 007316) INT3 Softwear interrupt number 29 +116 to +119 (007416 to 007716) INT2 Softwear interrupt number 30 +120 to +123 (007816 to 007716) INT0 Softwear interrupt number 31 +124 to +127 (007C16 to 007716) INT0 Softwear interrupt number 32 +128 to +131 (008816 to 008316) UART2 transmit/NACK (Note 3) Softwear interrupt number 33 +132 to +133 (008816 to 008816) UART3 transmit/NACK (Note 3) Softwear interrupt number 35 +140 to +147 (009016 to 009316) UART3 transmit/NACK (Note 3) Softwear interrupt number 34 +135 to +155 (009816 to 009816) UART4 transmit/NACK (Note 3) Softwear interrupt number 34 +152 to +155 (009816 to 009816) UART4 transmit/NACK (Note 3) Softwear interrupt number 34 <t< td=""><td>Softwear interrupt number 22</td><td>+88 to +91 (005816 to 005B16)</td><td>Timer B1</td></t<>	Softwear interrupt number 22	+88 to +91 (005816 to 005B16)	Timer B1
Softwear Interrupt number 24 +96 to +99 (006016 to 006316) Timer B3 Softwear interrupt number 25 +100 to +103 (006416 to 006716) Timer B4 Softwear interrupt number 26 +104 to +107 (006816 to 006716) INT5 Softwear interrupt number 27 +108 to +111 (006C16 to 007316) INT4 Softwear interrupt number 28 +112 to +115 (007016 to 007316) INT2 Softwear interrupt number 30 +120 to +123 (007816 to 007716) INT0 Softwear interrupt number 31 +124 to +127 (007C16 to 007716) INT0 Softwear interrupt number 32 +128 to +131 (008016 to 008316) UART2 transmit/NACK (Note 3) Softwear interrupt number 34 +135 (008416 to 008716) UART2 transmit/NACK (Note 3) Softwear interrupt number 35 +140 to +143 (008C16 to 009816) UART3 transmit/NACK (Note 3) Softwear interrupt number 36 +144 to +147 (009016 to 009316) UART4 transmit/NACK (Note 3) Softwear interrupt number 34 +155 (009816 to 009816) UART4 transmit/NACK (Note 3) Softwear interrupt number 34 +152 to +155 (Softwear interrupt number 23	+92 to +95 (005C16 to 005F16)	Timer B2
Softwear interrupt number 25 into to into into interrupt number 26 into interrupt number 26 into interrupt number 27 into interrupt number 27 into interrupt number 27 into interrupt number 28 into into into into into into into into	Softwear interrupt number 24	+96 to +99 (006016 to 006316)	Timer B3
Softwear interrupt number 26 +104 to +107 (006816 to 006B16) INT5 Softwear interrupt number 27 +108 to +111 (006C16 to 006F16) INT4 Softwear interrupt number 28 +112 to +115 (007016 to 007316) INT3 Softwear interrupt number 29 +116 to +119 (007416 to 007716) INT0 Softwear interrupt number 30 +120 to +123 (007616 to 007716) INT0 Softwear interrupt number 31 +124 to +127 (007C16 to 007716) INT0 Softwear interrupt number 32 +128 to +131 (008016 to 008316) UART2 transmit/NACK (Note 3) Softwear interrupt number 33 +132 to +135 (008416 to 008716) UART2 receive/ACK (Note 3) Softwear interrupt number 35 +140 to +143 (008C16 to 008916) UART3 transmit/NACK (Note 3) Softwear interrupt number 35 +144 to +147 (009016 to 009316) UART4 transmit/NACK (Note 3) Softwear interrupt number 38 +152 to +155 (009816 to 009716) UART4 transmit/NACK (Note 3) Softwear interrupt number 40 +160 to +163 (00A016 to 00A16) UART4 transmit/NACK (Note 3) Softwear interrupt number 41 +164 to +167 (00A416 to 00A716) Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3) Softwear interrupt number 43	Softwear interrupt number 25	+100 to +103 (006416 to 006716)	Timer B4
Softwear interrupt number 27 +108 to +111 (006C16 to 006F16) INT4 Softwear interrupt number 28 +1112 to +115 (007016 to 007716) INT3 Softwear interrupt number 30 +120 to +113 (007416 to 007716) INT1 Softwear interrupt number 30 +120 to +123 (007816 to 007716) INT1 Softwear interrupt number 31 +124 to +123 (007616 to 007716) INT0 Softwear interrupt number 32 +128 to +131 (008016 to 008316) UART2 transmit/NACK (Note 3) Softwear interrupt number 34 +136 to +139 (008816 to 008816) UART2 receive/ACK (Note 3) Softwear interrupt number 35 +140 to +143 (008016 to 009716) UART3 transmit/NACK (Note 3) Softwear interrupt number 36 +144 to +147 (009016 to 009716) UART3 transmit/NACK (Note 3) Softwear interrupt number 37 +148 to +155 (009816 to 009816) UART4 transmit/NACK (Note 3) Softwear interrupt number 38 +152 to +155 (009816 to 009716) UART4 transmit/NACK (Note 3) Softwear interrupt number 40 +160 to +163 (00A016 to 00A316) Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3) Softwear interrupt number 41 +164 to +167 (00A416 to 00A716) Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3) <td>Softwear interrupt number 26</td> <td>+104 to +107 (006816 to 006B16)</td> <td>INT5</td>	Softwear interrupt number 26	+104 to +107 (006816 to 006B16)	INT5
Softwear interrupt number 28 +112 to +115 (007016 to 007316) INT3 Softwear interrupt number 30 +112 to +115 (007416 to 007716) INT2 Softwear interrupt number 30 +120 to +123 (007816 to 007716) INT1 Softwear interrupt number 30 +120 to +123 (007816 to 007716) INT0 Softwear interrupt number 31 +124 to +127 (007C16 to 007716) INT0 Softwear interrupt number 32 +128 to +131 (008016 to 008316) Timer B5 Softwear interrupt number 33 +132 to +135 (008416 to 008716) UART2 transmit/NACK (Note 3) Softwear interrupt number 35 +144 to +143 (008C16 to 008716) UART3 transmit/NACK (Note 3) Softwear interrupt number 36 +144 to +147 (009016 to 009316) UART3 receive/ACK (Note 3) Softwear interrupt number 37 +148 to +155 (009816 to 009916) UART4 transmit/NACK (Note 3) Softwear interrupt number 38 +152 to +155 (009816 to 009916) Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3) Softwear interrupt number 40 +160 to +163 (00A016 to 00A316) Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3) Softwear interrupt number 42 +168 to +177 (00A416 to 00A716) Bus collision detection (UART3/UART0)(Note 3)	Softwear interrupt number 27	+108 to +111 (006C16 to 006F16)	INT4
Softwear interrupt number 29 +116 to +119 (007416 to 007716) INT2 Softwear interrupt number 30 +120 to +123 (007816 to 007816) INT1 Softwear interrupt number 31 +124 to +127 (007C16 to 007F16) INT0 Softwear interrupt number 32 +132 to +131 (008016 to 008716) UART2 transmit/NACK (Note 3) Softwear interrupt number 33 +132 to +133 (008416 to 008816) UART2 transmit/NACK (Note 3) Softwear interrupt number 34 +136 to +139 (008816 to 008916) UART3 transmit/NACK (Note 3) Softwear interrupt number 35 +140 to +143 (008C16 to 009816) UART3 transmit/NACK (Note 3) Softwear interrupt number 36 +148 to +151 (009016 to 009916) UART4 transmit/NACK (Note 3) Softwear interrupt number 37 +148 to +155 (009816 to 009F16) UART4 transmit/NACK (Note 3) Softwear interrupt number 39 +156 to +159 (009C16 to 009F16) Bus collision detection, start/stop condition detection (UART2)(Note 3) Softwear interrupt number 40 +160 to +163 (00A016 to 00A316) Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3) Softwear interrupt number 41 +164 to +177 (00A816 to 00A716) Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3) Softwear interrupt number 42	Softwear interrupt number 28	+112 to +115 (007016 to 007316)	INT3
Softwear interrupt number 30 +120 to +123 (007816 to 007B16) INT1 Softwear interrupt number 31 +124 to +127 (007C16 to 007F16) INT0 Softwear interrupt number 32 +128 to +131 (008016 to 008316) Timer B5 Softwear interrupt number 33 +132 to +135 (008416 to 008716) UART2 transmit/NACK (Note 3) Softwear interrupt number 34 +136 to +139 (008816 to 008816) UART2 receive/ACK (Note 3) Softwear interrupt number 35 +140 to +143 (009016 to 009316) UART3 transmit/NACK (Note 3) Softwear interrupt number 36 +144 to +147 (009016 to 009316) UART4 transmit/NACK (Note 3) Softwear interrupt number 37 +148 to +151 (009416 to 009716) UART4 traceive/ACK (Note 3) Softwear interrupt number 38 +152 to +155 (009816 to 009716) UART4 receive/ACK (Note 3) Softwear interrupt number 39 +166 to +159 (009C16 to 009716) UART2 receive/ACK (Note 3) Softwear interrupt number 40 +160 to +163 (00A016 to 00A316) Bus collision detection, start/stop condition detection (UART2)(Note 3) Softwear interrupt number 41 +164 to +167 (00A416 to 00A716) Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3) Softwear interrupt number 42 +168 to +171 (00A816 to 00B316)	Softwear interrupt number 29	+116 to +119 (007416 to 007716)	INT2
Softwear interrupt number 31+124 to +127 (007C16 to 007F16)INT0Softwear interrupt number 32+128 to +131 (008016 to 008316)Timer B5Softwear interrupt number 33+132 to +135 (008416 to 008716)UART2 transmit/NACK (Note 3)Softwear interrupt number 34+136 to +143 (008C16 to 008716)UART3 transmit/NACK (Note 3)Softwear interrupt number 35+144 to +147 (009016 to 009316)UART3 transmit/NACK (Note 3)Softwear interrupt number 36+144 to +147 (009016 to 009716)UART3 transmit/NACK (Note 3)Softwear interrupt number 37+148 to +151 (009416 to 009716)UART4 transmit/NACK (Note 3)Softwear interrupt number 38+152 to +155 (009816 to 009816)UART4 transmit/NACK (Note 3)Softwear interrupt number 39+156 to +159 (009C16 to 009716)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 43+172 to +175 (00AC16 to 00B716)Intelligent I/O interrupt 0Softwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +199 (00CC16 to 00C316)Int	Softwear interrupt number 30	+120 to +123 (007816 to 007B16)	INT1
Softwear interrupt number 32+128 to +131 (008016 to 008316)Timer B5Softwear interrupt number 33+132 to +135 (008416 to 008716)UART2 transmit/NACK (Note 3)Softwear interrupt number 34+136 to +139 (008816 to 008816)UART2 transmit/NACK (Note 3)Softwear interrupt number 35+140 to +143 (008C16 to 008716)UART3 transmit/NACK (Note 3)Softwear interrupt number 36+144 to +147 (009016 to 009316)UART3 transmit/NACK (Note 3)Softwear interrupt number 37+148 to +151 (009416 to 009716)UART4 transmit/NACK (Note 3)Softwear interrupt number 38+152 to +155 (009816 to 009816)UART4 transmit/NACK (Note 3)Softwear interrupt number 39+156 to +159 (009C16 to 009716)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00A716)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00A716)Intelligent I/O interrupt 1Softwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 1Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B216 to 00B716)Intelligent I/O interrupt 3Softwear interrupt number 47+188 to +191 (00BC16 to 00B716) <td>Softwear interrupt number 31</td> <td>+124 to +127 (007C16 to 007F16)</td> <td>INTO</td>	Softwear interrupt number 31	+124 to +127 (007C16 to 007F16)	INTO
Softwear interrupt number 33+132 to +135 (008416 to 008716)UART2 transmit/NACK (Note 3)Softwear interrupt number 34+136 to +139 (008816 to 008816)UART3 transmit/NACK (Note 3)Softwear interrupt number 35+140 to +143 (008C16 to 009316)UART3 transmit/NACK (Note 3)Softwear interrupt number 36+144 to +147 (009016 to 009316)UART3 transmit/NACK (Note 3)Softwear interrupt number 37+148 to +151 (009416 to 009716)UART4 transmit/NACK (Note 3)Softwear interrupt number 38+152 to +155 (009816 to 009816)UART4 transmit/NACK (Note 3)Softwear interrupt number 39+156 to +159 (009C16 to 009716)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00A516)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00B516)Intelligent I/O interrupt 0Softwear interrupt number 44+176 to +183 (00B416 to 00B516)Intelligent I/O interrupt 1Softwear interrupt number 45+180 to +183 (00B416 to 00B516)Intelligent I/O interrupt 2Softwear interrupt number 46+184 to +187 (00B516 to 00B516)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +199 (00C416 to 00B516)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (0	Softwear interrupt number 32	+128 to +131 (008016 to 008316)	Timer B5
Softwear interrupt number 34+136 to +139 (008816 to 008B16)UART2 receive/ACK (Note 3)Softwear interrupt number 35+140 to +143 (008C16 to 008F16)UART3 transmit/NACK (Note 3)Softwear interrupt number 36+144 to +147 (009016 to 009316)UART3 receive/ACK (Note 3)Softwear interrupt number 37+148 to +151 (009416 to 009716)UART4 transmit/NACK (Note 3)Softwear interrupt number 38+152 to +155 (009816 to 009B16)UART4 receive/ACK (Note 3)Softwear interrupt number 39+156 to +159 (009C16 to 009F16)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00AF16)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (008416 to 00B516)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00B516)Intelligent I/O interrupt 3Softwear interrupt number 47+188 to +191 (00BC16 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 48+192 to +195 (00CC16 to 00C716)Intelligent I/O interrupt 4 <td< td=""><td>Softwear interrupt number 33</td><td>+132 to +135 (008416 to 008716)</td><td>UART2 transmit/NACK (Note 3)</td></td<>	Softwear interrupt number 33	+132 to +135 (008416 to 008716)	UART2 transmit/NACK (Note 3)
Softwear interrupt number 35+140 to +143 (008C16 to 008F16)UART3 transmit/NACK (Note 3)Softwear interrupt number 36+144 to +147 (009016 to 009316)UART3 receive/ACK (Note 3)Softwear interrupt number 37+148 to +151 (009416 to 009716)UART4 transmit/NACK (Note 3)Softwear interrupt number 38+152 to +155 (009816 to 009B16)UART4 receive/ACK (Note 3)Softwear interrupt number 39+156 to +159 (009C16 to 009F16)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00A516)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00A516)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+1184 to +195 (00C16 to 00B516)Intelligent I/O interrupt 3Softwear interrupt number 47+188 to +195 (00C16 to 00C516)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C16 to 00C516)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C516)Intelligent I/O interrupt 4Softwear interrupt number 50+200 to +203 (00C816 to 00C516)	Softwear interrupt number 34	+136 to +139 (008816 to 008B16)	UART2 receive/ACK (Note 3)
Softwear interrupt number 36+144 to +147 (009016 to 009316)UART3 receive/ACK (Note 3)Softwear interrupt number 37+148 to +151 (009416 to 009716)UART4 transmit/NACK (Note 3)Softwear interrupt number 38+152 to +155 (009816 to 009B16)UART4 receive/ACK (Note 3)Softwear interrupt number 39+156 to +159 (009C16 to 009F16)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00AB16)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00B716)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00C316)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C216)Intelligent I/O interrupt 4Softwear interrupt number 50+200 to +203 (00C816 to 00C216)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00C216)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 t	Softwear interrupt number 35	+140 to +143 (008C16 to 008F16)	UART3 transmit/NACK (Note 3)
Softwear interrupt number 37+148 to +151 (009416 to 009716)UART4 transmit/NACK (Note 3)Softwear interrupt number 38+152 to +155 (009816 to 009B16)UART4 receive/ACK (Note 3)Softwear interrupt number 39+156 to +159 (009C16 to 009F16)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00AB16)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00BF16)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +197 (00B816 to 00BF16)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00C316)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 50+200 to +203 (00C816 to 00CF16)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00CF16)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 7	Softwear interrupt number 36	+144 to +147 (009016 to 009316)	UART3 receive/ACK (Note 3)
Softwear interrupt number 38+152 to +155 (009816 to 009B16)UART4 receive/ACK (Note 3)Softwear interrupt number 39+156 to +159 (009C16 to 009F16)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00B716)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00C316)Intelligent I/O interrupt 3Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 6Softwear interrupt number 50+200 to +203 (00C816 to 00C816)Intelligent I/O interrupt 7Softwear interrupt number 51+204 to +207 (00CC16 to 00C716)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316	Softwear interrupt number 37	+148 to +151 (009416 to 009716)	UART4 transmit/NACK (Note 3)
Softwear interrupt number 39+156 to +159 (009C16 to 009F16)Bus collision detection, start/stop condition detection (UART2)(Note 3)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)(Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00A816)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00BF16)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00BF16)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +120 (00C216 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00C516)Intelligent I/O interrupt 7Softwear interrupt number 51+208 to +211 (00D016 to 00C516)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00C516)Intelligent I/O interrupt 8	Softwear interrupt number 38	+152 to +155 (009816 to 009B16)	UART4 receive/ACK (Note 3)
detection (UART2)Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)Softwear interrupt number 42+168 to +171 (00A816 to 00A816)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00B716)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00B716)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00C816)Intelligent I/O interrupt 7Softwear interrupt number 51+204 to +207 (00CC16 to 00CF16)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrupt number 39	+156 to +159 (009C16 to 009F16)	Bus collision detection, start/stop condition
Softwear interrupt number 40+160 to +163 (00A016 to 00A316)Bus collision detection, start/stop condition detection (UART3/UART0) (Note 3)Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1) (Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00AB16)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B516)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00B516)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00B516)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00C816)Intelligent I/O interrupt 7Softwear interrupt number 51+204 to +207 (00CC16 to 00C516)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8			detection (UART2) ^(Note 3)
Softwear interrupt number 41+164 to +167 (00A416 to 00A716)Bus collision detection, start/stop condition detection (UART4/UART1)(Note 3)Softwear interrupt number 42+168 to +171 (00A816 to 00AB16)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00BF16)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00BF16)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00CF16)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00CF16)Intelligent I/O interrupt 7Softwear interrupt number 51+204 to +207 (00CC16 to 00CF16)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00DF16)Intelligent I/O interrupt 8	Softwear interrupt number 40	+160 to +163 (00A016 to 00A316)	Bus collision detection, start/stop condition detection (UART3/UART0) ^(Note 3)
Softwear interrupt number 42+168 to +171 (00A816 to 00AB16)A-D channel 0Softwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00B716)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00BF16)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00C816)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00C716)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrupt number 41	+164 to +167 (00A416 to 00A716)	Bus collision detection, start/stop condition
Softwear interrupt number 42+172 to +175 (00AC16 to 00AE16)Acb channel ofSoftwear interrupt number 43+172 to +175 (00AC16 to 00AF16)Key input interruptSoftwear interrupt number 44+176 to +179 (00B016 to 00B316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00BF16)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00BF16)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00CB16)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00C716)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrunt number 42	+168 to $+171$ (004816 to 004P46)	A-D channel 0
Softwear interrupt number 44+176 to +179 (00B016 to 00B16)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B316)Intelligent I/O interrupt 1Softwear interrupt number 45+184 to +187 (00B816 to 00B816)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00BC16 to 00B716)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00BF16)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00CB16)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00CF16)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrunt number 43	+172 to +175 (00 AC to 00 AC to 00 AC to 100 AC AC AC to 100 AC A	Key input interrupt
Softwear interrupt number 45+170 to +173 (00D016 to 00D316)Intelligent I/O interrupt 0Softwear interrupt number 45+180 to +183 (00B416 to 00B716)Intelligent I/O interrupt 1Softwear interrupt number 46+184 to +187 (00B816 to 00BB16)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00BF16)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00CF16)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00CF16)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrupt number 40	± 176 to ± 179 (00B016 to 00B316)	Intelligent I/O interrupt 0
Softwear interrupt number 46+184 to +187 (00B816 to 00BF16)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00BF16)Intelligent I/O interrupt 2Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00C816)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00C716)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrupt number 45	± 180 to ± 183 (00B/16 to 00B316)	Intelligent I/O interrupt 0
Softwear interrupt number 47+188 to +191 (00BC16 to 00BE16)Intelligent I/O interrupt 2Softwear interrupt number 47+188 to +191 (00BC16 to 00BF16)Intelligent I/O interrupt 3Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 4Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00CB16)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00CF16)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrupt number 46	+184 to +187 (00B816 to 00B816)	Intelligent I/O interrupt 2
Softwear interrupt number 48+192 to +195 (00C016 to 00C316)Intelligent I/O interrupt 3Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 4Softwear interrupt number 50+200 to +203 (00C816 to 00C816)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00C716)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrupt number 47	+188 to +191 (00BC16 to 00BE16)	Intelligent I/O interrupt 3
Softwear interrupt number 49+196 to +199 (00C416 to 00C716)Intelligent I/O interrupt 5Softwear interrupt number 50+200 to +203 (00C816 to 00CB16)Intelligent I/O interrupt 6Softwear interrupt number 51+204 to +207 (00CC16 to 00CF16)Intelligent I/O interrupt 7Softwear interrupt number 52+208 to +211 (00D016 to 00D316)Intelligent I/O interrupt 8	Softwear interrupt number 48	+192 to $+195$ (00C016 to 00C316)	Intelligent I/O interrupt 4
Softwear interrupt number 50 +200 to +203 (00C816 to 00CB16) Intelligent I/O interrupt 6 Softwear interrupt number 51 +204 to +207 (00CC16 to 00CF16) Intelligent I/O interrupt 7 Softwear interrupt number 52 +208 to +211 (00D016 to 00D316) Intelligent I/O interrupt 8	Softwear interrupt number 40	+196 to +199 (000416 to 000716)	Intelligent I/O interrupt 5
Softwear interrupt number 51 +204 to +207 (00CC16 to 00CF16) Intelligent I/O interrupt 7 Softwear interrupt number 52 +208 to +211 (00D016 to 00D316) Intelligent I/O interrupt 8	Softwear interrupt number 50	+200 to +203 (000816 to 000816)	Intelligent I/O interrunt 6
Softwear interrupt number 52 +208 to +211 (00D016 to 00D316) Intelligent I/O interrupt 8	Softwear interrupt number 51	+204 to +207 (000016 to 000016)	Intelligent I/O interrunt 7
	Softwear interrupt number 52	+208 to +211 (000016 to 000316)	Intelligent I/O interrunt 8
I Softwear interrupt number 53 $+212$ to +215 (00D416 to 00D716) Intelligent I/O interrupt 9/CAN interrupt 0	Softwear interrupt number 53	+212 to $+215$ (00D416 to 00D716)	Intelligent I/O interrupt 9/CAN interrupt 0
Softwear interrupt number 54 +216 to +219 (00D816 to 00DB16) Intelligent I/O interrupt 10/CAN interrupt 1	Softwear interrupt number 54	+216 to +219 (00D816 to 00D816)	Intelligent I/O interrupt 10/CAN interrupt 1

Table 1.9.3. Interrupt causes (variable interrupt vector addresses) (2/2)

Softwear interrupt number	Vector table address Address(L)to address(H) ^(Note 1)	Interrutp source
Softwear interrupt number 55	+220 to +223 (00DC16 to 00DF16)	Softwea interrupt
Softwear interrupt number 56	+224 to +227 (00E016 to 00E316)	Softwea interrupt
Softwear interrupt number 57	+228 to +231 (00E416 to 00E716)	Intelligent I/O interrupt 11/CAN interrupt 2
Softwear interrupt number 58 (Note 2)	+232 to +235 (00E816 to 00EB16)	Softwea interrupt
to	to	
Softwear interrupt number 63	+252 to +255 (00FC16 to 00FF16)	

Note 1: Address relative to address in interrupt table register (INTB).

Note 2: Cannot be masked by I flag.

Note 3: When IIC mode is selected, NACK/ACK, start/stop condition detection interrupts are selected. The fault error interrupt is selected when \overline{SS} pin is selected.

Interrupt request reception

The following lists the conditions under which an interrupt request is acknowledged:

- Interrupt enable flag (I flag) = 1
- Interrupt request bit = 1
- Interrupt priority level > Processor interrupt priority level (IPL)

The interrupt enable flag (I flag), the processor interrupt priority level (IPL), interrupt request bit and interrupt priority level select bit are all independent of each other, so they do not affect any other bit. There are I flag and IPL in flag register (FLG). This flag and bit are described below.

Interrupt Enable Flag (I Flag) and processor Interrupt Priority Level (IPL)

I flag is used to disable/enable maskable interrupts. When this flag is set (= 1), all maskable interrupts are enabled; when the flag is cleared to 0, they are disabled. This flag is automatically cleared to 0 after a reset.

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt is enabled.

Table 1.9.4 shows interrupt enable levels in relation to the processor interrupt priority level (IPL).

Processor i	nterrupt pr	iority level (IPL)	Enabled interrupt priority levels
IPL ₂	IPL ₁	IPL ₀	
0	0	0	Interrupt levels 1 and above are enabled.
0	0	1	Interrupt levels 2 and above are enabled.
0	1	0	Interrupt levels 3 and above are enabled.
0	1	1	Interrupt levels 4 and above are enabled.
1	0	0	Interrupt levels 5 and above are enabled.
1	0	1	Interrupt levels 6 and above are enabled.
1	1	0	Interrupt levels 7 and above are enabled.
1	1	1	All maskable interrupts are disabled.

Table 1.9.4. IPL and Interrupt Enable Levels

Interrupt control registers and Exit priority register

Peripheral I/O interrupts have their own interrupt control registers. Figure 1.9.3 and 1.9.4 show the interrupt control registers and figure 1.9.5 shows exit priority register.

Figure 1.9.3. Interrupt control register (1)

07 b6 b5 b4 b3 b2 b1 b0	Syn INTilC(i INTilC(i	nbol =0 to 2) 009E =3 to 5)(*1) 007C	Address W 16, 007E16, 009C16 XX C16, 009A16, 007A16 XX	hen re 00 X0 00 X0	set 002 002
	Bit symbol	Bit name	Function	R	W
	ILVL0	Interrupt priority level select bit	b2 b1 b0 0 0 0 : Level 0 (interrupt disabled)	0	0
	ILVL1		0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	0	0
· · · · · · · · · · · · · · · · · · ·	ILVL2		1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	0	0
	IR	Interrupt request bit	0: Interrupt not requested 1: Interrupt requested	0	O (Note
	POL	Polarity select bit (Note 2)	0 : Selects falling edge or L level 1 : Selects rising edge or H level	0	0
	LVS	Level sense/edge sense select bit	0 : Edge sense 1 : Level sense (Note 3)	0	0
	Nothing is ass When write, s	signed. et "0". When read, their con	tents are indeterminate.	_	
				-	
Note 1: This bit can only Note 2: When related bir select the falling	be accessed t of external in	for reset (= 0), but cannot be terrupt cause select register	e accessed for set (= 1). (address 031F16) are used for both	edge	,

*1 When using 16-bit data bus width in microprocessor mode or memory expansion mode, INT3 to INT5 are used for data bus. In this case, set the interrupt disabled to INT3IC, INT4IC and INT5IC.

Figure 1.9.4. Interrupt control register (2)

Bit 0 to 2: Interrupt Priority Level Select Bits (ILVL0 to ILVL2)

Interrupt priority levels are set by ILVL0 to ILVL2 bits. When an interrupt request is generated, the interrupt priority level of this interrupt is compared with IPL. This interrupt is enabled only when its interrupt priority level is greater than IPL. This means that you can disable any particular interrupt by setting its interrupt priority level to 0.

Bit 3: Interrupt Request Bit (IR)

This bit is set (= 1) by hardware when an interrupt request is generated. The bit is cleared (= 0) by hardware when the interrupt request is acknowledged and jump to the interrupt vector. This bit can be cleared (= 0) (but never be set to 1) in software.

b6 b5 b4	b3 b2 b1 b0	Symb RLVL	ol Address 009F16	When XX0X0	reset 00002	
		Bit symbol	Bit name	Function	R¦\	
		RLVL0	Interrunt priority set bits	b2 b1 b0 0 0 0 : Level 0	0	
		RLVL1	for exiting Stop/Wait state	0 1 0 : Level 2 0 1 1 : Level 3	0	
		RLVL2	(Note 1)	1 0 0 : Level 4 1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7		
		FSIT	High-speed interrupt set bit (Note 2)	 0: Interrupt priority level 7 = normal interrupt 1: Interrupt priority level 7 = high-speed interrupt 	0	
		Nothing is assigned. When write, set "0". When read, its content is indeterminate.				
		DMA II	DMA II select bit (Note 3)	 0: Interrupt priority level 7 = normal interrupt or high-speed interrupt 1: Interrupt priority level 7 = DMA II transfer 	0;0	
		Nothing When w	is assigned. rite, set "0". When read, tł	neir contents are indeterminate.		
Note 1:	Exits the Sto that set in the Set to the sa register (FLG	p or Wait e exit pric me value 6).	t mode when the reques ority register. as the processor interr	sted interrupt priority level is highe upt priority level (IPL) set in the fla	er tha ag	
Note 2:	The high-spe 7. Specify int	ed interru errupt pri	upt can only be specified fority level 7 for only one	d for interrupts with interrupt prior e interrupt.	ity lev	
Note 3:	Do not set the When this bit used simulta Transfers by	is bit to 0 is 1, do neously v DMAC II	after once setting it to 1 not set the high-speed i with the high-speed inte are unaffected by the in	l. nterrupt select bit to 0. (This canr rrupt.) nterrupt enable flag (I flag) and pr	iot be	

Figure 1.9.5. Exit priority register

Bit 0 to 2: Interrupt priority set bits for exiting Stop/Wait state (RLVL0 to RLVL2)

When using an interrupt to exit Stop mode or Wait mode, the relevant interrupt must be enabled and set to a priority level above the level set by the RLVL0 to RLVL2 bits. Set the RLVL0 to RLVL2 bits to the same level as the flag register (FLG) IPL.

Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SCMPU, SIN, SMOVB, SMOVF, SMOVU, SSTR, SOUT or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

- (1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address 00000016 (address 00000216 when high-speed interrupt). After this, the related interrupt request bit is "0".
- (2) Saves the contents of the flag register (FLG) immediately before the start of interrupt sequence in the temporary register (Note) within the CPU.
- (3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to "0" (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through 63, is executed)
- (4) Saves the contents of the temporary register (Note) within the CPU in the stack area. Saves in the flag save register (SVF) in high-speed interrupt.
- (5) Saves the content of the program counter (PC) in the stack area. Saves in the PC save register (SVP) in high-speed interrupt.
- (6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first address of the interrupt routine.

Note: This register cannot be utilized by the user.

Interrupt Response Time

'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first instruction within the interrupt routine has been executed. This time comprises the period from the occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the time required for executing the interrupt sequence (b). Figure 1.9.6 shows the interrupt response time.

Figure 1.9.6. Interrupt response time

Time (a) varies with each instruction being executed. The DIVX instruction requires a maximum time of 29* cycles.

Time (b) is shown in table 1.9.5.

* It is when the divisor is immediate or register. When the divisor is memory, the following value is added.

 Normal addressing 	: 2 + X
 Index addressing 	: 3 + X
 Indirect addressing 	: 5 + X + 2Y
 Indirect index addressing 	: 6 + X + 2Y

X is number of wait of the divisor area. Y is number of wait of the indirect address stored area. When X and Y are in odd address or in 8 bit bus area, double the value of X and Y.

Interrupt	Interrupt vector address	16 bits data bus	8 bits data bus
Peripheral I/O	Even address	14 cycles	16 cycles
	Odd address (Note 1)	16 cycles	16 cycles
INT instruction	Even address	12 cycles	14 cycles
	Odd address (Note 1)	14 cycles	14 cycles
NMI	Even address (Note 2)	13 cycles	15 cycles
Watchdog timer			
Undefined instruction			
Address match			
Overflow	Even address (Note 2)	14 cycles	16 cycles
BRK instruction (Relocatable vector table)	Even address	17 cycles	19 cycles
	Odd address (Note 1)	19 cycles	19 cycles
Single step	Even address (Note 2)	19 cycles	21 cycles
BRK2 instruction			
BRK instruction (Fixed vector table)			
High-speed interrupt ^(Note 3)	Vector table is internal register	5 cyc	les

Note 1: Allocate interrupt vector addresses in even addresses as much as possible.

Note 2: The vector table is fixed to even address.

Note 3: The high-speed interrupt is independent of these conditions.

Changes of IPL When Interrupt Request Acknowledged

When an interrupt request is acknowledged, the interrupt priority level of the acknowledged interrupt is set to the processor interrupt priority level (IPL).

If an interrupt request is acknowledged that does not have an interrupt priority level, the value shown in Table 1.9.6 is set to the IPL.

Table 196	Relationshi	n between	Interrunts	without	Interrunt		I evels and	IPI
Table 1.3.0	Relationshi	Dermeen	menupis	without	menup	ι Γποπιγ	Levels allu	

Interrupt sources without interrupt priority levels	Value that is set to IPL
Watchdog timer, NMI	7
Reset	0
Other	Not changed

Saving Registers

In an interrupt sequence, only the contents of the flag register (FLG) and program counter (PC) are saved to the stack area.

The order in which these contents are saved are as follows: First, the FLG register is saved to the stack area. Next, the 16 high-order bits and 16 low-order bits of the program counter expanded to 32-bit are saved. Figure 1.9.7 shows the stack status before an interrupt request is acknowledged and the stack status after an interrupt request is acknowledged.

In a high-speed interrupt sequence, the contents of the flag register (FLG) are saved to the flag save register (SVF) and program counter (PC) are saved to PC save register (SVP).

If there are any other registers you want to be saved, save them in software at the beginning of the interrupt routine. The PUSHM instruction allows you to save all registers except the stack pointer (SP) by a single instruction.

In high speed interrupt, switch register bank, then register bank 1 is used as high speed interrupt register. In this case, switch register bank mode for high-speed interrupt routine.

Return from Interrupt Routine

As you execute the REIT instruction at the end of the interrupt routine, the contents of the flag register (FLG) and program counter (PC) that have been saved to the stack area immediately preceding the interrupt sequence are automatically restored. In high-speed interrupt, as you execute the FREIT instruction at the end of the interrupt routine, the contents of the flag register (FLG) and program counter (PC) that have been saved to the save registers immediately preceding the interrupt sequence are automatically restored.

Then control returns to the routine that was under execution before the interrupt request was acknowledged, and processing is resumed from where control left off.

If there are any registers you saved via software in the interrupt routine, be sure to restore them using an instruction (e.g., POPM instruction) before executing the REIT or FREIT instruction.

When switching the register bank before executing REIT and FREIT instruction, switched to the register bank immediately before the interrupt sequence.

Interrupt Priority

If two or more interrupt requests are sampled active at the same time, the interrupt with the highest priority will be acknowledged.

Maskable interrupts (Peripheral I/O interrupts) can be assigned any desired priority by setting the interrupt priority level select bit accordingly. If some maskable interrupts are assigned the same priority level, the priority between these interrupts are resolved by the priority that is set in hardware.

Certain nonmaskable interrupts such as a reset (reset is given the highest priority) and watchdog timer interrupt have their priority levels set in hardware. Figure 1.9.8 lists the hardware priority levels of these interrupts.

Software interrupts are not subjected to interrupt priority. They always cause control to branch to an interrupt routine whenever the relevant instruction is executed.

Interrupt Resolution Circuit

Interrupt resolution circuit selects the highest priority interrupt when two or more interrupt requests are sampled active at the same time.

Figure 1.9.9 shows the interrupt resolution circuit.

Reset > NMI > Watchdog > Peripheral I/O > Single step > Address match

Figure 1.9.8. Interrupt priority that is set in hardware

Under Development Rev.B2 for proof reading

Figure 1.9.9. Interrupt resolution circuit

INT Interrupts

INTO to INT5 are external input interrupts. The level sense/edge sense switching bits of the interrupt control register select the input signal level and edge at which the interrupt can be set to occur on input signal level and input signal edge. The polarity bit selects the polarity.

With the external interrupt input edge sense, the interrupt can be set to occur on both rising and falling edges by setting the INTi interrupt polarity switch bit of the interrupt request select register (address 031F16) to "1". When you select both edges, set the polarity switch bit of the corresponding interrupt control register to the falling edge ("0").

When you select level sense, set the INTi interrupt polarity switch bit of the interrupt request select register (address 031F16) to "0".

Figure 1.9.10 shows the interrupt request select register.

Figure 1.9.10. External interrupt request cause select register

Under Rev.B2 for proof reading

NMI Interrupt

An NMI interrupt is generated when the input to the P85/NMI pin changes from "H" to "L". The NMI interrupt is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address 03C416).

This pin cannot be used as a normal port input.

Notes:

When not intending to use the $\overline{\text{NMI}}$ function, be sure to connect the $\overline{\text{NMI}}$ pin to Vcc (pulled-up). The $\overline{\text{NMI}}$ interrupt is non-maskable. Because it cannot be disabled, the pin must be pulled up.

Key Input Interrupt

If the direction register of any of P104 to P107 is set for input and a falling edge is input to that port, a key input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancelling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as A-D input ports. Figure 1.9.11 shows the block diagram of the key input interrupt. Note that if an "L" level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as an interrupt.

Setting the key input interrupt disable bit (bit 7 at address 03AF16) to "1" disables key input interrupts from occurring, regardless of the setting in the interrupt control register. When "1" is set in the key input interrupt disable register, there is no input via the port pin even when the direction register is set to input.

Figure 1.9.11. Block diagram of key input interrupt

Address Match Interrupt

An address match interrupt is generated when the address match interrupt address register contents match the program counter value. Four address match interrupts can be set, each of which can be enabled and disabled by an address match interrupt enable bit. Address match interrupts are not affected by the interrupt enable flag (I flag) and processor interrupt priority level (IPL).

Figure 1.9.12 shows the address match interrupt-related registers.

Set the start address of an instruction to the address match interrupt register.

Address match interrupt is not generated when address such as the middle of instruction or table data is set.

Intelligent I/O and CAN Interrupt

Group 0 to 3 intelligent I/O interrupts and CAN interrupt are assigned to software interrupt numbers 44 to 54 and 57.

As intelligent I/O interrupt request, there are base timer interrupt request signals, time measurement interrupt request signals, waveform generation interrupt request signals and interrupt request signals from various communication circuits.

Figure 1.9.13 shows the intelligent I/O interrupts and CAN interrupt block diagram, figure 1.9.14 shows the interrupt request register and figure 1.9.15 shows interrupt enable register.

Figure 1.9.13. Intelligent I/O and CAN interrupt block diagram

When using the intelligent I/O or CAN interrupt as an starting factor for DMA II, the interrupt latch bit must be set to "0" in order to enable only the interrupt request factor used by the interrupt enable register.

7 b6 b5 b	4 b3 b2 b1 b0	Symbo IIOiIR	bl	Address See below		When re 0000 00	eset 0X2			
		Bit symbol	Bit name		Function			F	۲.w	
			Nothing is as When write,	signed. set "0". Wher	n read, the co	ntent is indet	erminate.	-	- I 	
		IRF1	Interrupt requ	uest flag 1	0 : Interrupt 1 : Interrupt	t request not t request pre	present sent (Note)	0	
		IRF2	Interrupt requ	uest flag 2	0 : Interrupt 1 : Interrupt	t request not t request pre	present sent (Note)	0	
		IRF3	Interrupt requ	uest flag 3	0 : Interrupt request not present 1 : Interrupt request presence (Note)			Note)		
		IRF4	Interrupt requ	uest flag 4	0 : Interrupt 1 : Interrupt	t request not t request pre	present sent (Note)	o o	
		IRF5	Interrupt requ	uest flag 5	0 : Interrupt 1 : Interrupt	t request not t request pre	present sent (Note)	olo	
		IRF6	Interrupt requ	uest flag 6	0 : Interrupt 1 : Interrupt	t request not t request pre	present sent (Note)	0	
		IRF7	Interrupt requ	uest flag 7	0 : Interrupt 1 : Interrupt	t request not t request pres	present sent (Note)	o¦o	
nterrupt re	n quest register tab	Note: "0" ca	n be written.							
Symbol	Address	bit7 (IRF7)	bit6 (IRF6)	bit5 (IRF5)	bit4 (IRF4)	bit3 (IRF3)	bit2 (IRF2)	bit (IRF	1 1)	bit -
IIO0IR	00A016	-	-	SIO0r	G0RI	-	PO13	TMO)2	-
IIO1IR	00A116	-	-	SIO0t	G0TO	-	PO14	TM00/F	PO00	-
IIO2IR	00A216	-	-	SIO1r	G1RI	-	TM12/PO12	-		-
IIO3IR	00A316	-	-	SIO1t	G1TO	PO27	PO10	TMO)3	-
IIO4IR	00A416	BEAN0	BEAN1	-	BT1	PO32	TM17/PO17	TM04/F	PO04	-
IIO5IR	00A516	-	-	-	SIO2r	PO33	PO21	TM05/F	PO05	-
IIO6IR	00A616	-	-	-	SIO2t	PO34	PO20	TM)6	-
IIO7IR	00A716	IE0	-	-	BT0	PO35	PO22	ТМС)7	-
IIO8IR	00A816	IE1	IE2	-	BT2	PO36	PO23	TM11/F	PO11	-
	004046	CAN0	-	-	-	PO31	PO24	PO	5	-
IIO9IR	004916		1	_	-	PO30	PO25	TM16/F	PO16	-
IIO9IR IIO10IR	00A916	CAN1	-	-				1		
IIO9IR IIO10IR IIO11IR	00A916 00AB16	CAN1 CAN2	-	-	BT3	PO37	PO26	TM01/F	PO01	-
IIO9IR IIO10IR IIO11IR Ti : Mij : Oji	00A316 00AB16 00AB16 Interrupt request fi Interrupt request fi	CAN1 CAN2 rom base tir rom time me rom wavefor	- ner of intellige easurement fu	nt I/O group	BT3 intelligent I/O	PO37 group i O group i	PO26	TM01/F	PO01	
IIO9IR IIO10IR IIO11IR iTi : 'Mij : 'Oij : iOir/SIOit : iTO/GiRI :	00A316 00AB16 Interrupt request fr Interrupt request fr Interrupt request fr Interrupt request fr	CAN1 CAN2 rom base tir rom time me rom wavefor rom commu rom HDLC c	- ner of intellige easurement fu rm generator f nication functi data processin	nt I/O group nction ch j of unction ch j c on of intellige g function of	BT3 intelligent I/O of intelligent I/ ent I/O group i intelligent I/O	PO37 9 group i O group i i (r:reception, 9 group i	PO26	TM01/F	PO01	
IIO9IR IIO10IR IIO11IR 3Ti : POij : SIOir/SIOIt : GiTO/GIRI : BEANi : E :	00A316 00AA16 00AB16 Interrupt request fi Interrupt request fi Interrupt request fi Interrupt request fi (RI:reception input Interrupt request fi	CAN1 CAN2 rom base tir rom time me rom wavefor rom commu rom HDLC of c, TO:transm rom special rom IEBus of	- ner of intellige easurement fu rm generator f nication functi data processin nission output) communicatio communicatio	nt I/O group nction ch j of unction ch j o on of intellige g function of n function of i function of i	BT3 intelligent I/O of intelligent I/O ent I/O group i intelligent I/O intelligent I/O	PO37 9 group i O group i i (r:reception, 9 group i 9 group i (i=0, 9 group 2	PO26 t:transmissic 1)	TM01/F 2n)	PO01	

Figure 1.9.14. Interrupt request registers

Bit 1 to bit 7: Interrupt request flag (IRF1 to IRF7)

To retain respective interrupt requests and judge interrupt kind occurred in the interrupt process routine.

7 60 55 5									
1 60 00	b4 b3 b2 b1 b0	Symbo	bl	Address		When re	eset		
ĻĻĻ	ļļļ	IIOiIE		See below		0016			
		Bit symbol	Bit name		Function			RW	
		IRLT	Interrupt request latch bit		0: Interrupt request is not latched(used by DMA II) 1: Interrupt request is latched(used by interrupt)				
		ITE1	Interrupt enable bit 1		0: Interrupt of corresponding interrupt request flag (IRF1) disabled 1: Interrupt of corresponding interrupt request flag (IRF1) enabled			t t 00	
		ITE2	Interrupt enable bit 2		0: Interrup request 1: Interrup request	0: Interrupt of corresponding interrupt request flag (IRF2) disabled 1: Interrupt of corresponding interrupt request flag (IRF2) enabled			
		ITE3	Interrupt ena	ble bit 3	0: Interrupt of corresponding interrupt request flag (IRF3) disabled 1: Interrupt of corresponding interrupt request flag (IRF3) enabled				
		ITE4	Interrupt ena	ble bit 4	0: Interrup request 1: Interrup request	t of correspon flag (IRF4) d t of correspon flag (IRF4) e	nding interrup isabled nding interrup nabled	t t	
		ITE5	Interrupt ena	ble bit 5	0: Interrupt of corresponding interrupt request flag (IRF5) disabled 1: Interrupt of corresponding interrupt request flag (IRF5) enabled				
		ITE6	Interrupt ena	ble bit 6	0: Interrup request 1: Interrup request	t of correspon flag (IRF6) d t of correspon flag (IRF6) e	nding interrup isabled nding interrup nabled	t t	
		ITE7	Interrupt ena	ble bit 7	0: Interrup request 1: Interrup request	t of correspon flag (IRF7) d t of correspon flag (IRF7) e	nding interrup isabled nding interrup nabled	it O'O	
nterrupt re	quest register tab	le	hite	b.it <i>E</i>	bit 4	hit?	hit?	hit1	
Symbol	Address	(ITE7)	(ITE6)	(ITE5)	(ITE4)	(ITE3)	(ITE2)	(ITE1)	، ۱۱)
IIO0IE	00B016	-	-	SIO0r	G0RI	-	PO13	TM02	
									1
IIO1IE	00B116	-	-	SIO0t	G0TO	-	PO14	TM00/PO00	
IIO1IE IIO2IE	00B116 00B216	-	-	SIO0t SIO1r	G0TO G1RI	-	PO14 TM12/PO12	TM00/PO00 -	
IIO1IE IIO2IE IIO3IE	00B116 00B216 00B316	-	-	SIO0t SIO1r SIO1t	G0TO G1RI G1TO	- - PO27	PO14 TM12/PO12 PO10	TM00/PO00 - TM03	
IIO1IE IIO2IE IIO3IE IIO4IE	00B116 00B216 00B316 00B416	- - - BEAN0	- - - BEAN1	SIO0t SIO1r SIO1t -	G0TO G1RI G1TO BT1	- - PO27 PO32	PO14 TM12/PO12 PO10 TM17/PO17	TM00/PO00 - TM03 TM04/PO04	
IIO1IE IIO2IE IIO3IE IIO4IE IIO5IE	00B116 00B216 00B316 00B416 00B516	- - BEAN0 -	- - - BEAN1 -	SIO0t SIO1r SIO1t - -	G0TO G1RI G1TO BT1 SIO2r	- PO27 PO32 PO33	PO14 TM12/PO12 PO10 TM17/PO17 PO21	TM00/PO00 - TM03 TM04/PO04 TM05/PO05	
IIO1IE IIO2IE IIO3IE IIO4IE IIO5IE IIO6IE	00B116 00B216 00B316 00B416 00B516 00B616	- - BEAN0 - -	- - BEAN1 - -	SIO0t SIO1r SIO1t - - -	G0TO G1RI G1TO BT1 SIO2r SIO2t	- PO27 PO32 PO33 PO34	PO14 TM12/PO12 PO10 TM17/PO17 PO21 PO20	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06	
IIO1IE IIO2IE IIO3IE IIO4IE IIO5IE IIO6IE IIO7IE	00B116 00B216 00B316 00B416 00B516 00B616 00B716	- - BEAN0 - - IE0	- - BEAN1 - - -	SIO0t SIO1r SIO1t - - -	G0TO G1RI G1TO BT1 SIO2r SIO2t BT0	- PO27 PO32 PO33 PO34 PO35	P014 TM12/P012 P010 TM17/P017 P021 P020 P022	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06 TM07	
IIO1IE IIO2IE IIO3IE IIO4IE IIO5IE IIO6IE IIO7IE IIO8IE	00B116 00B216 00B316 00B416 00B516 00B616 00B716 00B816	- - BEAN0 - - IE0 IE1	- - BEAN1 - - - IE2	SIO0t SIO1r SIO1t - - - - -	G0TO G1RI G1TO BT1 SIO2r SIO2t BT0 BT2	- PO27 PO32 PO33 PO34 PO35 PO36	PO14 TM12/PO12 PO10 TM17/PO17 PO21 PO20 PO22 PO23	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06 TM07 TM11/PO11	
IIO1IE IIO2IE IIO3IE IIO4IE IIO5IE IIO6IE IIO7IE IIO8IE IIO9IE	00B116 00B216 00B316 00B416 00B516 00B616 00B716 00B816 00B916	- - BEAN0 - - IE0 IE1 CAN0	- - BEAN1 - - - IE2 -	SIO0t SIO1r SIO1t - - - - - - -	G0TO G1RI G1TO BT1 SIO2r SIO2t BT0 BT2 -	- PO27 PO32 PO33 PO34 PO35 PO36 PO31	P014 TM12/P012 P010 TM17/P017 P021 P020 P022 P023 P024	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06 TM07 TM11/PO11 PO15	
IIO1IE IIO2IE IIO3IE IIO5IE IIO5IE IIO6IE IIO7IE IIO8IE IIO9IE	00B116 00B216 00B316 00B416 00B516 00B516 00B616 00B716 00B816 00B916 00BA16	- BEAN0 - IE0 IE1 CAN0 CAN1	- - BEAN1 - - - - IE2 - -	SIO0t SIO1r SIO1t - - - - - - - - -	G0TO G1RI G1TO BT1 SIO2r SIO2t BT0 BT2 - -	- PO27 PO32 PO33 PO34 PO35 PO36 PO31 PO30	P014 TM12/P012 P010 TM17/P017 P021 P020 P022 P023 P024 P024 P025	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06 TM07 TM11/PO11 PO15 TM16/PO16	
IIO1IE IIO2IE IIO3IE IIO5IE IIO5IE IIO6IE IIO7IE IIO8IE IIO9IE IIO10IE IIO11E	00B116 00B216 00B316 00B416 00B516 00B616 00B716 00B816 00B916 00BA16 00BB16	- - BEAN0 - - IE0 IE1 CAN0 CAN1 CAN2	- - BEAN1 - - - - IE2 - - - - -	SIO0t SIO1r SIO1t - - - - - - - - - - - - -	G0TO G1RI G1TO BT1 SIO2r SIO2t BT0 BT2 - - BT3	- PO27 PO32 PO33 PO34 PO35 PO36 PO31 PO30 PO37	P014 TM12/P012 P010 TM17/P017 P021 P020 P022 P023 P024 P025 P026	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06 TM07 TM11/PO11 PO15 TM16/PO16 TM01/PO01	
IIO1IE IIO2IE IIO3IE IIO5IE IIO5IE IIO5IE IIO5IE IIO5IE IIO5IE IIO5IE IIO10E IIO10E IIO11E IIO10E IIIO10E IIIO10E IIIIIIIE	00B116 00B216 00B316 00B416 00B516 00B616 00B716 00B916 00B416 00B916 00B16 00B16 00B16 1nterrupt request fr	BEAN0 IE0 IE1 CAN0 CAN1 CAN2 rom base tin rom time me rom wavefor rom commut rom tDLC c utput) is ena	BEAN1 IE2 - IE2 saurement fur m generator f nication functio lata processin abled	SIO0t SIO1r SIO1t - - - - - - - - - - - - - - - - - - -	G0TO G1RI G1TO BT1 SIO2r SIO2r BT0 BT2 - BT3 is enabled ntelligent I/O rintelligent I/O	- PO27 PO32 PO33 PO34 PO35 PO36 PO31 PO30 PO37 PO37 group i is er O group i is er (r:reception, group i (RI:r	PO14 TM12/PO12 PO10 TM17/PO17 PO21 PO22 PO22 PO23 PO24 PO25 PO26 mabled t:transmissio eception inpu	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06 TM07 TM11/PO11 PO15 TM16/PO16 TM01/PO01 n) is enabled t,	
IIO1IE IIO2IE IIO3IE IIO5IE IIO5IE IIO6IE IIO7IE IIO8IE IIO1IE IIO10E IIO1IE STI 'Mij 'Ojj SIOir/SIOit SITO/GIRI	00B116 00B216 00B316 00B416 00B516 00B616 00B716 00B916 00B416 00B916 00B416 00B416 00B916 00B816 00B816 00B816 00B816 00B16 00B16 0100000000000000000000000000000000000	- BEAN0 - IE0 IE1 CAN0 CAN1 CAN2 rom base tin rom time me rom wavefor rom commun rom HDLC c utput) is ena rom special	BEAN1 BEAN1 IE2 - IE2 IE2 IE2 IE2 IE2 IE2 IE2 IE2 IE2	SIO0t SIO1r SIO1t - - - - - - - - - - - - - - - - - - -	G0TO G1RI G1TO BT1 SIO2r SIO2t BT0 BT2 - - BT3 is enabled ntelligent I/O rintelligent I/O group i ntelligent I/O	- PO27 PO32 PO33 PO34 PO35 PO36 PO31 PO30 PO37 PO30 PO37	PO14 TM12/PO12 PO10 TM17/PO17 PO21 PO22 PO22 PO23 PO24 PO25 PO26 mabled t:transmissio eception inpu	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06 TM07 TM11/PO11 PO15 TM16/PO16 TM01/PO01 n) is enabled t,	
IIO1IE IIO2IE IIO3IE IIO5IE IIO5IE IIO6IE IIO7IE IIO10E IIIO10E IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	00B116 00B216 00B316 00B416 00B516 00B616 00B716 00B916 00B416 00	- BEAN0 - IE0 IE1 CAN0 CAN1 CAN2 rom base tim rom time me rom wavefor rom commun rom time me rom wavefor rom commun rom HDLC c utput) is ena rom special rom special rom IEBus c	BEAN1 - BEAN1 - IE2 - IE	SIO0t SIO1r SIO1t - - - - - - - - - - - - - - - - - - -	G0TO G1RI G1TO BT1 SIO2r SIO2t BT0 BT2 - - BT3 is enabled ntelligent I/O intelligent I/O ntelligent I/O	- PO27 PO32 PO33 PO34 PO35 PO36 PO31 PO30 PO37 group i is er O group i is er	PO14 TM12/PO12 PO10 TM17/PO17 PO21 PO22 PO22 PO23 PO24 PO25 PO26 mabled t:transmissio eception inpu 1) is enabled	TM00/PO00 - TM03 TM04/PO04 TM05/PO05 TM06 TM07 TM11/PO11 PO15 TM16/PO16 TM01/PO01 n) is enabled t,	

Bit 0: Interrupt request latch bit (IRLT)

An interrupt signal or latched signal of the interrupt signal is selected as an interrupt request signal. When the latched signal of an interrupt signal is used, this flag must be set to "0" after interrupt request flag is read in interrupt process routine, . If this flag is not set to "0" and interrupt process is completed, although interrupt request occurs again, interrupt will not occur.

Bit 1 to bit 7: Interrupt enable bit (ITE 1 to ITE 7)

To enable/disable respective interrupts.

Precautions for Interrupts

(1) Reading addresses 00000016 and 00000216

• When maskable interrupt occurs, CPU reads the interrupt information (the interrupt number and interrupt request level) in the interrupt sequence from address 00000016. When a high-speed interrupt occurs, CPU reads from address 00000216.

The interrupt request bit of the certain interrupt will then be set to "0".

However, reading addresses 00000016 and 00000216 by software does not set request bit to "0".

(2) Setting the stack pointer

The value of the stack pointer immediately after reset is initialized to 00000016. Accepting an interrupt before setting a value in the stack pointer may cause runaway. Be sure to set a value in the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack point at the beginning of a program. Any interrupt including the NMI interrupt is generated immediately after executing the first instruction after reset. Set an even number to the stack pointer. Set an even address to the stack pointer so that operating efficiency is increased.

(3) The NMI interrupt

- As for the NMI interrupt pin, this interrupt cannot be disabled. Connect it to the Vcc pin via a pull-up resistor if unused.
- The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time when the NMI interrupt is input.
- A low level signal with more than 1 clock cycle (BCLK) is necessary for NMI pin.

(4) External interrupt

• Edge sense

Either a low level or a high level for at least 250 ns is necessary for the signal input to pins INTo to INT5 regardless of the CPU operation clock.

• Level sense

Either a low level or a high level of 1 cycle of BCLK + at least 200 ns width is necessary for the signal input to pins INTo to INT5 regardless of the CPU operation clock. (When XIN=20MHz and no division mode, at least 250 ns width is necessary.)

- Under proof reading
 - When the polarity of the INT₀ to INT₅ pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". Figure 1.9.12 shows the procedure for changing the INT interrupt generate factor.

Figure 1.9.16. Switching condition of INT interrupt request

(5) Rewrite the interrupt control register

• When an instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instruction. If this creates problems, use the below instructions to change the register.

Instructions : AND, OR, BCLR, BSET

(6) Rewrite interrupt request register

• When writing to "0" to this register, the following instructions must be used. Instructions : AND, BCLR

Watchdog Timer

The watchdog timer has the function of detecting when the program is out of control. The watchdog timer is a 15-bit counter which down-counts the clock derived by dividing the BCLK using the prescaler. Whether a watchdog timer interrupt is generated or reset is selected when an underflow occurs in the watchdog timer. Watchdog timer interrupt is selected when bit 6 (CM06) of the system control register 0 (address 000816) is "0" and reset is selected when CM06 is "1". No value other than "1" can be written in CM06. Once reset is selected (CM06="1"), watchdog timer interrupt cannot be selected by software. When XIN is selected for the BCLK, bit 7 (WDC7) of the watchdog timer control register (address 000F16) selects the prescaler division ratio (by 16 or by 128). When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of WDC7. Therefore, the watchdog timer cycle can be calculated as follows.

When XIN is selected in BCLK

Watchdog timer cycle –	Prescaler division ratio (16 or 128) x watchdog timer count (32768)
	BCLK
When XCIN is selected in BCLK	
Watchdog timer cycle –	Prescaler division ratio (2) x watchdog timer count (32768)
	BCLK

However, errors can arise in the watchdog timer cycle due to the prescaler.

For example, when BCLK is 20MHz and the prescaler division ratio is set to 16, the monitor timer cycle is approximately 26.2 ms, and approximately 17.5 ms when BCLK is 30MHz.

The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by writing to the watchdog timer start register (address 000E16). CM06 is initialized only at reset. After reset, watchdog timer interrupt is selected.

The watchdog timer and the prescaler stop in stop mode, wait mode and hold status. After exiting these modes and status, counting starts from the previous value.

In the stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released. Figure 1.10.1 shows the block diagram of the watchdog timer. Figure 1.10.2 and 1.10.3 show the watchdog timer-related registers.

Figure 1.10.1. Block diagram of watchdog timer

Figure 1.10.2. Watchdog timer control and start registers

	CM0	00061	6 0000 X0002	
	Bit symbol	Bit	Function	R
	CM00	Clock output function select bit (Note 2)	^{b1 b0} 0 0 : I/O port P53 0 1 : fc. output	0
	CM01		1 0 : f8 output 1 1 : f32 output	0
	CM02	WAIT peripheral function clock stop bit	0 : Do not stop peripheral clock in wait mode 1 : Stop peripheral clock in wait mode (Note 3)	0
	Nothing is a When write	assigned. , set "0". When read, the	ir contents are indeterminate.	-
	CM04	Port Xc select bit	0 : I/O port 1 : XciN-Xcou⊤ generation (Note 4)	0
	CM05	Main clock (XIN-XOUT) stop bit (Note 5)	0 : Main clock On 1 : Main clock Off (Note 6)	0
·	CM06	Watchdog timer function select bit	0 : Watchdog timer interrupt 1 : Reset (Note 7)	0
	CM07	System clock select bit (Note 8)	0 : Xin, Xout 1 : Xcin, Xcout	0
Note 2: The port P53 dos mode. When outputting these bits to "00" The port P53 fun memory expansi Note 3: fc32 is not include Note 4: When XcIN-XcOL port. Note 5: When entering th the main clock, s stable. Then set When this bit is " XIN is pulled up t Note 6: When the main c to the division by However, in ring by 8 mode when Note 7: When "1" has be Note 8: Set this bit "0" to	ALE to PS 	53 (bits 5 and 4 of proc to selected, even when and bit 7 of the process this bit is set to "1", PL set port P86 and P87 saving mode, the main clock stop bit (CM07) "1". urning from stop mode s "H". Also, the interna H" level) via the feedba pped, the main clock of is stopped by this bit. ce, "0" cannot be writte sub clock oscillation is main clock oscillation	sessor mode register 0 is "01"), se you set "00" in microprocessor of sor mode register 0 is "1". L cannot be used in WAIT. to no pull-up resistance with the in clock is stopped using this bit. To to "1" while an oscillation of sub of , set this bit to "0". al feedback resistance remains Of ack resistance. division register (address 000C16) division register is not set to the d en by software.	ivis

Figure 1.10.3. System clock control register 0

DMAC

This microcomputer has four DMAC (direct memory access controller) channels that allow data to be sent to memory without using the CPU. DMAC is a function that transmit delete data of a source address (8 bits /16 bits) to a destination address when transmission request occurs. When using three or more DMAC channels, the register bank 1 and high-speed interrupt register are used as DMAC registers. If you are using three or more DMAC channels, you cannot use high-speed interrupts. The CPU and DMAC use the same data bus, but the DMAC has a higher bus access privilege than the CPU, and because of the use of cycle-steeling, operations are performed at high-speed from the occurrence of a transfer request until one word (16 bits) or 1 byte (8 bits) of data have been sent. Figure 1.11.1 shows the mapping of registers used by the DMAC. Table 1.11.1 shows DMAC specifications. Figures 1.11.2 to 1.11.5 show the structures of the registers used.

As the registers shown in Figure 1.11.1 are allocated in the CPU, use LDC instruction when writing. When writing to DCT2, DCT3, DRC2, DRC3, DMA2 and DMA3, set register bank select flag (B flag) to "1" and use MOV instruction to set R0 to R3, A0 and A1 registers. When writing to DSA2 and DSA3, set register bank select flag (B flag) to "1" and use LDC instruction to set SB and FB registers.

Figure 1.11.1. Register map using DMAC

In addition to writing to the software DMA request bit to start DMAC transfer, the interrupt request signals output from the functions specified in the DMA request factor select bits are also used. However, in contrast to the interrupt requests, repeated DMA requests can be received, regardless of the interrupt flag. (Note, however, that the number of actual transfers may not match the number of transfer requests if the DMA request cycle is shorter than the DMR transfer cycle. For details, see the description of the DMAC request bit.)

Table 1.11.1. DMAC specifications

Item	Specification
No. of channels	4 (cycle steal method)
Transfer memory space	 From any address in the 16 Mbytes space to a fixed address (16
	Mbytes space)
	• From a fixed address (16 Mbytes space) to any address in the 16 M
	bytes space
Maximum No. of bytes transferred	128 Kbytes (with 16-bit transfers) or 64 Kbytes (with 8-bit transfers)
DMA request factors (Note)	Falling edge of INT0 to INT3 or both edge
	Timer A0 to timer A4 interrupt requests
	Timer B0 to timer B5 interrupt requests
	UART0 to UART4 transmission and reception interrupt requests
	A-D conversion interrupt requests
	Intelligent I/O interrupt
	Software triggers
Channel priority	DMA0 > DMA1 > DMA2 > DMA3 (DMA0 is the first priority)
Transfer unit	8 bits or 16 bits
Transfer address direction	forward/fixed (forward direction cannot be specified for both source and
	destination simultaneously)
Transfer mode	Single transfer
	Transfer ends when the transfer count register is "000016".
	Repeat transfer
	When the transfer counter is "000016", the value in the transfer
	counter reload register is reloaded into the transfer counter and the
	DMA transfer is continued
DMA interrupt request generation timing	When the transfer counter register changes from "000116" to "000016".
DMA startup	Single transfer
	Transfer starts when DMA transfer count register is more than
	"000116" and the DMA is requested after "012" is written to the
	channel i transfer mode select bits
	Repeat transfer
	Transfer starts when the DMA is requested after "112" is written to the
	channel i transfer mode select bits
DMA shutdown	Single transfer
	When "002" is written to the channel i transfer mode select bits and
	DMA transfer count register becomes "000016" by DMA transfer or
	write
	Repeat transfer
	When "002" is written to the channel i transfer mode select bits
Reload timing	When the transfer counter register changes from "000116" to "000016" in
	repeat transfer mode.
Reading / writing the register	Registers are always read/write enabled.
Number of DMA transfer cycles	Between SFR and internal RAM : 3 cycles
	Between external I/O and external memory : minimum 3 cycles

Note: DMA transfer doed not affect any interrupt.

Figure 1.11.2. DMAC register (1)

Setting value		DMA r	equest cause				
b4 b3 b2 b1 b0	DMA0	DMA1	DMA2	DMA3			
0 0 0 0 0		Softwar	e trigger				
0 0 0 0 1	Falling edge of INT0 pin	Falling edge of INT1 pin	Falling edge of INT2 pin	Falling edge of INT3 pin			
0 0 0 1 0	Both edges of INT0	Both edges of INT1	Both edges of INT2	Both edges of INT3			
0 0 0 1 1		Time	er A0				
0 0 1 0 0		Time	er A1				
0 0 1 0 1		Time	er A2				
0 0 1 1 0		Time	er A3				
0 0 1 1 1		Time	er A4				
0 1 0 0 0		Time	er B0				
0 1 0 0 1		Time	er B1				
0 1 0 1 0		Time	er B2				
0 1 0 1 1		Time	er B3				
0 1 1 0 0		Time	er B4				
0 1 1 0 1		Time	er B5				
0 1 1 1 0		UART0	transmit				
0 1 1 1 1		UART0 re	ceive /ACK	(Note 2)			
1 0 0 0 0		UART1	transmit				
1 0 0 0 1	UART1 receive /ACK (Note 2)						
1 0 0 1 0		UART2 transmit					
1 0 0 1 1		UART2 re	ceive /ACK	(Note 2)			
1 0 1 0 0		UART3	transmit				
1 0 1 0 1		UART3 re	ceive /ACK	(Note 2)			
1 0 1 1 0		UART4	transmit				
10111		UART4 re	ceive /ACK	(Note 2)			
1 1 0 0 0	A-D0	A-D1	A-D0	A-D1			
1 1 0 0 1	Intelligent I/O interrupt control register 0	Intelligent I/O interrupt control register 7	Intelligent I/O interrupt control register 2	Intelligent I/O interrupt control register 9			
1 1 0 1 0	Intelligent I/O interrupt control register 1	Intelligent I/O interrupt control register 8	Intelligent I/O interrupt control register 3	Intelligent I/O interrupt control register 10			
1 1 0 1 1	Intelligent I/O interrupt control register 2	Intelligent I/O interrupt control register 9	Intelligent I/O interrupt control register 4	Intelligent I/O interrupt control register 11			
1 1 1 0 0	Intelligent I/O interrupt control register 3	Intelligent I/O interrupt control register 10	Intelligent I/O interrupt control register 5	Intelligent I/O interrupt control register 0			
1 1 1 0 1	Intelligent I/O interrupt control register 4	Intelligent I/O interrupt control register 11	Intelligent I/O interrupt control register 6	Intelligent I/O interrupt control register 1			
1 1 1 1 0	Intelligent I/O interrupt control register 5	Intelligent I/O interrupt control register 0	Intelligent I/O interrupt control register 7	Intelligent I/O interrupt control register 2			
1 1 1 1 1	Intelligent I/O interrupt control register 6	Intelligent I/O interrupt control register 1	Intelligent I/O interrupt control register 8	Intelligent I/O interrupt control register 3			

Table 1.11.2. DMAi request cause select register function

Note 1: When INT3 pin is data bus in microprocessor mode, INT3 edge cannot be used as DMA3 request cause. Note 2: UARTi receive /ACK switched by setting of UARTi special mode register and UARTi special mode register 2 (i=0 to 3)

b6 b5 b4 b3 b2 b1 b0	Sym DMD	bol 00	When reset 0016		
	Bit symbol	Bit name	Function	R	į
	MD00	Channel 0 transfer mode select bit	0 0 : DMA inhibit	0	
	MD01		1 0 : Must not be set 1 1 : Repeat transfer	0	
	BW0	Channel 0 transfer unit select bit	0 : 8 bits 1 : 16 bits	0	
	RW0	Channel 0 transfer direction select bit	0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address	0	
	MD10	Channel 1 transfer mode select bit	b5 b4 0 0 : DMA inhibit	0	
	MD11		1 0 : Must not be set 1 1 : Repeat transfer	0	
	BW1	Channel 1 transfer unit select bit	0 : 8 bits 1 : 16 bits	0	
	RW1	Channel 1 transfer direction select bit	0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address	0	
A mode register 1 PU internal register)	Sym	hol	When reset		
MA mode register 1 PU internal register)	Sym DMD	bol)1	When reset 0016	1	
MA mode register 1 PU internal register)	Sym DMD Bit symbol	bol)1 Bit name	When reset 0016 Function	R	
IA mode register 1 PU internal register)	Symi DMD Bit symbol MD20	bol 1 Bit name Channel 2 transfer mode select bit	When reset 0016 Function b1 b0 0 0 : DMA inhibit 0 1 : Single transfer	R	
A mode register 1 PU internal register)	Symi DMD Bit symbol MD20 MD21	bol)1 Bit name Channel 2 transfer mode select bit	When reset 0016 Function b1 b0 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Must not be set 1 1 : Repeat transfer	R O	
A mode register 1 PU internal register)	Symi DMD Bit symbol MD20 MD21 BW2	bol D1 Bit name Channel 2 transfer mode select bit Channel 2 transfer unit select bit	When reset 0016 Function b1 b0 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Must not be set 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits	R 0 0	
A mode register 1 PU internal register)	Symi DMD Bit symbol MD20 MD21 BW2 RW2	bol D1 Bit name Channel 2 transfer mode select bit Channel 2 transfer unit select bit Channel 2 transfer direction select bit	When reset 0016 Function ^{b1 b0} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Must not be set 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits 0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address	R 0 0	
A mode register 1 PU internal register)	Symi DMD Bit symbol MD20 MD21 BW2 RW2 MD30	Bit name Channel 2 transfer mode select bit Channel 2 transfer unit select bit Channel 2 transfer direction select bit Channel 3 transfer mode select bit	When reset 0016 Function ^{b1 b0} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Must not be set 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits 0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address ^{b5 b4} 0 0 : DMA inhibit 0 1 : Single transfer	R 0 0 0	
A mode register 1 PU internal register)	Symi DMD Bit symbol MD20 MD21 BW2 RW2 RW2 MD30 MD31	bol D1 Bit name Channel 2 transfer mode select bit Channel 2 transfer unit select bit Channel 2 transfer direction select bit Channel 3 transfer mode select bit	When reset 0016 Function ^{b1 b0} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Must not be set 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits 0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address ^{b5 b4} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Must not be set 1 1 : Repeat transfer	R 0 0 0 0	
<i>I</i> A mode register 1 PU internal register) b6 b5 b4 b3 b2 b1 b0 I I I I I I I I I I I I I I I I I I I I I I I I I I I<	Sym DMD Bit symbol MD20 MD21 BW2 RW2 RW2 MD30 MD31 BW3	Bit name Channel 2 transfer mode select bit Channel 2 transfer unit select bit Channel 2 transfer direction select bit Channel 3 transfer mode select bit Channel 3 transfer unit select bit	When reset 0016 Function ^{b1 b0} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Must not be set 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits 0 : Fixed address to memory (forward direction) 1 : Memory (forward direction) to fixed address ^{b5 b4} 0 0 : DMA inhibit 0 1 : Single transfer 1 0 : Must not be set 1 1 : Repeat transfer 0 : 8 bits 1 : 16 bits	R O	

Figure 1.11.3. DMAC register (2)

Rev.B2 for proof reading

Under Dynent

DMAC

(1) Transfer cycle

The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area (source read) and the bus cycle in which the data is written to memory or to the SFR area (destination write). The number of read and write bus cycles depends on the source and destination addresses. In memory expansion mode and microprocessor mode, the number of read and write bus cycles also depends on the level of the BYTE pin. Also, the bus cycle is longer when software waits are inserted.

(a) Effect of source and destination addresses

When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd addresses, there are one more source read cycle and destination write cycle than when the source and destination both start at even addresses.

(b) Effect of external data bus width control register

When in memory expansion mode or microprocessor mode, the transfer cycle changes according to the data bus width at the source and destination.

- 1. When transferring 16 bits of data and the data bus width at the source and at the destination is 8 bits (data bus width bit = "0"), there are two 8-bit data transfers. Therefore, two bus cycles are required for reading and two cycles for writing.
- 2. When transferring 16 bits of data and the data bus width at the source is 8 bits (data bus width bit = "0") and the data bus width at the destination is 16 bits (data bus width bit = "1"), the data is read in two 8-bit blocks and written as 16-bit data. Therefore, two bus cycles are required for reading and one cycle for writing.
- 3. When transferring 16 bits of data and the data bus width at the source is 16 bits (data bus width bit = "1") and the data bus width at the destination is 8 bits (data bus width bit = "0"), 16 bits of data are read and written as two 8-bit blocks. Therefore, one bus cycle is required for reading and two cycles for writing.

(c) Effect of software wait

When the SFR area or a memory area with a software wait is accessed, the number of cycles is increased for the software wait by 1 bus cycle. The length of the cycle is determined by BCLK.

Figure 1.11.6 shows the example of the transfer cycles for a source read. Figure 1.11.6 shows the destination is external area, the destination write cycle is shown as two cycle (one bus cycle) and the source read cycles for the different conditions. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respective conditions to both the destination write cycle and the source read cycle. For example (2) in Figure 1.11.6, if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the source read cycle and the destination write cycle.

Under Rev.B2 for proof reading

DMAC

BCLK												
Address	CPU use	Source	,	Destinat	ion			 CP	U use			
RD signal												
 WR signal												
Data - bus -	CPU use		Source		Destinatio	n		CP	U use			
•When 10 •When 10 (When th	6-bit data is tra 6-bit data is tra e width of dat	ansferred ansferred a bus at f	and t and tl	he sou he wid stinatio	irce ad th of d on is 8	dress is ata bus -bit, the	s odd at the s re are a	source Ilso tw	e is 8-bit vo destii	nation	write	e cycles).
BCLK												
Address	CPU use	Source	Sour	ce + 1	Dest	ination	X		CPU ι	se		
RD signal												
- VR signal												
Data	CPU use	·	Source	Source	+ 1	Destinatio	on V		CPU	use		
Address	CPU use	L 	Source		Desti	nation	J L X		CPU us	e]	
bus			200100		Desti							
] [
Data	CDLLuca									1150		
ous –	CPU use		50			Destinati	<u></u> /_		CPU	use		
•When o (When 10 two dest	ne wait is inse 6-bit data is tra ination write o	erted into ansferred cycles).	the so and t	burce re he wid	ead un th of d	der the ata but	conditi at the d	ions ir Iestina	n (2) ation is a	8-bit, t 	here	are
-												
BCLK	CPU use	_X	Source	X	Sou	rce + 1	X	Destinatio	n X	CPU	use	
BCLK												
Address												
BCLK												

(2) DMAC transfer cycles

Any combination of even or odd transfer read and write addresses is possible. Table 1.11.2 shows the number of DMAC transfer cycles.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k

Transfer unit	Bus width	Access address	Single-ch	nip mode	Memory expansion mode Microprocessor mode		
			No. of read cycles	No. of write cycles	No. of read cycles	No. of write cycles	
	16-bit	Even	1	1	1	1	
8-bit transfers	(DSi = "1")	Odd	1	1	1	1	
(BWi = "0")	8-bit	Even		—	1	1	
	(DSi = "0")	Odd	_	—	1	1	
	16-bit	Even	1	1	1	1	
16-bit transfers	(DSi = "1")	Odd	2	2	2	2	
(BWi = "1")	8-bit	Even	_	_	2	2	
	(DSi = "0")	Odd	_	—	2	2	

Table 1.11.2. No. of DMAC transfer cycles

Coefficient j, k

			Coefficient j	Coefficient k
Internal memory	Internal ROM/RAM	No wait	1	1
	Internal ROM/RAM	One wait	2	2
	SFR area		2	2
External memory	Separate bus	No wait	1	2
	Separate bus	One wait	2	2
	Separate bus	Two waits	3	3
	Separate bus	Three waits	4	4
	Multiplex bus		3	3

DMA Request Bit

The DMAC can issue DMA requests using preselected DMA request factors for each channel as triggers. The DMA transfer request factors include the reception of DMA request signals from the internal peripheral functions, software DMA factors generated by the program, and external factors using input from external interrupt signals.

See the description of the DMAi factor selection register for details of how to select DMA request factors. DMA requests are received as DMA requests when the DMAi request bit is set to "1" and the channel i transfer mode select bits are "01" or "11". Therefore, even if the DMAi request bit is "1", no DMA request is received if the channel i transfer mode select bit is "00". In this case, DMAi request bit is cleared. Because the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after a reset, remember to set the channel i transfer mode select bits default to "00" after setting the DMAC related registers. This enables receipt of the DMA requests for that channel, and DMA transfers are then performed when the DMAi request bit is set.

The following describes when the DMAi request bit is set and cleared.

(1) Internal factors

The DMAi request flag is set to "1" in response to internal factors at the same time as the interrupt request bit of the interrupt control register for each factor is set. This is because, except for software trigger DMA factors, they use the interrupt request signals output by each function.

The DMAi request bit is cleared to "0" when the DMA transfer starts or the DMA transfer is disabled (channel i transfer mode select bits are "00" and the DMAi transfer count register is "0").

(2) External factors

These are DMA request factors that are generated by the input edge from the INTi pin (where i indicates the DMAC channel). When the INTi pin is selected by the DMAi request factor select bit as an external factor, the inputs from these pins become the DMA request signals.

When an external factor is selected, the DMAi request bit is set, according to the function specified in the DMA request factor select bit, on either the falling edge of the signal input via the INTi pins, or both edges. When an external factor is selected, the DMAi request bit is cleared, in the same way as the DMAi request bit is cleared for internal factors, when the DMA transfer starts or the DMA transfer is in disable state.

(3) Relationship between external factor request input and DMAi request bits, and DMA transfer timing

When the request inputs to DMAi occur in the same sampling cycle (between the falling edge of BCLK and the next falling edge), the DMAi request bits are set simultaneously, but if the DMAi enable bits are all set, DMA0 takes priority and the transfer starts. When one transfer unit is complete, the bus privilege is returned to the CPU. When the CPU has completed one bus access, DMA1 transfer starts, and, when one transfer unit is complete, the privilege is again returned to the CPU.

The priority is as follows: DMA0 > DMA1 > DMA2 > DMA3.

Figure 1.11.7. DMA transfer example by external factors shows what happens when DMA0 and DMA1 requests occur in the same sampling cycle.

Precautions for DMAC

- (1) Do not clear the DMA request bit of the DMAi request cause select register.
 In M32C/83, when a DMA request is generated while the channel is disabled ^(Note), the DMA transfer is not executed and the DMA request bit is cleared automatically.
 Note :The DMA is disabled or the transfer count register is "0".
- (2) When DMA transfer is done by a software trigger, set DSR and DRQ of the DMAi request cause select register to "1" simultaneously using the OR instruction.

e.g.) OR.B #0A0h, DMiSL ; DMiSL is DMAi request cause select register

(3) When changing the DMAi request cause select bit of the DMAi request cause select register, set "1" to the DMA request bit, simultaneously. In this case, the corresponding DMA channel is set to disabled. At least 8 + 6 x N (N: enabled channel number) clock cycles are needed from the instruction to write to the DMAi request cause select bit to enable DMA.

e.g.) When DMA	A request	cause is cl	hanged to	o timer A	A0 and i	using I	DMA0 in	single	transfer	after
DNAA 1.11.1										

DIMA INIT	ial setting		
push.w	R0	; Store R0 register	
stc	DMD0, R0	; Read DMA mode register ()
and.b	#11111100b, R0L	; Clear DMA0 transfer mode	e select bit to "00"
ldc	R0, DMD0	; DMA0 disabled	
mov.b	#10000011b, DM0SL	; Select timer A0	
		; (Write "1" to DMA reques	t bit simultaneously)
nop)	At least 8 + 6 x N cycles
:		Ĵ	[≻] (N: enabled channel number)
ldc	R0, DMD0	; DMA0 enabled	
pop.w	R0	; Restore R0 register	

Under Under Under

DMAC II

When requested by an interrupt from any peripheral I/O, the DMAC performs a memory-to-memory transfer, an immediate data transfer, or an arithmetic transfer (to transfer the sum of two data added). Specifications of DMAC II are shown in Table 1.12.1.

Table 1.12.1	Specifications	of DMAC II
--------------	----------------	------------

Rev.B2 for proof reading

ltem	Specification
Causes to activate DMAC II	Interrupt request from any peripheral I/O whose interrupt priority is set to "level 7" by the Interrupt Control Register
Transfer data	 (1) Memory -> memory (memory-to-memory transfer) (2) Immediate data -> memory (immediate data transfer) (3) Memory (or immediate data) + memory -> memory (arithmetic transfer)
Unit of transfer	Transferred in 8 or 16 bits
Transfer space	64-Kbyte space at address up to 0FFFF ₁₆ (Note)
Direction of transfer	Fixed or forward address Can be selected individually for the source and the destination of transfer.
Transfer mode	(1) Single transfer(2) Burst transfer
Chained transfer function	Parameters (transfer count, transfer address, and other information) are switched over when the transfer counter reaches zero.
Interrupt at end of transfer	Interrupt is generated when the transfer counter reaches zero.
Multiple transfer function	Multiple data transfers can be performed by one DMA II transfer request generated.

Note : When transfer unit is 16 bits and destination address is 0FFFF16, data is transfered to addresses 0FFFF16 and 1000016. When source address is 0FFFF16, data is transfered as in the previous.

Settings of DMAC II

DMAC II can be enabled for use by setting up the following registers and tables.

- Exit Priority Register (address 009F16)
- DMAC II Index
- Interrupt Control Register for the peripheral I/O that requests a transfer by DMAC II
- Relocatable Vector Table for the peripheral I/O that requests a transfer by DMAC II
- When using an intelligent I/O or CAN interrupt, Interrupt Enable Register's interrupt request latch bit (bit 0)

(1) Exit priority register (address 009F16)

If this register's DMAC II select bit (bit 5) and fast interrupt select bit (bit 3) respectively are set to 1 and 0, DMAC II is activated by an interrupt request from any peripheral I/O whose interrupt priority is set to "level 7" by the interrupt priority level select bit.

The configuration of the exit priority register is shown in Figure 1.12.1.

Under Rev.B2 for proof reading

DMAC II

b7 b6 b5 b4 b3 b2 b1 b0	Symbo RLVL	ol Address 009F16	When XX0X0	eset 0002
	Bit symbol	Bit name	Function	R۱
	RLVL0	Interrupt priority set bits	^{b2b1b0} 0 0 0 : Level 0 0 0 1 : Level 1	0
	RLVL1	for exiting Stop/Wait state (Note 1)	0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	0
	RLVL2		1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	0
	FSIT	High-speed interrupt set bit (Note 2)	 0: Interrupt priority level 7 = normal interrupt 1: Interrupt priority level 7 = high-speed interrupt 	0
	Nothing i When wr	s assigned. ite, set "0". When read, it	s content is indeterminate.	
	DMA II	DMA II select bit (Note 3)	0: Interrupt priority level 7 = normal interrupt or high-speed interrupt 1: Interrupt priority level 7 = DMA II transfer	0
	Nothing i When wr	s assigned. ite, set "0". When read, tł	neir contents are indeterminate.	
Note 1: Exits the Sto that set in the Set to the sar register (FLG Note 2: The high-spe 7. Specify int Note 3: Do not set thi When this bit	p or Wait e exit prio me value). ed interru errupt pri s bit to 0 is 1, do r	mode when the request rity register. as the processor interr opt can only be specified ority level 7 for only one after once setting it to 7 not set the high-speed i	sted interrupt priority level is highe upt priority level (IPL) set in the fla d for interrupts with interrupt priori e interrupt. 1. nterrupt select bit to 0. (This cann	r tha ig ty lev ot be
used simultar Transfers by interrupt prior	neously w DMAC II rity level (vith the high-speed inte are unaffected by the in (IPL).	rrupt.) nterrupt enable flag (I flag) and pro	oces

Figure 1.12.1. Exit priority register

(2) DMAC II Index

The DMAC II Index is a data table, comprised of 8 to 18 bytes (max. 32 kbytes when multiple transfer function is selected), which contains such parameters as transfer mode, transfer counter, transfer source address (or immediate data), operation address, transfer destination address, chained transfer address, and end-of-transfer interrupt address.

This DMAC II Index is located in the RAM area.

Configuration of the DMAC II Index is shown in Figure 1.12.2. The configuration of the DMAC II Index by transfer mode is shown in Table 1.12.2.

Figure 1.12.2. DMAC II index

• Transfer mode (MOD)

This two-byte data sets DMAC II transfer mode. Configuration of transfer modes is shown in Figure 1.12.3.

• Transfer counter (COUNT)

This two-byte data sets the number of times transfer is performed.

Transfer source address (SADR)

This two-byte data sets the memory address from which data is transferred or immediate data.

• Operation address (OADR)

This two-byte data sets the memory address to be operated on for calculation. This data is added to the table only when using the arithmetic transfer function.

• Transfer destination address (DADR)

This two-byte data sets the memory address to which data is transferred.

- Chained transfer address (CADR) This four-byte data sets the DMAC II Index start address for the next DMAC II transfer to be performed. This data is added to the table only when using the chained transfer function.
- End-of-transfer interrupt address (IADR)

This four-byte data sets the jump address for end-of-transfer interrupt processing. This data is added to the table only when using an end-of-transfer interrupt.

e Cannot use
e Cannot use
D MOD
NT COUNT
DR SADR1
DR DADR1
R0
R1 SADRi
R0 DADRi
R1 i=1 to 7
tes Max. 32 bytes (when i=7)

Table 1.12.2. The configuration of the DMAC II Index by transfer mode

Figure 1.12.3. Transfer mode

(3) Interrupt Control Register for Peripheral I/O

For peripheral I/O interrupts used to request a transfer by DMAC II, set the Interrupt Control Register for each peripheral I/O to select "level 7" for their interrupt priority.

(4) Relocatable Vector Table for Peripheral I/O

In the relocatable vector table for each peripheral I/O that requests a transfer by DMAC II, set the DMAC II Index start address. (When using chained transfers, the relocatable vector table must be located in the RAM.)

(5) Interrupt Enable Register's interrupt request latch bit (bit 0)

When using an intelligent I/O or CAN interrupt to activate DMAC II, set to 0 the Interrupt Enable Register's interrupt request latch bit (bit 0) for the intelligent I/O or CAN interrupt that requests a transfer by DMAC II.

Operation of DMAC II

The DMAC II function is selected by setting the DMAC II select bit (bit 5 at address 009F16) to 1. All peripheral I/O interrupt requests which have had their interrupt priorities set to "level 7" by the Interrupt Control Register comprise DMAC II interrupt requests. These interrupt requests (priority level = 7) do not generate an interrupt, however.

When an interrupt request is generated by any peripheral I/O whose interrupt priority is set to "level 7," DMAC II is activated no matter which state the I flag and processor interrupt priority level(IPL) is in. If an interrupt request with higher priority than that (e.g., $\overline{\text{NMI}}$ or watchdog timer) occurs, this higher priority interrupt has precedence over and is accepted before DMAC II transfers. The pending DMAC II transfer is started after the interrupt processing sequence for that interrupt finishes.

Transfer data

DMAC II transfers data in units of 8 or 16 bits as described below.

- Memory-to-memory transfer: Data is transferred from any memory location in the 64-Kbyte space to any memory location in the same space.
- Immediate data transfer: Data is transferred as immediate data to any memory location in the 64-Kbyte space.
- Arithmetic transfer: Two 8 or16 bits of data are added together and the result is transferred to any memory location in the 64-Kbyte space.

When transfer unit is 16 bits and destination address is 0FFFF16, data is transfered to addresses 0FFFF16 and 1000016. When source address is 0FFFF16, data is transfered as in the previous.

Mitsubishi Microcomputers M32C/83 group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

(1) Memory-to-memory transfer

Data can be transferred from any memory location in the 64-Kbyte space to any memory location in the same space in one of the following four ways:

- Transfer from a fixed address to another fixed address
- Transfer from a fixed address to a variable address
- Transfer from a variable address to a fixed address
- Transfer from a variable address to another variable address

If variable address mode is selected, the transfer address is incremented for the next DMA II transfer to be performed. When transferred in units of 8 bits, the transfer address is incremented by one; when transferred in units of 16 bits, the transfer address is incremented by two. If the transfer source or destination address exceeds 0FFF16 as a result of address incrementation, the transfer source or destination address recycles back to 0000016.

(2) Immediate data transfer

Data is transferred as immediate data to any memory location in the 64-Kbyte space. A fixed or variable address can be selected for the transfer destination address. Store the immediate data in the DMAC II Index's transfer source address. When transferring 8-bit immediate data, set the data in the lower byte position of the transfer source address. (The upper byte is ignored.)

(3) Arithmetic transfer

Data in two memory locations of the 64-Kbyte space or immediate data and data in any memory location of the 64-Kbyte space are added together and the result is transferred to any memory location in the 64-Kbyte space. Set the memory location to be operated on or immediate data in the DMAC II Index's transfer source address field and the other memory location to be operated on in the DMAC II Index's operation address field. When performing this mode of transfer on two memory locations, a fixed or variable address can be selected for the transfer source and transfer destination addresses. If the transfer source address is chosen to be variable, the operation address also becomes variable. When performing this mode of transfer on immediate data and any memory location, a fixed or variable address can be selected for the transfer data and any memory location, a fixed or variable address can be selected for the transfer data and any memory location, a fixed or variable address can be selected for the transfer data and any memory location, a fixed or variable address can be selected for the transfer data and any memory location, a fixed or variable address can be selected for the transfer data and any memory location, a fixed or variable address can be selected for the transfer destination address.

Transfer modes

DMAC II supports single and burst transfers. Use the burst transfer select bit (bit 5) for transfer mode setup in the DMAC II index to choose single or burst transfer mode. Use the DMAC II index transfer counter to set the number of times a transfer is performed. Neither single transfer nor burst transfer is performed if the value "000016" is set in the transfer counter.

(1) Single transfer

For a DMAC II transfer request, 8 or 16 bits of data (one transfer unit) is transferred once. If the transfer source or transfer destination address is chosen to be variable, the next DMA II transfer is performed on an incremented memory address.

The transfer counter is decremented by each DMA II transfer performed. When using the end-of-transfer interrupt facility, an end-of-transfer interrupt is generated at the time the transfer counter reaches zero.

(2) Burst transfer

For a DMAC II transfer request, data transfers are performed in succession a number of times as set by the DMAC II Index transfer counter. When using the end-of-transfer interrupt facility, an end-oftransfer interrupt is generated at the time a burst transfer finishes (i.e., when the transfer counter reaches zero after being decremented for each data transfer performed).

(3) Multiple transfers

For multiple transfers, use the multiple transfer select bit (bit 15) for transfer mode setup in the DMAC II Index. Setting this bit to 1 selects the multiple transfer function. For the multiple transfer function, memory to memory transfer can be performed.

Multiple transfers are performed for one DMAC II transfer request received. Use DMAC II Index transfer mode bits 4–6 to set the number of transfers to be performed. (Setting these bits to 001 performs one transfer; setting these bits to 111 performs 7 transfers. Setting these bits to 000 is inhibited.)

The transfer source and transfer destination addresses are alternately incremented beginning with the DMAC II Index BASE address + 4 (as many times as the number of transfers performed).

When using multiple transfer function, arithmetic transfer, burst transfer, end-of-transfer interrupt and chained transfer cannot be used.

(4) Chained transfer

For chained transfers, use the chained transfer select bit (bit 7) for transfer mode setup in the DMAC II Index. Setting this bit to 1 selects the chained transfer function. The following describes how a chained transfer is performed.

- 1) When a DMA II transfer request (interrupt request from any peripheral I/O) is received, a DMAC II Index transfer is performed corresponding to the received request.
- 2) When the DMAC II Index transfer counter reaches zero, the chained transfer address in the DMAC II Index (i.e., the start address of the DMAC II Index that contains a description of the next DMAC II transfer to be performed) is written to the relocatable vector table for the peripheral I/O.
- 3) From the next DMA II transfer request on, transfers are performed based on the DMAC II Index indicated by the rewritten relocatable vector table of the peripheral I/O.

Before the chained transfer function can be used, the relocatable vector table must be located in the RAM area.

(5) End-of-transfer interrupt

For end-of-transfer interrupts, use the end-of-transfer interrupt select bit (bit 6) for transfer mode setup in the DMAC II Index. Setting this bit to 1 selects the end-of-transfer interrupt function. Set the jump address for end-of-transfer interrupt processing in the DMAC II Index's end-of-transfer interrupt address field. An end-of-transfer interrupt is generated when the DMAC II Index transfer counter reaches zero.

Execution time

The number of DMAC II execution cycles is calculated by the equation below.

For other than multiple transfers, t = 6 + (26 + A + B + C + D) X m + (4 + E) X n (cycles) For multiple transfers, t = 21 + (11 + B + C) X k (cycles) where

A: If the source of transfer is immediate data, A = 0; if it is memory, A = -1

- B: If the source address of transfer is a variable address, B = 0; if it is a fixed address, B = 1
- C: If the destination address of transfer is a variable address, C = 0; if it is a fixed address, C = 1
- D: If the arithmetic function is not selected, D = 0; if the arithmetic function is selected and the source of transfer is immediate data or fixed address memory, D = 7; if the arithmetic function is selected and the source of transfer is variable address memory, D = 8
- E: If the chained transfer function is not selected, E = 0; if the chained transfer function is selected, E = 4
- m: For single transfer, m = 1; for burst transfer, m = the value set by the transfer counter
- n: If the transfer count is one, n = 0; if the transfer count is two or greater, n = 1
- k: Number of transfers set by transfer mode bits 4-7

The above equation applies only when all of the following conditions are met, however.

- No bus wait states are inserted.
- The DMAC II Index is set to an even address.
- During word transfer, the transfer source address, transfer destination address, and operation address all are set to an even address.

Note that the first instruction in end-of-transfer interrupt processing is executed 7 cycles after DMAC II transfers are completed.

When using an end-of-transfer interrupt (transfer counter = 2) after performing a memory to memory single transfer twice from a variable source address to a fixed destination address, with the chained transfer function unselected A=0 B=1C=0D=0E=0First DMAC II transfer t=6+27X1+4X1=37 cycle Second DMAC II transfer t=6+27X1+4X0=33 cycle DMAC II transfer request DMAC II transfer request Application DMAC II transfer Application DMAC II transfer End of transfer interrupt program program (First time) program (Second time) 33 cycles 8 cycles 37 cycles Transfer counter = 2 Transfer counter = 1 Down count of transfer counter Down count of transfer counter Transfer counter = 1 Transfer counter = 0

Figure 1.12.4. Transfer Time

Timer

There are eleven 16-bit timers. These timers can be classified by function into timers A (five) and timers B (six). All these timers function independently. Figures 1.13.1 and 1.13.2 show the block diagram of timers.

Figure 1.13.1. Timer A block diagram

Under

Timer

Figure 1.13.2. Timer B block diagram

Timer A

Figure 1.14.1 shows the block diagram of timer A. Figures 1.14.2 to 1.14.6 show the timer A-related registers. Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode register (i = 0 to 4) bits 0 and 1 to choose the desired mode.

Timer A has the four operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer over flow.
- One-shot timer mode: The timer outputs one effective pulse until the count reaches "000016".
- Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.

Figure 1.14.1. Block diagram of timer A

	TAi (i TAi (i	Mbol Address = 0 to 2) 034716,034616, 034916,034816, 034B16,03 = 3, 4) 034D16,034C16, 034F16,034E16	When rese 4A16 Indetermina Indetermina	et ate ate
		Function	Values that can be set	R١
	Timer mode	16-bit counter (set to dividing ratio)	000016 to FFFF16	0
	Event counter mode	16-bit counter (set to dividing ratio) (Note 2)	000016 to FFFF16	0
l.	One-shot timer mode	16-bit counter (set to one shot width) (Note 6)	000016 to FFFF16 (Note 3)	
	Pulse width modulation mode (16-bit PWM)	16-bit pulse width modulator (set to PWM pulse "H" width) (Note 4, 7)	000016 to FFFE16 (Note 3)	
	Pulse width modulation mode (8-bit PWM)	Low-order 8 bits : 8-bit prescaler (Note 5, 7) (set to PWM period) High-order 8 bits : 8-bit pulse width modulator (set to PWM pulse "H" width)	0016 to FE16 (High-order address) 0016 to FF16 (Low-order address) (Note 3)	- 0
Note 1: Read : Note 2: Count: Note 3: Use M Note 3: Use M PWM PWM Note 5: When "H" wi PWM PWM Note 6: When is not Note 7: When level c occurs are se	and write data in 16-b s pulses from an exte IOV instruction to writ setting value is n, PW period : $(2^{16} - 1) / fi$ pulse "H" width : n / fi setting value of high- idth of PWM pulse are period : $(2^8 - 1) X$ (m pulse "H" width : (m + the timer Ai register is generated. When the the timer Ai register is of the TAiouT pin rema s in the 8-bit pulse wide to "0016".	It units. rnal source or timer overflow. e to this register. /M period and "H" width of PWM pulse are as follows order address is n and setting value of low-order address as follows: + 1) / fi - 1)n / fi s set to "000016", the counter does not operate and the pulse is set to output, the pulse does not output from s set to "000016", the pulse width modulator does not ains "L" level, therefore the timer Ai interrupt request if the modulator mode when the significant 8 high-order	ess is m, PWM peri the timer Ai interrupt r the TAiou⊤ pin. operate and the out s not generated. Thi bits in the timer Ai r	od a reque put is als egisi

Under Rev.B2 for proof reading

Up/down flag (Note ?	1)			
b7 b6 b5 b4 b3 b2 b1 b0] Symbol] UDF	Address 034416	When reset 0016	
	Bit symbol	Bit name	Function	RW
	TA0UD	Timer A0 up/down flag	0 : Down count 1 : Up count	(Note 2) O O
· · · · · · · · · · · · · · · · · · ·	TA1UD	Timer A1 up/down flag	0 : Down count 1 : Up count	(Note 2) O O
· · · · · · · · · · · · · · · · · · ·	TA2UD	Timer A2 up/down flag	0 : Down count 1 : Up count	(Note 2) O O
	TA3UD	Timer A3 up/down flag	0 : Down count 1 : Up count	(Note 2) O O
	TA4UD	Timer A4 up/down flag	0 : Down count 1 : Up count	(Note 2) O O
	- TA2P	Timer A2 two-phase pulse signal processing select bit	0 : two-phase pulse signal processing disabled 1 : two-phase pulse signal processing enabled	— O (Note 3)
	- ТАЗР	Timer A3 two-phase pulse signal processing select bit	0 : two-phase pulse signal processing disabled 1 : two-phase pulse signal processing enabled	— O (Note 3)
	TA4P	Timer A4 two-phase pulse signal processing select bit	0 : two-phase pulse signal processing disabled 1 : two-phase pulse signal processing enabled	(Note 3)

Note 1: Use MOV instruction to write to this register.

Note 2: This specification becomes valid when the up/down flag content is selected for up/down switching cause. Note 3: When not using the two-phase pulse signal processing function, set the select bit to "0".

One-shot start flag

b7 b	6 b5	b4	b3	b2	b1	b0	Symbo ONSF	ol Address 034216	When reset 0016		
							Bit symbol	Bit name	Function	R	W
							TA0OS	Timer A0 one-shot start flag	0 : Invalid 1 : Timer start (Note 1) c	
			-		l.		TA1OS	Timer A1 one-shot start flag	0 : Invalid 1 : Timer start (Note 1) C	» o
							TA2OS	Timer A2 one-shot start flag	0 : Invalid 1 : Timer start (Note 1) C	0
							TA3OS	Timer A3 one-shot start flag	0 : Invalid 1 : Timer start (Note 1) C) C
							TA4OS	Timer A4 one-shot start flag	0 : Invalid 1 : Timer start (Note 1) C) c
	l.						TAZIE	Z phase input enable bit	0 : Invalid 1 : Valid	С	» c
							TA0TGL	Timer A0 event/trigger select bit	b7 b6 0 0 : Input on TAOIN is selected (Note 2) C	» 0
							TA0TGH		1 0 : TA4 overflow is selected 1 1 : TA1 overflow is selected	С	>0

Note 2: Set the corresponding pin output function select register to I/O port, and port direction register to "0".

Figure 1.14.4. Timer A-related registers (3)

RW

00

00

00

00

00

00

00

00

RW

00

Trigger select register Symbol Address When reset TRGSR 034316 0016 Bit symbol Bit name Function b1 b0 0 0 : Input on TA1IN is selected TA1TGL Timer A1 event/trigger (Note) select bit 01: TB2 overflow is selected 1 0 : TA0 overflow is selected TA1TGH 1 1 : TA2 overflow is selected b3 b2 Timer A2 event/trigger TA2TGL 0 0 : Input on TA2IN is selected select bit (Note) 0 1 : TB2 overflow is selected 1 0 : TA1 overflow is selected TA2TGH 1 1 : TA3 overflow is selected Timer A3 event/trigger b5 b4 **TA3TGL** 0 0 : Input on TA3IN is selected (Note) select bit 0 1 : TB2 overflow is selected 1 0 : TA2 overflow is selected **TA3TGH** 1 1 : TA4 overflow is selected Timer A4 event/trigger 0 0 : Input on TA4IN is selected TA4TGL (Note) select bit 01: TB2 overflow is selected 1 0 : TA3 overflow is selected TA4TGH 1 1 : TA0 overflow is selected Note: Set the corresponding port function select register A to I/O port, and port direction register to "0". Clock prescaler reset flag bf Symbol Address When reset CPSRF 034116 0XXXXXXX2 Bit symbol Bit name Function Nothing is assigned. When write, set "0". When read, their contents are indeterminate. 0 : Ignored CPSR Clock prescaler reset flag 1 : Prescaler is reset (When read, the value is "0")

Figure 1.14.5. Timer A-related registers (4)

Figure 1.14.6. Timer A-related registers (5)

(1) Timer mode

Under development

Timer A

In this mode, the timer counts an internally generated count source. (See Table 1.14.1.) Figure 1.14.7 shows the timer Ai mode register in timer mode.

 Table 1.14.1.
 Specifications of timer mode

Item	Specification
Count source	f1, f8, f2n, fC32
Count operation	Down count
	• When the timer underflows, it reloads the reload register contents before continuing
	counting
Divide ratio	1/(m+1)m : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	When the timer underflows
TAilN pin function	Programmable I/O port or gate input
TAio∪⊤ pin function	Programmable I/O port or pulse output (Setting by corresponding function select
	registers A, B and C)
Read from timer	Count value can be read out by reading timer Ai register
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload register and
	counter
	When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)
Select function	Gate function
	Counting can be started and stopped by the TAiIN pin's input signal
	Pulse output function
	Each time the timer underflows, the TAio∪⊤ pin's polarity is reversed

Figure 1.14.7. Timer Ai mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. Timers A0 and A1 can count a single-phase external signal. Timers A2, A3, and A4 can count a single-phase and a two-phase external signal. Table 1.14.2 lists timer specifications when counting a single-phase external signal. Table 1.14.3 lists timer specifications when counting a two-phase external signal. Figure 1.14.8 shows the timer Ai mode register in event counter mode.

Item	Specification
Count source	• External signals input to TAiIN pin (effective edge can be selected by software)
	 TB2 overflows or underflows, TAj overflows or underflows
Count operation	Up count or down count can be selected by external signal or software
	• When the timer overflows or underflows, it reloads the reload register contents
	before continuing counting (Note)
Divide ratio	• 1/ (FFFF16 - n + 1) for up count
	• 1/ (n + 1) for down count n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer overflows or underflows
TAilN pin function	Programmable I/O port or count source input
TAio∪⊤ pin function	Programmable I/O port, pulse output, or up/down count select input (Setting by corre-
	sponding function select registers A, B and C)
Read from timer	Count value can be read out by reading timer Ai register
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload register and
	counter
	When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)
Select function	Free-run count function
	Even when the timer overflows or underflows, the reload register content is not
	reloaded to it
	Pulse output function
	Each time the timer overflows or underflows, the TAiouT pin's polarity is reversed

Table 1.14.2.	Timer specifications in event counter mode	when not prod	essina two-r	ohase pulse	signal)
				511400 paioo	

Note: This does not apply when the free-run function is selected.

	Symb TAiM	ool R(i=0 to 4) 0356	Address 16, 035716, 035816, 035916	When reset 0, 035A16 00000X002	
	Bit symbol	Bit name	Function (When not using two-phase pulse signal processing)	Function (When using two-phase pulse signal processing)	R١
	TMOD0	Operation mode	b1 b0		00
	TMOD1	select bit	0 1 : Event counter mode	(Note 1)	00
	MR0	This bit is invalid Port output contro	in M32C/80 series. I is set by the function sele	ect registers A, B and C.	
	MR1	Count polarity select bit (Note 2)	0 : Counts external signal's falling edges1 : Counts external signal's rising edges	0 (Set to "0" when using two-phase pulse signal processing)	00
	MR2	Up/down switching cause select bit	0 : Up/down flag's content 1 : TAiOUT pin's input signal (Note 3)	1 (Set to "1" when using two-phase pulse signal processing)	00
	MR3	0 (Set to "0" in E	vent counter mode)		00
	TCK0	Count operation type select bit	0 : Reload type 1 : Free-run type		00
	TCK1	Two-phase pulse signal processing operation select bit (Note 4,Note 5)	0 (Set to "0" when not using two-phase pulse signal processing)	0 : Normal processing operation 1 : Multiply-by-4 processing operation	00
Note 1: Count source is se Note 2: This bit is valid who Note 3: Set the correspond Signal of TAiout p Note 4: This bit is valid for Timer A0 and A1 c Timer A2 is fixed to processing operati Note 5: When performing t signal processing o sure to set the eve	lect by the en only cou- ling functio in counts of timer A3 m an be "0" of o normal pr on. wo-phase p operation s nt/trigger s	event/trigger select inting an external s in select register A down at the time of ode register. ir "1". occessing operation pulse signal process elect bit (address (elect bit (address (t bit (addresses 034216, 03 signal. to I/O port, and port directi "L" and counts up at the ti n and timer A4 is fixed to m ssing, make sure the two-p 034416) is set to "1". Also, 034316) to "00".	34316) in event counter mo on register to "0". me of "H". hultiply-by-4 hase pulse always be	de.

Figure 1.14.8. Timer Ai mode register in event counter mode

Table 1.14.3.	Timer	specifications	in	event	counter	mode
---------------	-------	----------------	----	-------	---------	------

Item	Specification
Count source	Two-phase pulse signals input to TAin or TAiout pin
Count operation	Up count or down count can be selected by two-phase pulse signal
	• When the timer overflows or underflows, the reload register content is
	reloaded and the timer starts over again ^(Note 1)
Divide ratio	• 1/ (FFFF16 - n + 1) for up count
	• 1/ (n + 1) for down count n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	Timer overflows or underflows
TAilN pin function	Two-phase pulse input
TAio∪⊤ pin function	Two-phase pulse input (Set corresponding function select register A for I/O port)
Read from timer	Count value can be read out by reading timer A2, A3, or A4 register
Write to timer	When counting stopped
	When a value is written to timer A2, A3, or A4 register, it is written to both reload
	register and counter
	When counting in progress
	When a value is written to timer A2, A3, or A4 register, it is written to only reload
	register. (Transferred to counter at next reload time.)
Select function (Note 2)	Normal processing operation (TimerA2 and timer A3)
	The timer counts up rising edges or counts down falling edges on the TAiIN pin when
	input signal on the TAio∪⊤ pin is "H"
	TAIIN (i=2,3) Up Up Up Down Down Down count count count count count
	Multiply-by-4 processing operation (TimerA3 and timer A4)
	If the phase relationship is such that the TAiln pin goes "H" when the input signal on
	the TAiout pin is "H", the timer counts up rising and falling edges on the TAiout and
	TAil pins. If the phase relationship is such that the TAil pin goes "L" when the input
	signal on the TAiOUT pin is "H", the timer counts down rising and falling edges on the
	TAIOUT and TAIIN pins.
	Count up all edges Count down all edges
	TAim

(when processing two-phase pulse signal with timers A2, A3, and A4)

Note 1: This does not apply when the free-run function is selected.

Note 2: Timer A3 is selectable. Timer A2 is fixed to normal processing operation and timer A4 is fixed to multiply-by-4 operation.

Counter Resetting by Two-Phase Pulse Signal Processing

This function resets the timer counter to "0" when the Z-phase (counter reset) is input during twophase pulse signal processing.

This function can only be used in timer A3 event counter mode, two-phase pulse signal processing, free-run type, and multiply-by-4 processing. The Z phase is input to the INT2 pin.

When the Z-phase input enable bit (bit 5 at address 034216) is set to "1", the counter can be reset by Z-phase input. For the counter to be reset to "0" by Z-phase input, you must first write "000016" to the timer A3 register (addresses 034D16 and 034C16).

The Z-phase is input when the INT2 input edge is detected. The edge polarity is selected by the INT2 polarity switch bit (bit 4 at address 009C16). The Z-phase must have a pulse width greater than 1 cycle of the timer A3 count source. Figure 1.14.9 shows the relationship between the two-phase pulse (A phase and B phase) and the Z phase.

The counter is reset at the count source following Z-phase input. Figure 1.14.10 shows the timing at which the counter is reset to "0".

Note that timer A3 interrupt requests occur successively two times when timer A3 underflow and INT2 input reload occures at the same time.

Do not use timer A3 interrupt request when this function is used.

Figure 1.14.9. The relationship between the two-phase pulse (A phase and B phase) and the Z phase

Figure 1.14.10. The counter reset timing

(3) One-shot timer mode

In this mode, the timer operates only once. (See Table 1.14.4.) When a trigger occurs, the timer starts up and continues operating for a given period. Figure 1.14.11 shows the timer Ai mode register in one-shot timer mode.

Item	Specification
Count source	f1, f8, f2n, fC32
Count operation	The timer counts down
	• When the count reaches 000016, the timer stops counting after reloading a new
	count
	• If a trigger occurs when counting, the timer reloads a new count and restarts counting
Divide ratio	1/n n : Set value
Count start condition	An external trigger is input
	The timer overflows
	• The one-shot start flag is set (= 1)
Count stop condition	• A new count is reloaded after the count has reached 000016
	• The count start flag is reset (= 0)
Interrupt request generation timing	The count reaches 000016
TAilN pin function	Programmable I/O port or trigger input
TAio∪⊤ pin function	Programmable I/O port or pulse output (Setting by corresponding function select regis-
	ters A, B and C)
Read from timer	When timer Ai register is read, it indicates an indeterminate value
Write to timer	When counting stopped
	When a value is written to timer Ai register, it is written to both reload register and
	counter
	When counting in progress
	When a value is written to timer Ai register, it is written to only reload register
	(Transferred to counter at next reload time)

Table 1.14.4.	. Timer specifications in one-shot tim	er mode
---------------	--	---------

b6 b5 b4 b3 b2 b1 b0	Symbol TAiMR(i	i=0 to 4) 035616, 035716,	Address When reset 035816, 035916, 035A16 00000X002	
	Bit symbol	Bit name	Function	RW
	TMOD0	Operation mode select bit	b1 b0	O C
	TMOD1		1 0 : One-shot timer mode	OC
· · · · · · · · · · · · · · · · · · ·	MR0	This bit is invalid in M32C/ Port output control is set b	80 series. y the function select registers A, B and C.]_ -
	MR1	External trigger select bit (Note 1)	0 : Falling edge of TAiın pin's input signal (Note 2) 1 : Rising edge of TAiın pin's input signal (Note 2)	oc
	MR2	Trigger select bit	0 : One-shot start flag is valid 1 : Selected by event/trigger select register	oc
į i	MR3	0 (Set to "0" in one-shot tir	ner mode)	oc
	TCK0	Count source select bit	b7 b6 0 0 : f1 0 1 · f8	oc
	TCK1		1 0 : f2n 1 1 : fC32 (Note 3)	oc

Figure 1.14.11. Timer Ai mode register in one-shot timer mode

(4) Pulse width modulation (PWM) mode

In this mode, the timer outputs pulses of a given width in succession. (See Table 1.14.5.) In this mode, the counter functions as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure 1.14.12 shows the timer Ai mode register in pulse width modulation mode. Figure 1.14.13 shows the example of how a 16-bit pulse width modulator operates. Figure 1.14.14 shows the example of how an 8-bit pulse width modulator operates.

Item	Specification		
Count source	f1, f8, f2n, fC32		
Count operation	• The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator)		
	• The timer reloads a new count at a rising edge of PWM pulse and continues counting		
	 The timer is not affected by a trigger that occurs when counting 		
16-bit PWM	High level width n / fi n : Set value		
	Cycle time (2 ¹⁶ -1) / fi fixed		
8-bit PWM	• High level width $n \times (m+1) / fi$ n : values set to timer Ai register's high-order address		
	• Cycle time $(2^{8}-1) \times (m+1) / fi$ m:values set to timer Ai register's low-order address		
Count start condition	External trigger is input		
	The timer overflows		
	• The count start flag is set (= 1)		
Count stop condition	• The count start flag is reset (= 0)		
Interrupt request generation timing	PWM pulse goes "L"		
TAilN pin function	Programmable I/O port or trigger input		
TAiout pin function	Pulse output (TAiOUT is selected by corresponding function select registers A, B and C)		
Read from timer	When timer Ai register is read, it indicates an indeterminate value		
Write to timer	When counting stopped		
	When a value is written to timer Ai register, it is written to both reload register and		
	counter		
	When counting in progress		
	When a value is written to timer Ai register, it is written to only reload register		
	(Transferred to counter at next reload time)		

Table 1.14.5.	Timer specifications in	pulse width	modulation	mode

	Symbol TAiMR(i=0	Ac 0 to 4) 035616, 035716, 03	ddress When reset 35816, 035916, 035A16 00000X002	
	Bit symbol	Bit name	Function	R١
	TMOD0 TMOD1	Operation mode select bit	^{b1 b0} 1 1 : Pulse width modulator (PWM) mode	00
	MR0	This bit is invalid in M32C Port output control is set I	/80 series. by the function select registers A, B and C.	
	MR1	External trigger select bit (Note 1)	0: Falling edge of TAin pin's input signal (Note 2) 1: Rising edge of TAin pin's input signal (Note 2)	00
	MR2	Trigger select bit	0: Count start flag is valid 1: Selected by event/trigger select register	0
	MR3	16/8-bit PWM mode select bit	0: Functions as a 16-bit pulse width modulator 1: Functions as an 8-bit pulse width modulator	00
·····	TCK0	Count source select bit	b7 b6 0 0 : f1 0 1 : f8	00
	TCK1		1 0 : f2n (Note 3) 1 1 : fC32	00
ote 1: Valid only when the (addresses 034216 a ote 2: Set the correspondin ote 3: n = 0 to 15. n is set	TAiin pin is se nd 034316). I g function se by the count	lected by the event/trigger f timer overflow is selected lect register A to I/O port, a source prescaler register (a	select bit I, this bit can be "1" or "0". nd port direction register to "0". address 035F16).	

Figure 1.14.12. Timer Ai mode register in pulse width modulation mode

Figure 1.14.13. Example of how a 16-bit pulse width modulator operates

Figure 1.14.14. Example of how an 8-bit pulse width modulator operates

Timer B

Figure 1.15.1 shows the block diagram of timer B. Figures 1.15.2 and 1.15.4 show the timer B-related registers. Use the timer Bi mode register (i = 0 to 5) bits 0 and 1 to choose the desired mode. Timer B has three operation modes listed as follows:

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external source or a timer overflow.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.

Figure 1.15.1. Block diagram of timer B

b0	b7 b0 Symbol TBi (i = 0 to 2 TBi (i = 3 to 5	Address 2) 035116,035016, 035316,035216, 035516,03 5) 031116,031016, 031316,031216, 031516,03	When rese 5416 Indetermina 1416 Indetermina	et ate ate
		Function	Values that can be set	RW
	Timer mode	16-bit counter (set to dividing ratio)	000016 to FFFF16	oc
	Event counter mode	16-bit counter (set to dividing ratio) (Note 2)	000016 to FFFF16	0 0
	Pulse period / pulse width measurement mode	Measures a pulse period or width		0-
	Note 1: Read and write data	a in 16-bit units.		

Figure 1.15.3. Timer B-related registers (2)

	Symbol TBSR	Address 030016	When reset 000XXXXX2	
	Bit symbol	Bit name	Function	R¦W
		-		
		Nothing is assigned.	"	
		VVnen write, set "0". V	hen read, its content is indeterminate.	
				— ¦ —
		Timer B3 count	0 : Stops counting	
·	TB3S	start flag	1 : Starts counting	00
	TB4S	Timer B4 count	0 : Stops counting	00
		Start hug		
	TDEC	Timer B5 count	0 : Stops counting	
k prescaler reset	TB5S	Timer B5 count start flag	0 : Stops counting 1 : Starts counting	00
k prescaler reset	TB5S flag Symbol CPSRF	Timer B5 count start flag Address 034116	0 : Stops counting 1 : Starts counting When reset 0XXXXXX2	00
k prescaler reset	TB5S flag Symbol CPSRF Bit symbol	Timer B5 count start flag Address 034116 Bit name	0 : Stops counting 1 : Starts counting When reset 0XXXXXXX2 Function	O O
k prescaler reset	TB5S flag Symbol CPSRF Bit symbol	Timer B5 count start flag Address 034116 Bit name	0 : Stops counting 1 : Starts counting When reset 0XXXXXX2 Function	R W
<pre> < prescaler reset </pre>	TB5S flag Symbol CPSRF Bit symbol	Timer B5 count start flag Address 034116 Bit name	0 : Stops counting 1 : Starts counting When reset 0XXXXXX2 Function	R W
k prescaler reset	TB5S flag Symbol CPSRF Bit symbol	Timer B5 count start flag Address 034116 Bit name	0 : Stops counting 1 : Starts counting When reset 0XXXXXXX2 Function	R W
<pre> < prescaler reset </pre> $b5 \ b4 \ b3 \ b2 \ b1 \ b0 $	TB5S flag Symbol CPSRF Bit symbol ————————————————————————————————————	Timer B5 count start flag Address 034116 Bit name Nothing is assigned. When write, set "0". Whe	0 : Stops counting 1 : Starts counting When reset 0XXXXXX2 Function	R W
k prescaler reset	TB5S flag Symbol CPSRF Bit symbol —— —— ——	Timer B5 count start flag Address 034116 Bit name Nothing is assigned. When write, set "0". Whe indeterminate.	0 : Stops counting 1 : Starts counting When reset 0XXXXXXX2 Function	R W
k prescaler reset	TB5S flag Symbol CPSRF Bit symbol — — — — — — —	Timer B5 count start flag Address 034116 Bit name Nothing is assigned. When write, set "0". Whe indeterminate.	0 : Stops counting 1 : Starts counting When reset 0XXXXXX2 Function	R W
k prescaler reset	TB5S flag Symbol CPSRF Bit symbol —— —— —— —— —— —— —— —— ——	Timer B5 count start flag Address 034116 Bit name Nothing is assigned. When write, set "0". Whe indeterminate.	0 : Stops counting 1 : Starts counting When reset 0XXXXXXX2 Function	R W
<pre> prescaler reset b3 b2 b1 b0</pre>	TB5S flag Symbol CPSRF Bit symbol	Timer B5 count start flag Address 034116 Bit name Nothing is assigned. When write, set "0". Whe indeterminate.	0 : Stops counting 1 : Starts counting When reset 0XXXXXX2 Function	R W

(1) Timer mode

In this mode, the timer counts an internally generated count source. (See Table 1.15.1.) Figure 1.15.5 shows the timer Bi mode register in timer mode.

Item	Specification
Count source	f1, f8, f2n, fC32
Count operation	Counts down
	• When the timer underflows, it reloads the reload register contents before continuing
	counting
Divide ratio	1/(m+1)m : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer underflows
TBiIN pin function	Programmable I/O port
Read from timer	Count value is read out by reading timer Bi register
Write to timer	When counting stopped
	When a value is written to timer Bi register, it is written to both reload register and
	counter
	When counting in progress
	When a value is written to timer Bi register, it is written to only reload register
	(Transferred to counter at next reload time)
1	

Table 1.15.1.	Timer	specifications	in	timer	mode
---------------	-------	----------------	----	-------	------

Symbol TBiMR(i=0 t	/ o 5) 035B16, 035C16, 035[Address Whe D16, 031B16, 031C16, 031D16 00X	en rese X0000
Bit symbol	Bit name	Function	R
TMOD0 TMOD1	Operation mode select bit	0 0 : Timer mode	0
MR0	Invalid in timer mode.		0
MR1	Can be "0" or "1".		0
	0 (Set to "0" in timer mode)	(Note 1)	0
 MR2	Nothing is assigned. (i = 1, When write, set "0". When	2, 4, 5) (Note 2) read, its content is indeterminate.	_
 MR3	Invalid in timer mode. When mode, its content is indeter	n write, set "0". When read in timer minate.	
 TCK0	Count source select bit	^{b7 b6} 0 0 : f1 0 1 : f8	0
 TCK1		1 0 : f2n (Note 3) 1 1 : fC32	0

Figure 1.15.5. Timer Bi mode register in timer mode

(2) Event counter mode

In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 1.15.2.) Figure 1.15.6 shows the timer Bi mode register in event counter mode.

Item	Specification
Count source	 External signals input to TBin pin
	Effective edge of count source can be a rising edge, a falling edge, or falling and
	rising edges as selected by software
	 TBj overflows or underflows
Count operation	Counts down
	 When the timer underflows, it reloads the reload register contents before continuing
	counting
Divide ratio	1/(n+1) n : Set value
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	The timer underflows
TBiIN pin function	Count source input (Set the corresponding function select register A to I/O port.)
Read from timer	Count value can be read out by reading timer Bi register
Write to timer	When counting stopped
	When a value is written to timer Bi register, it is written to both reload register and
	counter
	 When counting in progress
	When a value is written to timer Bi register, it is written to only reload register
	(Transferred to counter at next reload time)

Table **1.15.2**. Timer specifications in event counter mode

Figure 1.15.6. Timer Bi mode register in event counter mode

(3) Pulse period/pulse width measurement mode

In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 1.15.3.) Figure 1.15.7 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure 1.15.8 shows the operation timing when measuring a pulse period. Figure 1.15.9 shows the operation timing when measuring a pulse period.

Item	Specification
Count source	f1, f8, f2n, fC32
Count operation	Count up
	Counter value "000016" is transferred to reload register at measurement pulse's
	effective edge and the timer continues counting
Count start condition	Count start flag is set (= 1)
Count stop condition	Count start flag is reset (= 0)
Interrupt request generation timing	When measurement pulse's effective edge is input (Note 1)
	• When an overflow occurs. (Simultaneously, the timer Bi overflow flag changes to "1".
	The timer Bi overflow flag changes to "0" when the count start flag is "1" and a value
	is written to the timer Bi mode register.)
TBiIN pin function	Measurement pulse input (Set the corresponding function select register A to I/O port.)
Read from timer	When timer Bi register is read, it indicates the reload register's content
	(measurement result) (Note 2)
Write to timer	Cannot be written to

Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting.

Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.

Timer Bi mode regist	er (i = 0 to 5)) (Pulse period / pulse	e width measurement mode)	(1		
	TBiMR(i=	0 to 5) 035B16, 035C	Address (0) 16, 035D16, 031B16, 031C16, 031D16 (0)	OXX00	0002	
	Bit symbol	Bit name	Function	R	W	
	TMOD0	Operation mode	b1 b0	0	0	
	TMOD1	select bit	measurement mode	0	0]
······	MR0	Measurement mode select bit	0 0 : Pulse period measurement 1 0 1 : Pulse period measurement 2	0	0	
	MR1		1 0 : Pulse width measurement 1 1 : Must not be set (Note 1) 0	0	
	MDO	0 (Set to "0" in pulse p	period/pulse width measurement mode) (Note 2	<u>2)</u> 0	0	
	WIR2	Nothing is assigned (i When write, set "0". \	= 1, 2, 4, 5). (Note 3 When read, its content is indeterminate.	3) _		1
	MR3	Timer Bi overflow flag (Note 4)	0 : Timer did not overflow 1 : Timer has overflowed	-	-	
	TCK0	Count source select bit	b_{7b6} 00:f1	0	0]
L	TCK1		1 0 : f2n (Note 5 1 1 : fC32) 0	0]
Note 1: Do the next measur Pulse period measu Pulse period measu Pulse width measur Note 2: R/W is valid only in Note 3: In timer B1, timer B	rement, In the r urement 1 (bit 3 urement 2 (bit 3 rement (bit 3 timer B0 and ti 2, timer B4 and	neasurement mode sel b, bit 2="0 0") : Interval b b, bit 2="0 1") : Interval b b, bit 2="1 0") : Interval b and betw imer B3. d timer B5, nothing is as	ect bit. between measurement pulse's falling edg between measurement pulse's rising edge between measurement pulse's falling edg reen rising edge to falling edge. signed by bit 4(There is not R/W).	e to fa to ris e to ris	lling ing e sing e	edg edge
When write, set "0". Note 4: It is indeterminate w The timer Bi overflo timer Bi mode regis Note 5: n = 0 to 15. n is set	When read, it when reset. w flag changes ter. This flag o t by the count	ts content is indetermina s to "0" when the count cannot be set to "1" by s source prescaler registe	ate. start flag is "1" and a value is written to th software. er (address 035F16).	e		

Figure 1.15.7. Timer Bi mode register in pulse period/pulse width measurement mode

When measuri Count source	ng measurement pulse time interval from falling edge to falling edge
Measurement pulse	"L" Transfer (indeterminate value) (measured value)
Reload register ← cou transfer timing	nter
Timing at which counte reaches "000016"	·ŃŃŃ
Count start flag	"1" "0"
Timer Bi interrupt request bit	"1" "0"
Timer Bi overflow flag	Cleared to "0" when interrupt request is accepted, or cleared by software.
Note 1: Counte Note 2: Timer f	r is initialized at completion of measurement. as overflowed.

Figure 1.15.8. Operation timing when measuring a pulse period

Measurement pulse	"H" "L" Transfer Transfer Transfer (measured value) (measured value)
Reload register ← cour transfer timing	nter
Timing at which counte reaches "000016"	Image: stress
Count start flag	"1" "0"
Timer Bi interrupt request bit	"1" "0"
Timer Bi overflow flag	"1" Cleared to "0" when interrupt request is accepted, or cleared by software.

Figure 1.15.9. Operation timing when measuring a pulse width

Three-phase motor control timers' functions

Use of more than one built-in timer A and timer B provides the means of outputting three-phase motor driving waveforms.

Figures 1.16.1 through 1.16.5 show registers related to timers for three-phase motor control.

b6 b5 b4 b3 b2 b1 b0	Symbol INVC0	Address V 030816	Vhen reset 0016		
	Bit symbol	Bit name	Description	R	W
	INV00	Effective interrupt output polarity select bit	 0: A timer B2 interrupt occurs when the timer A1 reload control signal is "1". 1: A timer B2 interrupt occurs when the timer A1 reload control signal is "0". (Note 3) 	0	0
	INV01	Effective interrupt output specification bit (Note 2)	0: Not specified. 1: Selected by the INV00 bit. (Note 3)	0	0
	INV02	Mode select bit (Note 4)	0: Normal mode 1: Three-phase PWM output mode	0	0
	INV03	Output control bit	0: Output disabled 1: Output enabled	0	0
	INV04	Positive and negative phases concurrent L output disable function enable bit	0: Feature disabled 1: Feature enabled	0	0
	INV05	Positive and negative phases concurrent L output detect flag	0: Not detected yet 1: Already detected (Note 5)	0	0
·····	INV06	Modulation mode select bit	0: Triangular wave modulation mode (Note 6) 1: Sawtooth wave modulation mode (Note 7)	0	0
	INV07	Software trigger bit	0: Ignored 1: Trigger generated (Note 8)	0	0
te 1: Set bit 1 of the protect te 2: Set bit 1 of this regist te 3: Effective only in three te 4: Selecting three-phas and the timer B2 inte For U, D, V, V, W and C is required	ct register (ad ter to "1" after e-phase mode e PWM outpu rrupt frequenc d W output fro	dress 000A16) to "1" before w setting timer B2 interrupt occ 1(Three-phase PWM contro t mode causes the dead time sy set circuit works. m P80, P81, and P72 through	riting to this register. urrences frequency set counter. I register's bit 1 = "1"). timer, the U, V, W phase output control circu P75, setting of function select registers A, B	uits, and	d

Note 7: The dead time timer starts in synchronization with the falling edge of timer A output and with the transfer trigger signal. The data transfer from the three-phase output buffer register to the three-phase output shift register is made with respect to every transfer trigger.

Note 8: The value, when read, is "0".

Figure 1.16.1. Registers related to timers for three-phase motor control

Under Rev.B2 for proof reading

-		Symbol INVC1	Address \ 030916	When reset 0016		
		Bit symbol	Bit name	Description	R	١
		INV10	Timer Ai start trigger signal select bit	0: Timer B2 overflow signal 1: Timer B2 overflow signal, signal for writing to timer B2	0	C
	· · · · · · · · · · · · · · · · · · ·	INV11	Timer A1-1, A2-1, A4-1 control bit (Note 2)	0: Three-phase mode 0 1: Three-phase mode 1	0	(
		INV12	Dead time timer count source select bit	0 : f1 1 : f1/2	0	(
		INV13	Carrier wave detect flag	0: Rising edge of triangular waveform 1: Falling edge of triangular waveform	0	_
		INV14	Output polarity control bit	0 : Low active 1 : High active	0	(
·		INV15	Dead time invalid bit	0: Dead time valid bit 1: Dead time invalid bit	0	(
		INV16	Dead time timer trigger select bit	0: Triggers from corresponding timer 1: Rising edge of corresponding phase output (Note 3)	0	C
		INV17	Waveform reflect timing	0: Synchronized with raising edge of		
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid or :Usually set to "1" :INV17 is valid or	protect register nly in triangular ly in three-pha	(address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1.	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1).	0	(
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid or :Usually set to "1' :INV17 is valid or hase output b	orotect register only in triangular ly in three-pha Duffer regis Symbol	(address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address 1) 030A16 030B16	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset	0	
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid or :Usually set to "1' :INV17 is valid or hase output I	orotect register nly in triangular iy in three-pha Duffer regis Symbol IDBi (i=0	(address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address (1) 030A16, 030B16	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset XX00 00002	0	
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid oi :Usually set to "1' :INV17 is valid or hase output I	orotect register hly in triangular ly in three-pha Duffer regis Symbol IDBi (i=0 Bit Symbol	select bit (address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address 1) 030A16, 030B16 Bit name	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset XX00 00002 Function	R	
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid oi :Usually set to "1' :INV17 is valid or hase output P	Duffer register Iv in triangular Iv in three-pha Duffer regis Symbol IDBi (i=0 Bit Symbol DUi	(address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address 1) 030A16, 030B16 Bit name U phase output buffer i	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset XX00 00002 Function Setting in U phase output buffer i	R O	
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid or :Usually set to "1' :INV17 is valid or hase output l	brotect register hly in triangular ly in three-pha buffer regis Symbol IDBi (i=0 Bit Symbol DUi DUBi	(address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address 1) 030A16, 030B16 Bit name U phase output buffer i Ū phase output buffer i	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset XX00 00002 Function Setting in U phase output buffer i Setting in U phase output buffer i Setting in U phase output buffer i	0 R 0 0	
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid or :Usually set to "1' :INV17 is valid or hase output I	brotect register hly in triangular iy in three-pha Duffer regis Symbol IDBi (i=0 Bit Symbol DUi DUi DUBi	select bit (address 000A16) to "1" befor r waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address (1) 030A16, 030B16 Bit name U phase output buffer i U phase output buffer i V phase output buffer i	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset XX00 00002 Function Setting in U phase output buffer i Setting in U phase output buffer i Setting in V phase output buffer i	0 R 0 0	
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid or :Usually set to "1' :INV17 is valid or hase output l b4 b3 b2 b1 b0	Division of the second	select bit (address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address (1) 030A16, 030B16 Bit name U phase output buffer i \overline{U} phase output buffer i \overline{V} phase output buffer i W phase output buffer i	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset XX00 00002 Function Setting in U phase output buffer i Setting in U phase output buffer i Setting in V phase output buffer i Setting in V phase output buffer i Setting in V phase output buffer i	R 0 0 0 0	
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid or :Usually set to "1' :INV17 is valid or hase output P	Divident register ny in triangular ily in three-pha Duffer regis Symbol IDBi (i=0 Bit Symbol DUi DUi DUi DUi DVi DVBi DWi DWBi	select bit (address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address (1) 030A16, 030B16 Bit name U phase output buffer i \overline{U} phase output buffer i \overline{V} phase output buffer i \overline{V} phase output buffer i \overline{W} phase output buffer i	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset XX00 00002 Function Setting in U phase output buffer i Setting in U phase output buffer i Setting in V phase output buffer i Setting in V phase output buffer i Setting in W phase output buffer i Setting in W phase output buffer i	R O O O O O O O O O O O O O O O O	
Note 1: Note 2: Note 3: Note 4:	: Set bit 1 of the p : INV13 is valid or :Usually set to "1' :INV17 is valid or hase output l b4 b3 b2 b1 b0	Division of the second state of the second sta	select bit (address 000A16) to "1" befor waveform mode (INV06=0) a se mode 1. ter i (i=0, 1) (Note) Address (1) 030A16, 030B16 Bit name U phase output buffer i U phase output buffer i V phase output buffer i V phase output buffer i W phase output buffer i	triangular waveform 1: Synchronized with timer B2 overflow (Note 4) re writing to this register. and three-phase mode (INV11=1). When reset XX00 00002 Function Setting in U phase output buffer i Setting in U phase output buffer i Setting in V phase output buffer i Setting in V phase output buffer i Setting in W phase output buffer i	0 R 0 0 0 0 0 0 0 0 0 0 0 0 0	

Figure 1.16.2. Registers related to timers for three-phase motor control

Under Rev.B2 for proof reading

Dead time timer (Note) b7 b0 Symbol Address When reset DTT 030C16 Indeterminate Function Values that can be set R W 8-bits counter (set dead time timer) 1 to 255 Ο Note: Use MOV instruction to write to this register. Timer B2 interrupt occurrences frequency set counter (Note 1 to 4) Symbol Address When reset ICTB2 030D16 Indeterminate Function Values that can be set RW Set occurrence frequency of timer B2 1 to 15 Ο interrupt request Nothing is assigned. When write, set to "0". Note 1: Use MOV instruction to write to this register. Note 2: When the effective interrupt output specification bit (INV01: bit 1 at 030816) is set to "1" and three-phase motor control timer is operating, do not rewrite to this register. Note 3: Do not write to this register at the timing of timer B2 overflow. Note 4: Setting of this register is valid only when bit 2 (INV02) of three-phase PWM control register 0 is set to "1". Timer Ai, Ai-1 register (Note 1 to 3) (b15) (b8) Symbol Address When reset b0 b7 b7 b0 TAi (i 1, 2, 4) 034916,034816, 034B16,034A16, 034F16,034E16 Indeterminate 030316,030216, 030516,030416, 030716,030616 Indeterminate TAi1 (i 1, 2, 4) Function R W Values that can be set Three-phase PWM pulse width modulator 000016 to FFFF16 Ο (decide PWM output pulse width) Note 1: Read and write data in 16-bit units. Note 2: When set "000016" to the timer Ai register, counter doesn't move, and timer Ai interrupt isn't generated. Note 3: Use MOV instruction to write to this register. Timer B2 register (Note) (b15) (b8) Symbol Address When reset b0 b7 b0 b TB2 035516,035416 Indeterminate Function R W Values that can be set Set the period of carrier wave 000016 to FFFF16 0:0 Note : Read and write data in 16-bit units.

Figure 1.16.3. Registers related to timers for three-phase motor control

Figure 1.16.4. Registers related to timers for three-phase motor control

Three-phase motor driving waveform output mode (three-phase PWM output mode)

Setting "1" in the mode select bit (bit 2 at 030816) shown in Figure 1.16.1 causes three-phase PWM output mode that uses four timers A1, A2, A4, and B2. As shown in Figure 1.16.4 and 1.16.5 set timers A1, A2, and A4 in one-shot timer mode, set the trigger in timer B2, and set timer B2 in timer mode using the respective timer mode registers.

Timer Ai mode register (i = 1, 2, 4)

b7 bi	6 b5 b4 b3 b2 b1 b0 0 1 1 0	Symbol TAiMR(i=1	Ado , 2, 4) 035716, 03	dress When reset 5816, 035A16 00000X002	
		Bit symbol	Bit name	Function	RW
		TMOD0	Operation mode select bit	b1 b0	00
		TMOD1		1 0 : One-shot timer mode	00
		MR0	This bit is invalid in M32C/ Port output control is set b	80 series. y the function select registers A, B and C.	
		MR1	External trigger select bit	Invalid in Three-phase PWM output mode.	00
		MR2	Trigger select bit	1 : Selected by event/trigger select register	00
		MR3	0 (Set to "0" in one-shot tir	ner mode)	00
		ТСК0	Count source select bit	^{b7 b6} 0 0 : f1 0 1 : f8	00
		TCK1		1 0 : f2n (Note) 1 1 : fC32	00

Note: n = 0 to 15. n is set by the count source prescaler register (address 035F16).

Timer B2 mode register

	Symbol TB2MR	Address 035D16	When reset 00XX00002		
	Bit symbol	Bit name	Function		RV
	TMOD0	Operation made calent hit	b1 b0		00
	TMOD1	Operation mode select bit			00
· · · · · · · · · · · · · · · · · · ·	MR0	Invalid in timer mode			00
	MR1	Can be "0" or "1"			00
	MR2	0 (Set to "0" in timer mode)			00
	MR3	Invalid in timer mode. When write, set "0". When indeterminate.	read in timer mode, its content is		
	TCK0	Count source select bit	^{b7 b6} 0 0 : f1 0 1 : fe		00
	TCK1		1 0 : f2n 1 1 : fC32	(Note)	00

Figure 1.16.5. Timer mode registers in three-phase PWM output mode

Figure 1.16.6 shows the block diagram for three-phase waveform mode. The Low active output polarity in three-phase waveform mode, the positive-phase waveforms (U phase, V phase, and W phase) and negative waveforms (\overline{U} phase, \overline{V} phase, and \overline{W} phase), six waveforms in total, are output from P80, P81, P72, P73, P74, and P75 as active on the "L" level. Of the timers used in this mode, timer A4 controls the U phase and \overline{U} phase, timer A1 controls the V phase and \overline{V} phase, and timer A2 controls the W phase and \overline{W} phase respectively; timer B2 controls the periods of one-shot pulse output from timers A4, A1, and A2.

In outputting a waveform, dead time can be set so as to cause the "L" level of the positive waveform output (U phase, V phase, and W phase) not to lap over the "L" level of the negative waveform output (\overline{U} phase, \overline{V} phase, and \overline{W} phase).

To set short circuit time, use three 8-bit timers, sharing the reload register, for setting dead time. A value from 1 through 255 can be set as the count of the timer for setting dead time. The timer for setting dead time works as a one-shot timer. If a value is written to the dead timer (030C16), the value is written to the reload register shared by the three timers for setting dead time.

Any of the timers for setting dead time takes the value of the reload register into its counter, if a start trigger comes from its corresponding timer, and performs a down count in line with the clock source selected by the dead time timer count source select bit (bit 2 at 030916). The timer can receive another trigger again before the workings due to the previous trigger are completed. In this instance, the timer performs a down count from the reload register's content after its transfer, provoked by the trigger, to the timer for setting dead time.

Since the timer for setting dead time works as a one-shot timer, it starts outputting pulses if a trigger comes; it stops outputting pulses as soon as its content becomes 0016, and waits for the next trigger to come.

The positive waveforms (U phase, V phase, and W phase) and the negative waveforms (\overline{U} phase, \overline{V} phase, and \overline{W} phase) in three-phase waveform mode are output, from respective ports by means of setting "1" in the output control bit (bit 3 at 030816). Setting "0" in this bit causes the ports to be the high-impedance state. This bit can be set to "0" not only by use of the applicable instruction, but by entering a falling edge in the \overline{NMI} terminal or by resetting. Also, if "1" is set in the positive and negative phases concurrent L output disable function enable bit (bit 4 at 030816) causes one of the pairs of U phase and \overline{U} phase, V phase and \overline{V} phase, and W phase and \overline{W} phase concurrently go to "L", as a result, the output control bit becomes the high-impedance state.

Under Order Rev.B2 for proof reading

Triangular wave modulation

To generate a PWM waveform of triangular wave modulation, set "0" in the modulation mode select bit (bit 6 at 030816). Also, set "1" in the timers A4-1, A1-1, A2-1 control bit (bit 1 at 030916). In this mode, each of timers A4, A1, and A2 has two timer registers, and alternately reloads the timer register's content to the counter every time timer B2 counter's content becomes 000016. If "0" is set to the effective interrupt output specification bit (bit 1 at 030816), the frequency of interrupt requests that occur every time the timer B2 counter's value becomes 000016 can be set by use of the timer B2 counter (030D16) for setting the frequency of interrupt occurrences. The frequency of occurrences is given by (setting; setting \neq 0).

Setting "1" in the effective interrupt output specification bit (bit 1 at 030816) provides the means to choose which value of the timer A1 reload control signal to use, "0" or "1", to cause timer B2's interrupt request to occur. To make this selection, use the effective interrupt output polarity selection bit (bit 0 at 030816).

An example of U phase waveform is shown in Figure 1.16.7, and the description of waveform output workings is given below. Set "1" in DU0 (bit 0 at 030A16). And set "0" in DUB0 (bit 1 at 030A16). In addition, set "0" in DU1 (bit 0 at 030B16) and set "1" in DUB1 (bit 1 at 030B16). Also, set "0" in the effective interrupt output specification bit (bit 1 at 030816) to set a value in the timer B2 interrupt occurrence frequency set counter. By this setting, a timer B2 interrupt occurs when the timer B2 counter's content becomes 000016 as many as (setting) times. Furthermore, set "1" in the effective interrupt output specification bit (bit 1 at 030B16). These settings cause a timer B2 interrupt to occur every other interval when the U phase output goes to "H".

When the timer B2 counter's content becomes 000016, timer A4 starts outputting one-shot pulses. In this instance, the content of DU1 (bit 0 at 030B16) and that of DU0 (bit 0 at 030A16) are set in the three-phase output shift register (U phase), the content of DUB1 (bit 1 at 030B16) and that of DUB0 (bit 1 at 030A16) are set in the three-phase shift register (\overline{U} phase). After triangular wave modulation mode is selected, however, no setting is made in the shift register even though the timer B2 counter's content becomes 000016.

The value of DU0 and that of DUB0 are output to the U terminal (P80) and to the U terminal (P81) respectively. When the timer A4 counter counts the value written to timer A4 (034F16, 034E16) and when timer A4 finishes outputting one-shot pulses, the three-phase shift register's content is shifted one position, and the value of DU1 and that of DUB1 are output to the U phase output signal and to U phase output signal respectively. At this time, one-shot pulses are output from the timer for setting dead time used for setting the time over which the "L" level of the U phase waveform doesn't overlap the Low level of the \overline{U} phase waveform, which has the opposite phase of the former. The U phase waveform output that started from the "H" level keeps its level until the timer for setting dead time finishes outputting oneshot pulses even though the three-phase output shift register's content changes from "1" to "0" by the effect of the one-shot pulses. When the timer for setting dead time finishes outputting one-shot pulses, "0" already shifted in the three-phase shift register goes active, and the U phase waveform changes to the Low level. When the timer B2 counter's content becomes 000016, the timer A4 counter starts counting the value written to timer A4-1 (030716, 030616), and starts outputting one-shot pulses. When timer A4 finishes outputting one-shot pulses, the three-phase shift register's content is shifted one position, but if the three-phase output shift register's content changes from "0" to "1" as a result of the shift, the output level changes from "L" to "H" without waiting for the timer for setting dead time to finish outputting one-shot pulses. A U phase waveform is generated by these workings repeatedly. With the exception that the three-phase output shift register on the U phase side is used, the workings in generating a U

phase waveform, which has the opposite phase of the U phase waveform, are the same as in generating a U phase waveform. In this way, a waveform can be picked up from the applicable terminal in a manner in which the "L" level of the U phase waveform doesn't lap over that of the U phase waveform, which has the opposite phase of the U phase waveform. The width of the "L" level too can be adjusted by varying the values of timer B2, timer A4, and timer A4-1. In dealing with the V and W phases, and \overline{V} and \overline{W} phases, the latter are of opposite phase of the former, have the corresponding timers work similarly to dealing with the U and \overline{U} phases to generate an intended waveform.

Assigning certain values to DU0 (bit 0 at 030A16) and DUB0 (bit 1 at 030A16), and to DU1 (bit 0 at 030B16) and DUB1 (bit 1 at 030B16) allows you to output the waveforms as shown in Figure 1.16.8, that is, to output the U phase alone, to fix \overline{U} phase to "H", to fix the U phase to "H," or to output the \overline{U} phase alone.

Figure 1.16.8. Timing chart of operation (2)

Sawtooth modulation

To generate a PWM waveform of sawtooth wave modulation, set "1" in the modulation mode select bit (bit 6 at 030816). Also, set "0" in the timers A4, A1, and A2-1 control bit (bit 1 at 030916). In this mode, the timer registers of timers A4, A1, and of A2 comprise conventional timers A4, A1, and A2 alone, and reload the corresponding timer register's content to the counter every time the timer B2 counter's content becomes 000016. The effective interrupt output specification bit (bit 1 at 030816) and the effective interrupt output polarity select bit (bit 0 at 030816) go nullified.

An example of U phase waveform is shown in Figure 1.16.9, and the description of waveform output workings is given below. Set "1" in DU0 (bit 0 at 030A16), and set "0" in DUB0 (bit 1 at 030A16). In addition, set "0" in DU1 (bit 0 at 030B16) and set "1" in DUB1 (bit 1 at 030B16).

When the timber B2 counter's content becomes 000016, timer B2 generates an interrupt, and timer A4 starts outputting one-shot pulses at the same time. In this instance, the contents of the three-phase buffer registers DU1 and DU0 are set in the three-phase output shift register (U phase), and the contents of DUB1 and DUB0 are set in the three-phase output register (U phase). After this, the three-phase buffer register's content is set in the three-phase shift register every time the timer B2 counter's content becomes 000016.

The value of DU0 and that of DUB0 are output to the U terminal (P80) and to the \overline{U} terminal (P81) respectively. When the timer A4 counter counts the value written to timer A4 (034F16, 034E16) and when timer A4 finishes outputting one-shot pulses, the three-phase output shift register's content is shifted one position, and the value of DU1 and that of DUB1 are output to the U phase output signal and to the \overline{U} output signal respectively. At this time, one-shot pulses are output from the timer for setting dead time used for setting the time over which the "L" level of the U phase waveform doesn't lap over the "L" level of the \overline{U} phase waveform, which has the opposite phase of the former. The U phase waveform output that started from the "H" level keeps its level until the timer for setting dead time finishes outputting one-shot pulses even though the three-phase output shift register's content changes from "1" to "0 "by the effect of the one-shot pulses. When the timer for setting dead time finishes outputting one-shot pulses, 0 already shifted in the three-phase shift register goes effective, and the U phase waveform changes to the "L" level. When the timer B2 counter's content becomes 000016, the contents of the three-phase buffer registers DU1 and DU0 are set in the three-phase shift register (U phase), and the contents of DUB1 and DUB0 are set in the three-phase shift register (U phase) again.

A U phase waveform is generated by these workings repeatedly. With the exception that the threephase output shift register on the \overline{U} phase side is used, the workings in generating a \overline{U} phase waveform, which has the opposite phase of the U phase waveform, are the same as in generating a U phase waveform. In this way, a waveform can be picked up from the applicable terminal in a manner in which the "L" level of the U phase waveform doesn't lap over that of the U phase waveform, which has the opposite phase of the U phase waveform. The width of the "L" level can also be adjusted by varying the values of timer B2 and timer A4. In dealing with the V and W phases, and \overline{V} and \overline{W} phases, the latter are of opposite phase of the former, have the corresponding timers work similarly to dealing with the U and \overline{U} phases to generate an intended waveform.

Under Oppment **Rev.B2 for proof reading**

Setting "1" both in DUB0 and in DUB1 provides a means to output the U phase alone and to fix the \overline{U} phase output to "H" as shown in Figure 1.16.10.

Serial I/O

Serial I/O is configured as five channels: UART0 to UART4.

UARTi (i=0 to 4) each have an exclusive timer to generate a transfer clock, so they operate independently of each other.

Figure 1.17.1 shows the block diagram of UARTi.

UARTi has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses 036816, 02E816, 033816, 032816 and 02F816) determine whether UARTi is used as a clock synchronous serial I/O or as a UART.

It has the bus collision detection function that generates an interrupt request if the TxD pin and the RxD pin are different in level.

Figures 1.17.2 through 1.17.8 show the registers related to UARTi.

Under Device Proof reading

Figure 1.17.1. Block diagram of UARTi

Figure 1.17.2. Serial I/O-related registers (1)

Figure 1.17.4. Serial I/O-related registers (3)

I	b6	b5	b4	b3	t	b2 b1	b0	Symt UiC1	col Add (i=0 to 4) 0361	ress D16, 02ED16, 033D16, 032D1	When rese 6, 02FD16 0216	et
								Bit symbol	Bit name	Function (Clock synchronous serial I/O mode)	Function (UART mode)	R
							i.	TE	Transmit enable bit	0: Transmission disable 1: Transmission enable	ed ed	
								ті	Transmit buffer empty flag	0: Data present in trans 0: No data present in tr	smit buffer register ansmit buffer register	0-
								RE	Receive enable bit	0: Reception disabled 1: Reception enabled		0
								RI	Receive complete flag	0: Data present in recei 0: No data present in re	ive buffer register eceive buffer register	0:-
								UilRS	UARTi transmit interrupt cause select bit	0: Transmit buffer empt 1: Transmit is complete	ty (TI = 1) ed (TXEPT = 1)	0
								UiRRM	UARTi continuous receive mode enable bit	0: Continuous receive mode disabled 1: Continuous receive mode enabled	Set to "0"	0
								UiLCH	Data logic select bit	0: No reverse 1: Reverse		0
								SCLKSTPB /UiERE	Clock divide synchronizing stop bit /error signal output enable bit	Clock divide synchronizing stop bit 0: Synchronizing stop 1: Synchronous start (Note)	Set to "0"	0

Note :When this bit and bit 7 of UARTi special mode register 2 are set, clock synchronizing function is used.

UARTi special mode register (i=0 to 4)

b7	b6	b5	b4	b3	b2	2 1	b1	b0	Symb LliSM	ol Add R(i=0 to 4) 036	ress 716 02E716 033716 032716	When reset	t	
Ļ	:	÷		-	1		:	Ξ.	Clothi					
	ł								Bit symbol	Bit name	Function (Clock synchronous serial I/O mode)	Function (UART mode)	R	w
									IICM	IIC mode select bit	0: Normal mode 1: IIC mode	Set to "0"	0	0
					ABC	Arbitration lost detecting flag control bit	0: Update per bit 1: Update per byte	Set to "0"	0	0				
						BBS	Bus busy flag	0: STOP condition detected 1: START condition detected	Set to "0"	0. N	O ote 1			
				Į.	••••				LSYN	SCLL sync output enable bit	0: Disabled 1: Enabled	Set to "0"	0	0
									ABSCS	Bus collision detect sampling clock select bit	Set to "0"	0: Rising edge of transfer clock 1: Underflow signal of timer Ai (Note 2)	0	0
					ACSE	Auto clear function select bit of transmit enable bit	Set to "0"	0: No auto clear function 1: Auto clear at occurrence of bus	0	0				
				SSS	Transmit start condition select bit	Set to "0"	0: Ordinary 1: Falling edge of RxDi	0	0					
İ.,				SCLKDIV	Clock divide set bit	0: Divided-by-2 _(Note 3) 1: No divided	Set to "0"	0	0					

Note 1: Nothing but "0" may be written. Note 2: UART0: timer A3 underflow signal, UART1: timer A4 underflow signal, UART2: timer A0 underflow signal, UART3: timer A3 underflow signal, UART4: timer A4 underflow signal. Note 3: When this bit and bit 7 of UARTi transmit/receive control register 1 are set, clock synchronizing

function is used.

b6 b5	b4	b3 b	2 b1	b0	Symb UiSM	ol Address R2(i=0 to 4) 036616, 0	When rese 2E616, 033616, 032616, 02F616 0016	t
					Bit symbol	Bit name	Function	RW
					IICM2	IIC mode select bit 2	 0: NACK/ACK interrupt (DMA source - ACK) Transfer to receive buffer at the rising edge of last bit of receive clock Receive interrupt occurs at the rising edge of last bit of receive clock 1: UART transfer/receive interrupt (DMA source - UART receive) Transfer to receive buffer at the falling edge of last bit of receive clock Receive interrupt occurs at the falling edge of last bit of receive clock 	00
					CSC	Clock synchronous bit	0: Disabled 1: Enabled	000
					SWC	SCL wait output bit	0: Disabled 1: Enabled	00
					ALS	SDA output stop bit	0: Disabled 1: Enabled	0¦0
					STC	UARTi initialize bit	0: Disabled 1: Enabled	00
					SWC2	SCL wait output bit 2	0: UARTi clock 1: 0 output	000
l					SDHI	SDA output inhibit bit	0: Disabled 1: Enabled (high impedance)	o¦o
					SU1HIM	Clock divide synchronizing	0: Synchronous disabled 1: Synchronous enabled	00

Figure 1.17.6. Serial I/O-related registers (5)

Figure 1.17.7. Serial I/O-related registers (6)

Note :When start condition is generated, these bits automatically become "0".

External interrupt request cause select register

b7 b6 b5 b4 b3 b2 b1 b0	Symbo IFSR	ol Address 031F ₁₆	When reset 0016		
	Bit symbol	Bit name	Function	R	W
	IFSR0	INT0 interrupt polarity select bit (Note)	0 : One edge 1 : Both edges	0	0
· · · · · · · · · · · · · · · · · · ·	IFSR1	INT1 interrupt polarity select bit (Note)	0 : One edge 1 : Both edges	0	0
	IFSR2	INT2 interrupt polarity select bit (Note)	0 : One edge 1 : Both edges	0	0
	IFSR3	INT3 interrupt polarity select bit (Note)	0 : One edge 1 : Both edges	0	0
	IFSR4	INT4 interrupt polarity select bit (Note)	0 : One edge 1 : Both edges	0	0
	IFSR5	INT5 interrupt polarity select bit (Note)	0 : One edge 1 : Both edges	0	0
	IFSR6	UART0/3 interrupt cause select bit	 0 : UART3 bus collision /start,stop detect/false error detect 1 : UART0 bus collision /start,stop detect/false error detect 	0	0
	IFSR7	UART1/4 interrupt cause select bit	0 : UART4 bus collision /start,stop detect/false error detect 1 : UART1 bus collision /start,stop detect/false error detect	0	0

Note :When level sense is selected, set this bit to "0".

When both edges are selected, set the corresponding polarity switching bit of INT interrupt control register to "0" (falling edge).

Figure 1.17.8. Serial I/O-related registers (7)

(1) Clock synchronous serial I/O mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Tables 1.18.1 and 1.18.2 list the specifications of the clock synchronous serial I/O mode.

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• When internal clock is selected (bit 3 at addresses 036816, 02E816, 033816, 032816,
	02F816 = "0") : fi/ 2(m+1) ^(Note 1) fi = f1, f8, f2n(Note 2)
	- CLK is selected by the corresponding peripheral function select register A, B and C.
	• When external clock is selected (bit 3 at addresses 036816, 02E816, 033816, 032816,
	02F816= "1") : Input from CLKi pin
	 Set the corresponding function select register A to I/O port
Transmission/reception control	• CTS function/RTS function/CTS, RTS function chosen to be invalid
Transmission start condition	• To start transmission, the following requirements must be met:
	- Transmit enable bit (bit 0 at addresses 036D16, 02ED16, 033D16, 032D16, 02FD16) = "1"
	- Transmit buffer empty flag (bit 1 at addresses 036D16, 02ED16, 033D16, 032D16, 02FD16) = "0"
	– When $\overline{\text{CTS}}$ function selected, $\overline{\text{CTS}}$ input level = "L"
	- TxD output is selected by the corresponding peripheral function select register A, B and C.
	• Furthermore, if external clock is selected, the following requirements must also be met:
	- CLKi polarity select bit (bit 6 at addresses 036C16, 02EC16, 033C16, 032C16,
	02FC16) = "0": CLKi input level = "H"
	- CLKi polarity select bit (bit 6 at addresses 036C16, 02EC16, 033C16, 032C16,
	02FC16) = "1": CLKi input level = "L"
Reception start condition	• To start reception, the following requirements must be met:
	- Receive enable bit (bit 2 at addresses 036D16, 02ED16, 033D16, 032D16, 02FD16) = "1"
	- Transmit enable bit (bit 0 at addresses 036D16, 02ED16, 033D16, 032D16, 02FD16) = "1"
	- Transmit buffer empty flag (bit 1 at addresses 036D16, 02ED16, 033D16, 032D16, 02FD16) = "0"
	• Furthermore, if external clock is selected, the following requirements must also be met:
	- CLKi polarity select bit (bit 6 at addresses 036C16, 02EC16, 033C16, 032C16,
	02FC16) = "0": CLKi input level = "H"
	- CLKi polarity select bit (bit 6 at addresses 036C16, 02EC16, 033C16, 032C16,
	02FC16) = "1": CLKi input level = "L"
Interrupt request	When transmitting
generation timing	- Transmit interrupt cause select bit (bit 4 at address 036D16, 02ED16, 033D16,
	032D16, 02FD16) = "0": Interrupts requested when data transfer from UARTi trans-
	fer buffer register to UARTi transmit register is completed
	- Transmit interrupt cause select bit (bit 4 at address 036D16, 02ED16, 033D16,
	032D16, 02FD16) = "1": Interrupts requested when data transmission from UARTi
	transfer register is completed
	When receiving
	- Interrupts requested when data transfer from UARTi receive register to UARTi
	receive buffer register is completed

Note 1: "m" denotes the value 0016 to FF16 that is set to the UART bit rate generator.

Item	Specification
Error detection	• Overrun error ^(Note)
	This error occurs when the next data is started to receive and 6.5 transfer clock is
	elapsed before UARTi receive buffer register are read out.
Select function	CLK polarity selection
	Whether transmit data is output/input at the rising edge or falling edge of the transfer
	clock can be selected
	LSB first/MSB first selection
	Whether transmission/reception begins with bit 0 or bit 7 can be selected
	Continuous receive mode selection
	Reception is enabled simultaneously by a read from the receive buffer register
	Reversing serial data logic
	Whether to reverse data in writing to the transmission buffer register or reading the
	reception buffer register can be selected.
	• TxD, RxD I/O polarity reverse
	This function is reversing TxD port output and RxD port input. All I/O data level is
	reversed.

Table 1.18.2. Specifications of clock synchronous serial I/O mode (2/2)

Note : If an overrun error occurs, the UARTi receive buffer will have the next data written in.

Table 1.18.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open drain is selected, this pin is in floating state.)

Table 1.18.3. I	nput/output	pin functions	in clock s	ynchronous	serial I/O	mode
-----------------	-------------	---------------	------------	------------	------------	------

Pin name	Function	Method of selection
TxDi (P63, P67, P70, P92, P96)	Serial data output (Note 1)	(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71, P91, P97)	Serial data input (Note 2)	Port P62, P66, P71, P91 and P97 direction register (bits 2 and 6 at address 03C216, bit 1 at address 03C316, bit 1 and 7 at address 03C716)= "0" (Can be used as an input port when performing transmission only)
CLKi (P61, P65, P72, P90, P95)	Transfer clock output (Note 1)	Internal/external clock select bit (bit 3 at addresses 036816, 02E816, 033816, 032816, 02F816) = "0"
	Transfer clock input (Note 2)	Internal/external clock select bit (bit 3 at addresses 036816, 02E816, 033816, 032816, 02F816) = "1" Port P61, P65, P72, P90 and P95 direction register (bits 1 and 5 at address 03C216, bit 2 at address 03C316, bit 0 and 5 at address 03C716) = "0"
CTSi/RTSi (P60, P64, P73, P93, P94)	CTS input (Note 2)	$\overline{\text{CTS}/\text{RTS}}$ disable bit (bit 4 at addresses 036C16, 02EC16, 033C16, 032C16, 02FC16) ="0" $\overline{\text{CTS}/\text{RTS}}$ function select bit (bit 2 at addresses 036C16, 02EC16, 033C16, 032C16, 032C16, 02FC16) = "0" Port P60, P64, P73, P93 and P94 direction register (bits 0 and 4 at address 03C216, bit 3 at address 03C316, bits 3 and 4 at address 03C716) = "0"
	RTS output (Note 1)	$\overline{\text{CTS}}/\overline{\text{RTS}}$ disable bit (bit 4 at addresses 036C16, 02EC16, 033C16, $\underline{032C16}, 02FC16$) = "0" $\overline{\text{CTS}}/\overline{\text{RTS}}$ function select bit (bit 2 at addresses 036C16, 02EC16, 033C16, 032C16, 02FC16) = "1"
	Programmable I/O port (Note 2)	CTS/RTS disable bit (bit 4 at addresses 036C16, 02EC16, 033C16, 032C16, 032C16, 02FC16) = "1"

Note 1: Select TxD output, CLK output and \overline{RTS} output by the corresponding function select registers A, B and C. Note 2: Select I/O port by the corresponding function select register A.

Under Oppment **Rev.B2 for proof reading** development **Rev.B2 for proof reading** Clock synchronous serial I/O mode

 Example of transmit timing (when internal clock is selected) 	
Tc	
	ШЛ
Transmit enable "1" Data is set in UARTi transmit buffer register	
Transmit buffer "1" empty flag (TI) "0" Transferred from LIARTi transmit buffer register to LIARTi transmit register	
TxDi	D6 D7
Transmit "1" register empty "0" flag (TXEPT)	
Transmit interrupt "1" request bit (IR) "0"	
Cleared to "0" when interrupt request is accepted, or cleared by software	
 The above timing applies to the following settings: Internal clock is selected. CTS function is selected. CLK polarity select bit = "0". Transmit interrupt cause select bit = "0". • Example of receive timing (when external clock is selected)	
Receive enable "1" bit (RE)	
Transmit enable "1" Dummy data is set in UARTi transmit buffer register	
Transmit buffer "1" empty flag (TI) "0"	
RTSi "H"	tregister
	ЛЛ
RxDi	D4XD5XI
Receive complete "1" flag (RI) "0" Transferred from UARTi receive register to UARTi receive buffer register	
Receive interrupt "1" request bit (IR) "0"	
Over run error "1" flag(OER) "0"	
Shown in () are bit symbols.	
The above timing applies to the following settings: • External clock is selected. • RTS function is selected. • CLK polarity select bit = "0".The following conditions are met when the CLKi input before data reception = "H" • Transmit enable bit → "1" • Receive enable bit → "1" • Dummy data write to UARTi transmit buffer registres	ər
Figure 1.18.1. Typical transmit/receive timings in clock synchronous serial I/O mode	

Under Rev.B2 for proof **Rev.B2 for proof reading**

(a) Polarity select function

As shown in Figure 1.18.2, the CLK polarity select bit (bit 6 at addresses 036C16, 02EC16, 033C16, 032C16, 02FC16) allows selection of the polarity of the transfer clock.

Figure 1.18.2. Polarity of transfer clock

(b) LSB first/MSB first select function

As shown in Figure 1.18.3, when the transfer format select bit (bit 7 at addresses 036C16, 02EC16, 033C16, 032C16, 02FC16) = "0", the transfer format is "LSB first"; when the bit = "1", the transfer format is "MSB first".

• When t	ransfer format select bit = "0"
CLKi	
TXDi	D0 $D1$ $D2$ $D3$ $D4$ $D5$ $D6$ $D7$
RXDi	
• When t	ransfer format select bit = "1"
CLKi	
TXDi	$D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0$
RXDi	$ \begin{array}{c} \hline \\ \hline $
	Note: This applies when the CLK polarity select bit = "0".
gure 1.18.3	3. Transfer format

(c) Continuous receive mode

If the continuous receive mode enable bit (bit 5 at address 036D16, 02ED16, 033D16, 032D16, 02FD16) is set to "1", the unit is placed in continuous receive mode. In this mode, when the receive buffer register is read out, the unit simultaneously goes to a receive enable state without having to set dummy data back to the transmit buffer register again.

(d) Serial data logic switch function

When the data logic select bit (bit6 at address $036D_{16}$, $02ED_{16}$, $033D_{16}$, $032D_{16}$, $02FD_{16}$) = "1", and writing to transmit buffer register or reading from receive buffer register, data is reversed. Figure 1.18.4 shows the timing example of serial data logic switch.

Figure 1.18.4. Timing for switching serial data logic

(2) Clock asynchronous serial I/O (UART) mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 1.19.1 and 1.19.2 list the specifications of the UART mode. Figure 1.19.1 shows the UART transmit/receive mode register.

Table 1.19.1. Specifications of UART Mode (1/2)	
---	--

Item	Specification
Transfer data format	Character bit (transfer data): 7 bits, 8 bits, or 9 bits as selected
	Start bit: 1 bit
	Parity bit: Odd, even, or nothing as selected
	Stop bit: 1 bit or 2 bits as selected
Transfer clock	• When internal clock is selected (bit 3 at addresses 036816, 02E816, 033816, 032816,
	02F816 = "0") : fi/16(m+1) (Note 1) fi = f1, f8, f2n
	• When external clock is selected (bit 3 at addresses 036816, 02E816, 033816, 032816,
	02F816 ="1") : fEXT/16(m+1) ^(Note 1, 2)
Transmission/reception control	• CTS function, RTS function, CTS/RTS function chosen to be invalid
Transmission start condition	• To start transmission, the following requirements must be met:
	- Transmit enable bit (bit 0 at addresses 036D16, 02ED16, 033D16, 032D16, 02FD16) = "1"
	- Transmit buffer empty flag (bit 1 at addresses 036D16, 02ED16, 033D16, 032D16,
	02FD16) = "0"
	- When $\overline{\text{CTS}}$ function selected, $\overline{\text{CTS}}$ input level = "L"
	- TxD output is selected by the corresponding peripheral function select register A, B
	and C.
Reception start condition	• To start reception, the following requirements must be met:
	- Receive enable bit (bit 2 at addresses 036D16, 02ED16, 033D16, 032D16, 02FD16) = "1"
	- Start bit detection
Interrupt request	When transmitting
generation timing	- Transmit interrupt cause select bits (bit 4 at address 036D16, 02ED16, 033D16,
	032D16, 02FD16) = "0": Interrupts requested when data transfer from UARTi transfer
	buffer register to UARTi transmit register is completed
	- Transmit interrupt cause select bits (bit 4 at address 036D16, 02ED16, 033D16,
	032D16, 02FD16) = "1": Interrupts requested when data transmission from UARTi
	transfer register is completed
	When receiving
	- Interrupts requested when data transfer from UARTi receive register to UARTi
	receive buffer register is completed
Error detection	• Overrun error ^(Note 3)
	This error occurs when the next data is started to receive and 6.5 transfer
	clock is elapsed before UARTi receive buffer register are read out.

Note 1: 'm' denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.

Note 2: fext is input from the CLKi pin.

Note 3: If an overrun error occurs, the UARTi receive buffer will be over written with the next data.

Table 1.19.2. Specifications of UART Mode (2/2)

Item	Specification	
Error detection	Framing error	
	This error occurs when the number of stop bits set is not detected	
	Parity error	
	If parity is enabled this error occurs when, the number of 1's in parity and character	
	bits does not match the number of 1's set	
	• Error sum flag	
	This flag is set (= 1) when any of the overrun, framing, and parity errors is encoun-	
	tered	
Select function	Serial data logic switch	
	This function reveres the logic value of transferring data. Start bit, parity bit and stop	
	bit are not reversed.	
	• TxD, RxD I/O polarity switch	
	This function reveres the TxD port output and RxD port input. All I/O data level is	
	reversed.	

Table 1.19.3 lists the functions of the input/output pins in UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs a "H". (If the N-channel open drain is selected, this pin is in floating state.)

Table 1.19.3.	Input/output	pin functions	in UART mode
---------------	--------------	---------------	--------------

Pin name	Function	Method of selection
TxDi (P63, P67, P70, P92, P96)	Serial data output (Note 1)	
RxDi (P62, P66, P71, P91, P97)	Serial data input (Note 2)	Port P62, P66, P71, P91 and P97 direction register (bits 2 and 6 at address 03C216, bit 1 at address 03C316, bit 1 and 7 at address 03C716)= "0" (Can be used as an input port when performing transmission only)
CLKi (P61, P65, P72,	Programmable I/O port (Note 2)	Internal/external clock select bit (bit 3 at addresses 036816, 02E816, 033816, 032816, 02F816) = "0"
P90, P95)	Transfer clock input (Note 2)	Internal/external clock select bit (bit 3 at addresses 036816, 02E816, 033816, 032816, 02F816) = "1" Port P61, P65, P72, P90 and P95 direction register (bits 1 and 5 at address 03C216, bit 2 at address 03C316, bits 0 and 5 at address 03C716) = "0"
CTSi/RTSi (P60, P64, P73, P93, P94)	CTS input (Note 2)	$\overline{\text{CTS}/\text{RTS}}$ disable bit (bit 4 at addresses 036C16, 02EC16, 033C16, $\underline{032C16}, 02FC16) = "0"$ $\overline{\text{CTS}/\text{RTS}}$ function select bit (bit 2 at addresses 036C16, 02EC16, 033C16, 032C16, 02FC16) = "0" Port P60, P64, P73, P93 and P94 direction register (bits 0 and 4 at address 03C216, bit 3 at address 03C316, bits 3 and 4 at address 03C716) = "0"
	RTS output (Note 1)	$\overline{\text{CTS}/\text{RTS}}$ disable bit (bit 4 at addresses 036C16, 02EC16, 033C16, 032C16, $\frac{02FC16}{\text{CTS}/\text{RTS}}$ function select bit (bit 2 at addresses 036C16, 02EC16, 033C16, 032C16, 02FC16) = "1"
	Programmable I/O port (Note 2)	CTS/RTS disable bit (bit 4 at addresses 036C16, 02EC16, 033C16, 032C16, 02FC16) = "1"

Note 1: Select TxD output, CLK output and RTS output by the corresponding function select registers A, B and C. Note 2: Select I/O port by the corresponding function select register A.

development **Rev.B2 for proof reading**

Clock asynchronous serial I/O (UART) mode

Under

Under Rev.B2 for proof reading

Clock asynchronous serial I/O (UART) mode

Example of recei BRGi count	ive timing when transfer data is 8 bits long (parity disabled, one stop bit)
source	
Receive enable bit "(5" – Stop hit
RxDi	Start bit Do D1D7
Transfer clock	
Receive "1 complete flag "(Reception triggered when transfer clock Transferred from UARTI receive register to UARTI receive buffer register T
Receive interrupt "I request bit "(Becomes "L" by reading the receive buffer
	Cleared to "0" when interrupt request is accepted, or cleared by software
	The above timing applies to the following settings : •Parity is disabled. • <u>One</u> stop bit. •RTS function is selected.

Figure 1.19.2. Typical receive timing in UART mode

(a) Function for switching serial data logic

When the data logic select bit (bit 6 of address 036D16, 02ED16, 033D16, 032D16, 02FD16) is assigned 1, data is inverted in writing to the transmission buffer register or reading the reception buffer register. Figure 1.19.3 shows the example of timing for switching serial data logic.

• When LSB	first, parity enabled, one stop bit
Transfer clock	
TxDi (no reverse)	"H" <u>ST (D0 (D1 (D2 (D3 (D4 (D5 (D6 (D7 (P) SP</u>) SP)
TxDi (reverse)	"H" <u>ST (D0 (D1) D2 (D3 (D4) D5 (D6 (D7) P</u>) SP
	ST : Start bit P : Even parity SP : Stop bit

Figure 1.19.3. Timing for switching serial data logic

(b) TxD, RxD I/O polarity reverse function

This function is to reverse TxD pin output and RxD pin input. The level of any data to be input or output (including the start bit, stop bit(s), and parity bit) is reversed. Set this function to "0" (not to reverse) for normal use.

(c) Bus collision detection function

This function is to sample the output level of the TxD pin and the input level of the RxD pin at the rising edge of the transfer clock; if their values are different, then an interrupt request occurs. Figure 1.19.4 shows the example of detection timing of a bus collision (in UART mode).

UART0 and UART3 are allocated to software interrupt number 40. UART1 and UART4 are allocated to software interrupt number 41. When selecting UART 0, 3, 1 or 4 bus collision detect function, bit 6 or 7 of external interrupt cause select register (address 031F16) must be set.

Figure 1.19.4. Detection timing of a bus collision (in UART mode)

UARTi Special Mode Register

UARTi (i=0 to 4) operate the IIC bus interface (simple IIC bus) using the UARTi special mode register (addresses 036716, 02E716, 033716, 032716 and 02F716) and UARTi special mode register 2 (addresses 036616, 02E616, 033616, 032616 and 02F616). UARTi add special functions using UARTi special mode resister 3 (addresses 036516, 02E516, 035516, 032516 and 02F516).

(1) IIC Bus Interface Mode

The I²C bus interface mode is provided with UARTi.

Table 1.21.1 shows the construction of the UARTi special mode register and UARTi special mode register 2.

When the I^2C mode select bit (bit 0 in addresses 036716, 02E716, 033716, 032716 and 02F716) is set to "1", the I^2C bus (simple I^2C bus) interface circuit is enabled.

To use the I²C bus, set the SCLi and the SDAi of both master and slave to output with the function select register. Also, set the data output select bit (bit 5 in address 036C16, 02EC16, 033C16, 032C16 and 02FC16) to N-channel open drain output.

Table 1.21.1 shows the relationship of the IIC mode select bit to control. To use the chip in the clock synchronized serial I/O mode or UART mode, always set this bit to "0".

	Function	Normal mode (IICM=0)	I ² C mode (IICM=1) (Note 1)
1	Factor of interrupt number 39 to 41 ^(Note 2)	Bus collision detection	Start condition detection or stop condition detection
2	Factor of interrupt number 17, 19, 33, 35, 37 (Note 2)	UARTi transmission	No acknowledgment detection (NACK)
3	Factor of interrupt number 18, 20, 34, 36, 38 (Note 2)	UARTi reception	Acknowledgment detection (ACK)
4	UARTi transmission output delay	Not delayed	Delayed
5	P63, P67, P70, P92, P96 at the time when UARTi is in use	TxDi (output)	SDAi (input/output)
6	P62, P66, P71, P91, P97 at the time when UARTi is in use	RxDi (input)	SCLi (input/output)
7	P61, P65, P72, P90, P95 at the time when UARTi is in use	CLKi	P61, P65, P72, P90, P95 (Note 3)
8	DMA factor at the time	UARTi reception	Acknowledgment detection (ACK)
9	Noise filter width	15ns	50ns
10	Reading P62, P66, P71, P91, P97	Reading the terminal when 0 is assigned to the direction register	Reading the terminal regardless of the value of the direction register
11	Initial value of UARTi output	H level (when 0 is assigned to the CLK polarity select bit)	The value set in latch P63, P67, P70, P92, P96 when the port is selected (Note 3)

Table 1.21.1. Features in I²C mode

Note 1: Make the settings given below when I^2C mode is used.

Set 0 1 0 in bits 2, 1, 0 of the UARTi transmission/reception mode register.

Disable the RTS/CTS function. Choose the MSB First function.

Note 2: Follow the steps given below to switch from one factor to another.

1. Disable the interrupt of the corresponding number.

2. Switch from a factor to another.

3. Reset the interrupt request flag of the corresponding number.

4. Set an interrupt level of the corresponding number.

Note 3: Set an initial value of SDA transmission output when IIC mode (IIC mode select bit = "1") is valid and serial I/O is invalid.

development **Rev.B2 for proof reading**

UARTi Special Mode Register

Under

Figure 1.21.1. Functional block diagram for I²C mode

Figure 1.21.1 is a block diagram of the IIC bus interface. The control bits of the IIC bus interface is explained as follow:

UARTi Special Mode Register (UiSMR:Addresses 036716, 02E716, 033716, 032716, 02F716)

Bit 0 is the IIC mode select bit. When set to "1", ports operate respectively as the SDAi data transmission-reception pin, SCLi clock I/O pin and port. A delay circuit is added to SDAi transmission output, therefore after SCLi is sufficiently L level, SDAi output changes. Port (SCLi) is designed to read pin level regardless of the content of the port direction register. SDAi transmission output is initially set to port in this mode. Furthermore, interrupt factors for the bus collision detection interrupt, UARTi transmission interrupt and UARTi reception interrupt change respectively to the start/stop condition detection interrupts, acknowledge non-detection interrupt and acknowledge detection interrupt.

The start condition detection interrupt is generated when the falling edge at the SDAi pin is detected while the SCLi pin is in the H state. The stop condition detection interrupt is generated when the rising edge at the SDAi pin is detected while the SCLi pin is in the H state.

The acknowledge non-detection interrupt is generated when the H level at the SDAi pin is detected at the 9th rise of the transmission clock.

The acknowledge detection interrupt is generated when the L level at the SDAi pin is detected at the 9th rise of the transmission clock. Also, DMA transfer can be started when the acknowledge is detected and UARTi transmission is selected as the DMAi request factor.

Bit 1 is the <u>arbitration lost detection flag control bit (ABC)</u>. Arbitration detects a conflict between data transmitted at SCLi rise and data at the SDAi pin. This detection flag is allocated to bit 11 in UARTi transmission buffer register (addresses 036F16, 02EF16, 033F16, 032F16, 02FF16). It is set to "1" when a conflict is detected. With the arbitration lost detection flag control bit, it can be selected to update the flag in units of bits or bytes. When this bit is set to "1", update is set to units of byte. If a conflict is then detected, the arbitration lost detection flag control bit will be set to "1" at the 9th rise of the clock. When updating in units of byte, always clear ("0" interrupt) the arbitration lost detection flag control bit after the 1st byte has been acknowledged but before the next byte starts transmitting.

Bit 2 is the <u>bus busy flag (BBS)</u>. It is set to "1" when the start condition is detected, and reset to "0" when the stop condition is detected.

Bit 3 is the <u>SCLi L synchronization output enable bit (LSYN)</u>. When this bit is set to "1", the port data register is set to "0" in sync with the L level at the SCLi pin.

Bit 4 is the <u>bus collision detection sampling clock select bit (ABSCS)</u>. The bus collision detection interrupt is generated when RxDi and TxDi level do not conflict with one another. When this bit is "0", a conflict is detected in sync with the rise of the transfer clock. When this bit is "1", detection is made when timer Ai (timer A3 with UART0, timer A4 with UART1, timer A0 with UART2, timer A3 with UART3 and timer A4 with UART4) underflows. Operation is shown in Figure 1.21.2.

Bit 5 is the <u>transmission enable bit automatic clear select bit (ACSE)</u>. By setting this bit to "1", the transmission bit is automatically reset to "0" when the bus collision detection interrupt factor bit is "1" (when a conflict is detected).

Bit 6 is the <u>transmission start condition select bit (SSS)</u>. By setting this bit to "1", TxDi transmission starts in sync with the rise at the RxDi pin.

Under Rev.B2 for proof reading

UARTi Special Mode Register

CLKi	
ſxDi/RxDi	
-	1: Timer Ai underflow
Fimer Ai	
Auto clear f	unction select bit of transmit enable bit (Bit 5 of the UARTi special mode
register)	
TxDi/RxDi	
detect interrupt request bit	\
Transmit enable bit	/
Transmit st	art condition select bit (Bit 6 of the UARTi special mode register)
CLKi	
TxDi	
-	edge of RxDi" selected
Nith "1: falling	
Vith "1: falling CLKi	
Vith "1: falling CLKi TxDi	

UARTi Special Mode Register 2 (UISMR2:Addresses 036616, 02E616, 033616, 032616, 02F616)

Bit 0 is the <u>IIC mode select bit 2 (IICM2)</u>. Table 1.21.2 gives control changes by bit when the IIC mode select bit is "1". Start and stop condition detection timing characteristics are shown in Figure 1.21.4. Always set bit 7 (start/stop condition control bit) to "1".

Bit 1 is the <u>clock synchronizing bit (CSC)</u>. When this bit is set to "1", and the rising edge is detected at pin SCLi while the internal SCL is High level, the internal SCL is changed to Low level, the baud rate generator value is reloaded and the Low sector count starts. Also, while the SCLi pin is Low level, and the internal SCL changes from Low level to High, baud rate generator stops counting. If the SCLi pin is H level, counting restarts. Because of this function, the UARTi transmission-reception clock takes the AND condition for the internal SCL and SCLi pin signals. This function operates from the clock half period before the 1st rise of the UARTi clock to the 9th rise. To use this function, select the internal clock as the transfer clock.

Bit 2 is the <u>SCL wait output bit (SWC)</u>. When this bit is set to "1", output from the SCLi pin is fixed to L level at the clock's 9th rise. When set to "0", the Low output lock is released.

Bit 3 is the <u>SDA output stop bit (ALS)</u>. When this bit is set to "1", an arbitration lost is generated. If the arbitration lost detection flag is "1", then the SDAi pin simultaneously becomes high impedance.

Bit 4 is the <u>UARTi initialize bit (STC)</u>. While this bit is set to "1", the following operations are performed when the start condition is detected.

- The transmission shift register is initialized and the content of the transmission register is transmitted to the transmission shift register. As such, transmission starts with the 1st bit of the next input clock. However, the UARTi output value remains the same as when the start condition was detected, without changing from when the clock is input to when the 1st bit of data is output.
- 2. The reception shift register is initialized and reception starts with the 1st bit of the next input clock.
- 3. The SCL wait output bit is set to "1". As such, the SCLi pin becomes Low level at the rise of the 9th bit of the clock.

When UART transmission-reception has started using this function, the content of the transmission buffer available flag does not change. Also, to use this function, select an external clock as the transfer clock.

Bit 5 is <u>SCL wait output bit 2 (SWC2</u>). When this bit is set to "1" and serial I/O is selected, an Low level can be forcefully output from the SCLi pin even during UART operation. When this bit is set to "0', the Low output from the SCLi pin is canceled and the UARTi clock is input and output.

Bit 6 is the <u>SDA output disable bit (SDHI)</u>. When this bit is set to "1", the SDAi pin is forced to high impedance. To overwrite this bit, do so at the rise of the UARTi transfer clock. The arbitration lost detection flag may be set.

Table 1.21.2. Functions changed by I²C mode select bit 2

Function	IICM2 = 0	IICM2 = 1
Interrupt no. 17, 19, 33, 35, 37 fac-	Acknowledge not detect	UARTi transfer (rising edge of the
tor	(NACK)	last bit)
Interrupt no. 18, 20, 34, 36, 38 fac-	Acknowledge detect (ACK)	UARTi receive (falling edge of the
tor		last bit)
DMA factor	Acknowledge detect (ACK)	UARTi receive (falling edge of the
		last bit)
Data transfer timing from UART re-	Rising edge of the last bit of re-	Rising edge of the last bit of re-
ceive shift register to receive buffer	ceive clock	ceive clock
UART receive / ACK interrupt re-	Rising edge of the last bit of re-	Rising edge of the last bit of re-
quest generation timing	ceive clock	ceive clock

Figure 1.21.3. Start/stop condition detect timing characteristics

UARTi Special Mode Register 3 (UiSMR3:Addresses 036516, 02E516, 033516, 032516, 02F516)

Bit 1 is <u>clock phase set bit (CKPH)</u>. When both the IIC mode select bit (bit 0 of UARTi special mode select register) and the IIC mode select bit 2 (bit 0 of UiSMR2 register) are "1", functions changed by these bits are shown in table 1.21.3 and figure 1.21.4.

Bits 5 to 7 are <u>SDAi digital delay setting bits (DL0 to DL2)</u>. By setting these bits, it is possible to turn the SDAi delay OFF or set the BRG count source delay to 2 to 8 cycles.

Function	CKPH = 0, IICM = 1, IICM2 = 1	CKPH = 1, IICM = 1, IICM2 = 1
SCL initial and last value	Initial value = H, last value = L	Initial value = L, last value = L
Transfer interrupt factor	Rising edge of 9th bit	Falling edge of 10th bit
Data transfer times from UART re- ceive shift register to receive buffer register	Falling edge of 9th bit	Two times :falling edge of 9th bit and rising edge of 9th bit

Table 1.21.3. Functions changed by clock phase set bits

Under Rev.B2 for proof reading

UARTi Special Mode Register

 CKPH= "0" (IICM=1, IICM2=1) SCL SDA D7 D6 D5 D4 D3 D2 D1 D0 D8 (Internal clock, transfer data 9 bits long and MSB first selected.) CKPH= "1" (IICM=1, IICM2=1) SCL SDA D7 D6 D5 D4 D3 D2 D1 D0 B (Internal clock, transfer data 9 bits long and MSB first selected.) CKPH= "1" (IICM=1, IICM2=1) SCL SDA D7 D6 D5 D4 D3 D2 D1 D0 B (Internal clock, transfer data 9 bits long and MSB first selected.) Transfer to receive buffer 	
SCL SDA $D7$ $D6$ $D5$ $D4$ $D3$ $D2$ $D1$ $D0$ $D8$ (Internal clock, transfer data 9 bits long and MSB first selected.) Receive interrupt Transmit interrupt Transfer to receive buffer • CKPH= "1" (IICM=1, IICM2=1) SCL SDA $D7$ $D6$ $D5$ $D4$ $D3$ $D2$ $D1$ $D0$ $D8$ (Internal clock, transfer data 9 bits long and MSB first selected.) Receive interrupt Transmit interrupt Transfer to receive buffer	• CKPH= "0" (IICM=1, IICM2=1)
SDA D7 D6 D5 D4 D3 D2 D1 D0 D8 (Internal clock, transfer data 9 bits long and MSB first selected.) ↑ ↑ Receive interrupt Transmit interrupt ↑ Transfer to receive buffer • CKPH= "1" (IICM=1, IICM2=1) SCL	SCL TITIT
Transfer to receive buffer • CKPH= "1" (IICM=1, IICM2=1) SCL SDA $D7$ $D6$ $D5$ $D4$ $D3$ $D2$ $D1$ $D0$ $D8$ (Internal clock, transfer data 9 bits long and MSB first selected.) Receive interrupt Transmit interrupt Transfer to receive buffer	SDA D7 D6 D5 D4 D3 D2 D1 D0 D8 (Internal clock, transfer data 9 bits long and MSB first selected.) ↑ ↑ Receive interrupt Transmit interrupt
• CKPH= "1" (IICM=1, IICM2=1) SCL	Transfer to receive buffer
SCL	• CKPH= "1" (IICM=1, IICM2=1)
SDA D7 D6 D5 D4 D3 D2 D1 D0 D8 (Internal clock, transfer data 9 bits long and MSB first selected.) ↑ ↑ ↑ Receive interrupt ↑ Transmit interrupt Transfer to receive buffer	
	SDA D7 D6 D5 D4 D3 D2 D1 D0 D8 (Internal clock, transfer data 9 bits long and MSB first selected.) ↑ ↑ ↑ Receive interrupt ↑ Transmit interrupt Transfer to receive buffer

Figure 1.21.4. Functions changed by clock phase set bits

UARTi Special Mode Register 4 (UiSMR4:Addresses 036416, 02E416, 033416, 032416, 02F416) Bit 0 is the <u>start condition generate bit (STAREQ</u>). When the SCL, SDA output select bit (bit 3 of UiSMR4 register) is "1" and this bit is "1", then the start condition is generated.

Bit 1 is the <u>restart condition generate bit (RSTAREQ)</u>. When the SCL, SDA output select bit (bit 3 of UiSMR4 register) is "1" and this bit is "1", then the restart condition is generated.

Bit 2 is the <u>stop condition generate bit (STPREQ</u>). When the SCL, SDA output select bit (bit 3 of UiSMR4 register) is "1" and this bit is "1", then the stop condition is generated.

Bit 3 is <u>SCL</u>, <u>SDA</u> output select bit (<u>STSPSEL</u>). Functions changed by these bits are shown in table 1.21.4 and figure 1.21.5.

Function	STSPSEL = 0	STSPSEL = 1
SCL, SDA output	Output of SI/O control circuit	Output of start/stop condition control circuit
Star/stop condition interrupt factor	Start/stop condition detection	Completion of start/stop condition generation

Table 1.21.4. Functions changed by SCL, SDA output select bit

Under Rev.B2 for proof reading

UARTi Special Mode Register

Figure 1.21.5 Functions changed by SCL, SDA output select bit

Bit 4 is <u>ACK data bit (ACKD)</u>. When the SCL, SDA output select bit (bit 3 of UiSMR4 register) is "0" and the ACK data output enable bit (bit 5 of UiSMR4 register) is "1", then the content of ACK data bit is output to SDAi pin.

Bit 5 is <u>ACK data output enable bit (ACKC)</u>. When the SCL, SDA output select bit (bit 3 of UiSMR4 register) is "0" and this bit is "1", then the content of ACK data bit is output to SDAi pin.

Bit 6 is <u>SCL output stop bit (SCLHI)</u>. When this bit is "1", SCLi output is stopped at stop condition detection. (Hi-impedance status).

Bit 7 is <u>SCL wait output bit 3 (SWC9)</u>. When this bit is "1", SCLi output is fixed to "L" at falling edge of 10th bit of clock. When this bit is "0", SCLi output fixed to "L" is released.

(2) Serial Interface Special Function

UARTi can control communications on the serial bus using the \overline{SSi} input pins (Figure 1.21.6). The master outputting the transfer clock transfers data to the slave inputting the transfer clock. In this case, in order to prevent a data collision on the bus, the master floats the output pin of other slaves/masters using the \overline{SSi} input pins.

SSi input pins function between the master and slave are as follows.

Figure 1.21.6. Serial bus communication control example using the SS input pins

< Slave Mode (STxDi and SRxDi are selected, DINC = 1) >

When an H level signal is input to an SSi input pin, the STxDi and SRxDi pins both become high impedance, hence the clock input is ignored. When an "L" level signal is input to an SSi input pin, the clock input becomes effective and serial communications are enabled.

< Master Mode (TxDi and RxDi are selected, DINC = 0) >

The SSi input pins are used with a multiple master system. When an SSi input pin is H level, transmission has priority and serial communications are enabled. When an L signal is input to an SSi input pin, another master exists, and the TxDi, RxDi and CLKi pins all become high impedance. Moreover, the trouble error interrupt request bit becomes "1". Communications do not stop even when a trouble error is generated during communications. To stop communications, set bits 0, 1 and 2 of the UARTi transmission-reception mode register (addresses 036816, 02E816, 033816, 032816 and 02F816) to "0".

Clock Phase Setting

With bit 1 of UARTi special mode register 3 (UiSMR3:addresses 036516, 02E516, 033516, 032516, 02F516) and bit 6 of UARTi transmission-reception control register 0 (addresses 036C16, 02EC16, 033C16, 032C16, 02FC16), four combinations of transfer clock phase and polarity can be selected. Bit 6 of UARTi transmission-reception control register 0 sets transfer clock polarity, whereas bit 1 of UiSMR3 register sets transfer clock phase.

Transfer clock phase and polarity must be the same between the master and slave involved in the transfer.

< Master (Internal Clock) (DINC = 0) >

Figure 1.21.7 shows the transmission and reception timing.

< Slave (External Clock) (DINC = 1) >

- With "0" for CKPH bit (bit 1 of UiSMR3 register), when an SSi input pin is H level, output data is high impedance. When an SSi input pin is L level, the serial transmission start condition is satisfied, though output is indeterminate. After that, serial transmission is synchronized with the clock. Figure 1.21.8 shows the timing.
- With "1" for CKPH bit, when an SSi input pin is H level, output data is high impedance. When an SSi input pin is L level, the first data is output. After that, serial transmission is synchronized with the clock.Figure 1.21.9 shows the thing.

Master SS input	"H" "L"
Clock output (CKPOL=0, CKPH=0)	
Clock output (CKPOL=1, CKPH=0)	
Clock output (CKPOL=0, CKPH=1)	
Clock output (CKPOL=1, CKPH=1)	
Data output timing	"H" D0 \1 \2 \3 \4 \5 \6 \7
Data input timing	$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$

Figure 1.21.7. The transmission and reception timing in master mode (internal clock)

Under Rev.B2 for proof reading

UARTi Special Mode Register

Figure 1.21.8. The transmission and reception timing (CKPH=0) in slave mode (external clock)

Figure 1.21.9. The transmission and reception timing (CKPH=1) in slave mode (external clock)

CAN Module

The microcomputer incorporates Full-CAN modules compliant with CAN (Controller Area Network) 2.0B specification.

These Full-CAN modules are outlined below.

Table 1.22.1	Outline of the	CAN	module

Item	Description	
Protocol	Compliant with CAN 2.0B spec	ification
Number of message slots	16 slots	
Polarity	0: Dominant	
	1: Recessive	
Acceptance filter	Global mask: 1 mask (for mess	sage slots 0–13)
	Local mask: 2 masks (for mess	sage slots 14 and 15 each)
Baud rate	1 time quantum (Tq) = (BRP +	1) / CPU clock ^(Note)
	(BRP = baud rate prescaler set	t value)
	Baud rate = 1 / (Tq period x nu	umber of Tq's in one bit)Max. 1 Mbps
	BRP: 1-255 (0: Inhibited)	
	Number of Tq's in one bit =	Synchronization Segment +
		Propagation Time Segment +
		Phase Buffer Segment 1 +
		Phase Buffer Segment 2
	Synchronization Segment	: 1 Tq (fixed)
	Propagation Time Segment	: 1 to 8 Tq
	Phase Buffer Segment 1	: 2 to 8 Tq
	Phase Buffer Segment 2	: 2 to 8 Tq
Remote frame automatic	The message slot that received	d a remote frame automatically transmits it.
answering function		
Timestamp function	This timestamp function is bas	ed on a 16-bit counter. A count period can
	be derived from the CAN bus	bit period (as the fundamental period) by
	dividing it by 1, 2, 3, or 4.	
BasicCAN mode	The BasicCAN function is realized	zed by using message slots 14 and 15.
Transmit abort function	This function is used to cancel	a transmit request.
Loopback function	The data the CAN module itsel	f transmitted is received.
Return from bus-off function	Forcibly placed into an error ac	tive state from a bus-off state.

Note: Use a specification conforming resonator whose maximum permissible error of oscillation is not greater than 1.58%

Under Open Rev.B2 for proof reading

Under

CAN Module

Figure 1.22.1 CAN module blobk diagram

CAN0 message slot buffer 0 and 1 can be selected by setting of slot buffer select register. Figure 1.22.2 shows the message slot buffer and 16 bytes of message slots. Figure 1.22.26 to 1.22.30 show related registers.

Figure 1.22.2. Message slot buffer and message slots

	Symb C0CT	ol Address LR0 020116, 02	When reset (Note 1) 20016 XXXX 0000 XX01 0X012	
	Bit symbol	Bit name	Function	RV
	Reset 0	CAN reset bit 0	0: Reset released 1: Reset requested	o¦c
· · · ·	Loopback	Loop back mode select bit	0: Loop back function disabled 1: Loop back function enabled	0
		Nothing is assigned. When read, its conte	. When write, set to "0". ents is indeterminate.	
· · · · · · · · · · · · · · · · · · ·	BasicCAN	Basic CAN mode select bit	0 : Basic CAN mode function disabled 1 : Basic CAN mode function enabled	oic
	Reset 1	CAN reset bit 1	0 : Reset released 1 : Reset requested	0
		Reserved bit	Must set to "0".	0
		Nothing is assigned	. When write, set to "0".	¦-
	Not	When read, their contents are indeterminate.		_¦-
	TSPre0	Time stamp	0 0: CAN bus bit clock is selected 0 1: Division by 2 of CAN bus bit clock is selected	0
	TSPre1	prescaler select bit	1 0: Division by 3 of CAN bus bit clock is selected 1 1: Division by 4 of CAN bus bit clock is selected	0
	TSReset	Time stamp counter reset bit	0 : Count enabled 1 : Count reset (set 000016) (Note 2)	o¦o
	ECReset	Error counter reset bit	0 : Normal operation mode 1 : Error counter reset (Note 2)	0
				_:-
		Nothing is assigned	. When write, set to "0".	_¦-
		When read, their co	ntents are indeterminate.	_'-
				_!-

Figure 1.22.3 CAN0 control register 0

1. CAN0 control register 0

Bit 0: CAN reset bits 0 and 1 (Reset0 and Reset1)

If the Reset0 and Reset1 bits both are set from 1 to 0, CAN communication is enabled after detecting 11 consecutive recessive bits. The CAN Timestamp Register starts counting at the same time communication is enabled.

In no case will the CAN be reset unless transmission of all messages are completed.

Note 1: Reset0 and Reset1 bits must both be cleared to "0" or set to "1" simutnously.

- Note 2: Setting a new transmit request is inhibited before the CAN Status Register State_Reset bit is set to 1 and the CAN module is reset after setting the Reset0 and Reset1 bits to 1.
- Note 3: When the CAN module is reset by setting the Reset0 and Reset1 bits to 1, the CAN Timestamp Register (C0TSR), CAN Transmit Error Counter (C0TEC), and CAN Receive Error Counter (C0REC) are initialized to 0.
- Note 4: If Reset0 and Reset1 bits sre set to "1" during communication, the CANOUT pin output goes "H" immediately after that. Therefore, setting these bits to 1 while the CAN module is sending a frame may cause a CAN bus error.
- Note 5: To CAN communication, function select register A1 (PS1), function select register A2 (PS2), function select register B1 (PSL1), function select register B2 (PSL2), function select register C (PSC) and input function select register (IPS) must be set. These registers must be set when CAN module is reset.

Bit 1: Loopback mode select bit (LoopBack)

Setting the LoopBack bit to 1 enables loopback mode, so that if any receive slot whose ID matches that of a frame the CAN module itself transmitted exists, the frame is received.

Note 1: ACK is not returned for the transmit frame.

Note 2: Do not set or reset the LoopBack bit while the CAN module is operating (CAN Status Register State_Reset bit = 0).

Bit 3: BasicCAN mode select bit (BasicCAN)

If this bit is set to 1, message slots 14 and 15 operate in BasicCAN mode.

Operation during BasicCAN mode

In BasicCAN mode, message slots 14 and 15 are used with a dual-structured buffer. The received frames whose IDs are found matching by acceptance filtering are stored in slots 14 and 15 alternately. When slot 14 is active (i.e., the next received frame is to be stored in slot 14), this acceptance filtering is accomplished using the ID that is set in slot 14 and local mask A; when slot 15 is active, it is accomplished using the ID that is set in slot 15 and local mask B. Frame types of both data frame and remote frame can be received.

When using BasicCAN mode, setting the IDs of two slots and the mask registers the same way helps to reduce the possibility of causing an overrun error.

Procedure for entering BasicCAN mode

Make the following settings during initialization.

- (1) Set the BasicCAN bit to 1.
- (2) Set the IDs of slots 14 and 15 and Local Mask Registers A and B. (We recommend setting the same value)
- (3) Set the frame format to be handled with slots 14 and 15 (standard or extended) in the CAN Extended ID Register. (We recommend setting the same format)

- (4) Set the Message Slot Control Registers for slots 14 and 15 to receive data frames.
- Note 1: Do not set or reset the BasicCAN bit while the CAN module is operating (CAN Status Register State_Reset bit = 0).
- Note 2: Slot 14 is the first slot to become active after clearing the Reset0 bit.
- Note 3: Even during BasicCAN mode, slot 0 through slot 13 can be used in the same way as when operating normally.

Bit 8, 9: Timestamp prescaler select bits (TSPre0, 1)

These bits select the count clock source for the timestamp counter.

Note 1: Do not set or reset these TSPre0, 1 bits while the CAN module is operating (CAN Status Register State_Reset bit = 0).

Bit 10: Timestamp counter reset bit (TSReset)

Setting this bit to 1 clears the value of the CAN Timestamp Register (C0TSR) to 000016. This bit is automatically cleared after the CAN Timestamp Register (C0TSR) has its value cleared to 000016.

Bit 11: Error counter reset bit (ECReset)

Setting this bit to 1 clears the Receive Error Counter Register (C0REC) and Transmit Error Counter Register (C0TEC), with the CAN module forcibly placed in an error active state. This bit is automatically cleared upon entering an error active state.

Note 1: When in an error active state, the CAN module becomes ready to communicate when it detects 11 consecutive recessive bits on the CAN bus.

	Symb C0CT	ol Address TLR1 0241 ₁₆	When reset (Note) XX0000XX2	
	Bit symbol	Bit name	Function	RW
· · · · · · · · · · · · · · · · · · ·		Nothing is assigned. Wi When read, their conten	nen write, set to "0". ts are indeterminate.	
		Reserved bit	Must set to "0".	00
	BankSel	CAN0 bank select bit	0 : Message slot control register selected 1 : Mask register selected	00
		Reserved bit	Must set to "0".	00
		Nothing is assigned. W When read, their conter	hen write, set to "0". tts are indeterminate.	

Figure 1.22.4. CAN0 control register 1

2. CAN0 control register 1

Bit 3: CAN0 bank select bit (BankSel)

This bit selects between registers allocated to the addresses 022016 through 023F16. Setting the BankSel bit to 0 selects the CAN0 Message Slot Control Register. Setting the BankSel bit to 1 selects the CAN0 Mask Register.

Figure 1.22.5. CAN0 sleep control register

3. CAN0 sleep control register

Bit 0: Sleep mode control bit (Sleep)

The CAN module isn't supplied with a clock by setting the Sleep bit to 0, and is shifted to sleep mode. The CAN module is supplied with a clock by setting the Sleep bit to 1, and is released from sleep mode.

Note: Sleep mode can be shifted to only after CAN is reset (State_Reset bit = 1).

Under Bev.B2 for proof reading

CAN Module

(b7) (b0)b7 b0	Symbol C0STR	Address 020316,020216	When reset (Note) X000 0X01 0000 00002	
	Bit symbol	Bit name	Function	R
	MBox0		b3 b2 b1 b0 0 0 0 0 : Slot 0	С
	MBox1	Active slot	0 0 1 0 Slot 1 0 0 1 1 Slot 2 0 1 0 0 Slot 3	С
	MBox2	determination bit	• • • • 1 1 0 1 : Slot 13	С
	MBox3		1 1 1 0 : Slot 14 1 1 1 1 : Slot 15	С
	TrmSucc	Transmission-finished status	0: Transmission not finished 1: Transmission finished	C
	RecSucc	Reception-finished status	0: Reception not finished 1: Reception finished	С
	TrmState	Transmission status	0: Not transmitting 1: Transmitting	C
	RecState	Reception status	0: Not receiving 1: Receiving	С
	State_Reset	CAN reset status	0: Operating 1: Reset	C
	State_LoopBack	Loop back status	0: Normal mode 1: Loop back mode	C
		Nothing is assigned. W When read, its content	/hen write, set to "0". is indeterminate.	-
	State_BasicCAN	Basic CAN status	0: Normal mode 1: Basic CAN mode	C
	State_BusError	CAN bus error	0: No error occurred 1: Error occurred	C
	State_ErrPas	Error passive status	0: Not error passive state 1: Error passive state	С
	State_BusOff	Bus-off status	0: Not bus-off state 1: Bus-off state	С
		Nothing is assigned. W When read, its content	hen write, set to "0". is indeterminate.	_

Figure 1.22.6. CAN0 status register

4. CAN0 status register

Bits 0–3: Active slot determination bits (MBox)

When the CAN module finished transmitting data or finished storing received data, the relevant slot number is stored in these bits.

The MBox bits cannot be cleared to 0 in software.

Bit 4: Transmission-finished status (TrmSucc)

[Set condition]

This bit is set to 1 when the CAN module finished transmitting data normally. [Clear condition] This bit is cleared when the CAN module finished receiving data normally.

Bit 5: Reception-finished status (RecSucc)

[Set condition]

This bit is set to 1 when the CAN module finished receiving data normally (regardless of whether the received message has been stored in a message slot). However, this bit is not set if the received message is one that was transmitted in loopback mode.

[Clear condition]

This bit is cleared when the CAN module finished transmitting data normally.

Bit 6: Transmission status (TrmState)

[Set condition]

This bit is set to 1 when the CAN module is operating as a transmit node.

[Clear condition]

This bit is cleared when the CAN module goes to a bus-idle state or starts operating as a receive node.

Bit 7: Reception status (RecState)

[Set condition]

This bit is set to 1 when the CAN module is operating as a receive node.

[Clear condition]

This bit is cleared when the CAN module goes to a bus-idle state or starts operating as a transmit node.

Bit 8: CAN reset status (State_Reset)

When the State_Reset bit = 1, it means that the CAN module is in a reset state. [Set condition] This bit is set to 1 when CAN module is in a reset state. [Clear condition] This bit is cleared by clearing the Reset0 or Reset1 bits to 0.

Bit 9: Loopback status (State_loopBack)

When the State_loopBack bit = 1, it means that the CAN module is operating in loopback mode. [Set condition] This bit is set to 1 by setting the CAN control register LoopBack bit to 1. [Clear condition] This bit is cleared by clearing the LoopBack bit to 0.

Bit 11: BasicCAN status (State_BasicCAN)

When the State_BasicCAN bit = 1, it means that the CAN module is operating in BasicCAN mode. [Set condition]

This bit is set to 1 when the CAN module is operating in BasicCAN mode.

Conditions for the CAN module to operate in BasicCAN mode are as follows:

• The CAN Control Register BasicCAN bit is set to 1.

• Slots 14 and 15 both are set for data frame reception.

[Clear condition]

This bit is cleared by clearing the BasicCAN bit to 0.

Bit 12: CAN bus error (State_BusError)

[Set condition]

This bit is set to 1 when an error on the CAN bus is detected.

[Clear condition]

This bit is cleared when the CAN module finished transmitting or receiving normally. Clearing of this bit does not depend on whether the received message has been stored in a message slot. Note :When this bit is 1, although CAN module is reset, this bit does not become to 0.

Bit 13: Error passive status (State_ErrPas)

When the State_ErrPas bit = 1, it means that the CAN module is in an error-passive state. [Set condition]

This bit is set to 1 when the value of COTEC register or COREC register exceeds 127, with the CAN module in an error-passive state.

[Clear condition]

This bit is cleared when the CAN module goes from the error-passive state to any other error state. Note :When this bit is 1, then CAN module is reset, this bit becomes 0 automatically.

Bit 14: Bus-off status (State_BusOff)

When the State_BusOff bit = 1, it means that the CAN module is in a bus-off state.

[Set condition]

This bit is set to 1 when the value of the COTEC register exceeds 255, with the CAN module in a busoff state.

[Clear condition]

This bit is cleared when the CAN module returns from the bus-off state.

Under proof reading

7) (b0)b	7 b0	Symb C0IDF	ol Address R 020516,020416	When reset (Note) 000016	
		Bit symbol	Bit name	Function	R
		IDE15	Expansion ID15 (slot 15)	0: Standard ID format 1: Extended ID format	0
	· · · ·	IDE14	Expansion ID14 (slot 14)	0: Standard ID format 1: Extended ID format	0
	,	IDE13	Expansion ID13 (slot 13)	0: Standard ID format 1: Extended ID format	0
		IDE12	Expansion ID12 (slot 12)	0: Standard ID format 1: Extended ID format	0
		IDE11	Expansion ID11 (slot 11)	0: Standard ID format 1: Extended ID format	0
		IDE10	Expansion ID10 (slot 10)	0: Standard ID format 1: Extended ID format	0
		IDE9	Expansion ID9 (slot 9)	0: Standard ID format 1: Extended ID format	0
		IDE8	Expansion ID8 (slot 8)	0: Standard ID format 1: Extended ID format	0
		IDE7	Expansion ID7 (slot 7)	0: Standard ID format 1: Extended ID format	0
		IDE6	Expansion ID6 (slot 6)	0: Standard ID format 1: Extended ID format	0
		IDE5	Expansion ID5 (slot 5)	0: Standard ID format 1: Extended ID format	0
		IDE4	Expansion ID4 (slot 4)	0: Standard ID format 1: Extended ID format	0
		IDE3	Expansion ID3 (slot 3)	0: Standard ID format 1: Extended ID format	0
		IDE2	Expansion ID2 (slot 2)	0: Standard ID format 1: Extended ID format	0
		IDE1	Expansion ID1 (slot 1)	0: Standard ID format 1: Extended ID format	0
		IDE0	Expansion ID0 (slot 0)	0: Standard ID format	0

Note: This applies when the CAN module is supplied with a clock by setting the sleep mode control bit (bit 0 at address 024216) to 1 after reset.

Figure 1.22.7. CAN0 extended ID register

5. CAN0 extended ID register

This register selects the format of a frame handled by the message slot that corresponds to each bit in this register.

Setting any bit to 0 selects the standard (Standard ID) format.

Setting any bit to 1 selects the extended (Extended ID) format.

Note 1: When setting or resetting any bit in this register, make sure the corresponding slot has no transmit or receive request.

Under proof reading

6. CAN0 configuration register

Bit 4: SAM bit (SAM)

This bit sets the sampling number per one bit.

0: The value sampled at the last of the Phase Buffer Segment 1 becomes the bit value.

1: The bit value is determined by the majority operation circuit using values sampled at the following three points: the last of the Phase Buffer Segment 1, before 1Tq, and before 2Tq.

Bits 5–7: PTS bits (RTS00-RTS02)

These bits set the width of Propagation Time Segment.

Bits 8-10: PBS1 bits (PBS10-PBS12)

These bits set the width of Phase Buffer Segment 1. The PBS1 bits must be set to 1 or greater.

Bits 11–13: PBS2 bits (PBS20-PBS22)

These bits set the width of Phase Buffer Segment 2. The PBS2 bits must be set to 1 or greater.

Bits 14, 15: SJW bits (SJW0, SJW1)

These bits set the width of reSynchronization Jump Width. The SJW bits must be set to a value equal to or less than PBS2.

Baud rate	BRP	Tq period (ns)	1 bit's Tq number	PTS+PBS1	PBS2	Sample point
1Mbps	1	66.7	15	12	2	87%
	1	66.7	15	11	3	80%
	1	66.7	15	10	4	73%
	2	100	10	7	2	80%
	2	100	10	6	3	70%
	2	100	10	5	4	60%
500Kbps	2	100	20	16	3	85%
	2	100	20	15	4	80%
	2	100	20	14	5	75%
	3	133.3	15	12	2	87%
	3	133.3	15	11	3	80%
	3	133.3	15	10	4	73%
	4	166.7	12	9	2	83%
	4	166.7	12	8	3	75%
	4	166.7	12	7	4	67%
	5	200	10	7	2	80%
	5	200	10	6	3	70%
	5	200	10	5	4	60%

Table 1.22.2 Bit Timing Setup Example when the CPU Clock = 30 MHz

Figure 1.22.9. CAN0 time stamp register

Under B2 for proof reading

Under

CAN Module

7. CAN0 Timestamp register

The CAN module incorporates a 16-bit counter. The count period for this counter can be derived from the CAN bus bit period by dividing it by 1, 2, 3, or 4 using the CAN0 control register0 (C0CTLR0)'s TSPre0, 1 bits.

When the CAN module finishes transmitting or receiving, the CAN0 Timestamp Register (C0TSR) value is captured and the value is automatically stored in a message slot.

The C0TSR register starts counting upon clearing the C0CTLR register's Reset and Reset1 bits to 0.

- Note 1: Setting the C0CTLR0 register's Reset0 and Reset1 bits to 1 resets CAN, and the C0TSR register thereby initialized to 000016. Also, setting the TSReset (timestamp counter reset) bit to 1 initializes the COTSR register to 000016 on-the-fly (while the CAN remains operating; CAN0 status register's State_Reset bit is "0").
- Note 2: During loopback mode, if any receive slot exists in which a message can be stored, the C0TSR register value is stored in the corresponding slot when the CAN module finished receiving. (This storing of the C0TSR register value does not occur at completion of transmission.)

Figure 1.22.10. CAN0 transmit error count register

8. CAN0 transmit error count register

When in an error active or an error passive state, the transmit error count value is stored in this register. The count is decremented when the CAN module finished transmitting normally or incremented when an error occurred while transmitting.

When in a bus-off state, an indeterminate value is stored in this register. The register is reset to 0016 upon returning to an error active state.

9. CAN0 reception error count register

When in an error active or an error passive state, the receive error count value is stored in this register. The count is decremented when the CAN module finished receiving normally or incremented when an error occurred while receiving.

When COREC \geq 128 (error passive state) at the time the CAN module finished receiving normally, the COREC register is set to 127.

When in a bus-off state, an indeterminate value is stored in this register. The register is reset to 0016 upon returning to an error active state.

10. CAN0 baud rate prescaler

This register is used to set the Tq period, the CAN bit time. The CAN baud rate is determined by (Tq period x number of Tq's in one bit).

Tq period = (C0BRP+1)/CPU clock CAN baud rate = 1 / (Tq period x number of Tq's in one bit) Number of Tq's in one bit = Synchronization Segment + Propagation Time Segment + Phase Buffer Segment 1 + Phase Buffer Segment 2

7)	(b0)b7	Π		ь0	Symb C0SIS	ol Address STR 020D16,020	When reset (Note 1) 0C16 000016)		
					Bit symbol	Bit name	Function		R	\
				,	SIS15	Slot 15 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested	Note 2)	0	¦ ¦(
					SIS14	Slot 14 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested	Note 2)	0	⊦ ¦(
			ļ		SIS13	Slot 13 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested	Note 2)	0	
			ļ		SIS12	Slot 12 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested	Note 2)	0	
					SIS11	Slot 11 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	¦(
		,			SIS10	Slot 10 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	
					SIS9	Slot 9 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	10
					SIS8	Slot 8 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	;
					SIS7	Slot 7 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested	Note 2)	0	
					SIS6	Slot 6 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	Г 1 1 1
					SIS5	Slot 5 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	
					SIS4	Slot 4 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	;
					SIS3	Slot 3 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested	Note 2)	0	
					SIS2	Slot 2 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	10
					SIS1	Slot 1 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested	Note 2)	0	;
					SIS0	Slot 0 interrupt request status bit	0: Interrupt not requested 1: Interrupt requested (I	Note 2)	0	г ;(;

9. CAN0 slot interrupt status register

When using CAN interrupts, the CAN0 Slot Interrupt Status Register helps to know which slot requested an interrupt.

• For transmit slots

The status is set to 1 when the CAN module finished storing the CAN Timestamp Register value in the message slot after completing transmission.

To clear this bit, write 0 in software (Note 1).

• For receive slots

The status is set to 1 when the CAN module finished storing the received message in the message slot after completing reception.

To clear this bit, write 0 in software (Note 1).

Note 1: To clear any bit of the CAN Interrupt Status Register, write 0 to the bit to be cleared and 1 to all other bits, without using bit clear instructions.

Example : Assembler language mov.w #07FFFh, C0SISTR

C language c0sister = 0x7FFF;

- Note 2: For remote frame receive slots whose automatic answering function is enabled, the slot interrupt status bit is set when the CAN module finished receiving a remote frame and when it finished transmitting a data frame.
- Note 3: For remote frame transmit slots, the slot interrupt status bit is set when the CAN module finished transmitting a remote frame and when it finished receiving a data frame.
- Note 4: If the slot interrupt status bit is set by an interrupt request at the same time it is cleared by writing in software, the former has priority, i.e., the slot interrupt status bit is set.

	b8 (b0)b7	b0	Symb		When reset (Note)	
Щ			COSI	MKR 021116,021016	000016	
			Bit symbol	Bit name	Function	RW
			SIM15	Slot 15 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	o¦c
		,	SIM14	Slot 14 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	0:0
		,	SIM13	Slot 13 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	00
			SIM12	Slot 12 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	0.0
			SIM11	Slot 11 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	00
			SIM10	Slot 10 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	00
			SIM9	Slot 9 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	0.0
	· · · · · · · · · · · · · · · · · · ·		SIM8	Slot 8 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	0;0
	·····		SIM7	Slot 7 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	00
			SIM6	Slot 6 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	00
			SIM5	Slot 5 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	0;0
			SIM4	Slot 4 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	0,0
			SIM3	Slot 3 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	00
<u>.</u>			SIM2	Slot 2 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	0;0
			SIM1	Slot 1 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	00
			SIM0	Slot 0 interrupt request mask bit	0: Interrupt request masked (disabled) 1: Interrupt request enabled	00

12. CAN0 slot interrupt mask register

This register controls CAN interrupts by enabling or disabling interrupt requests generated by each corresponding slot at completion of transmission or reception. Setting any bit of this register (SIMn where n = 0-15) to 1 enables the interrupt request to be generated by the corresponding slot at completion of transmission or reception.

Figure 1.22.15. CAN0 error interrupt mask register

13. CAN0 error interrupt mask register

Bit 0: Bus-off interrupt mask bit (BOIM)

This bit controls CAN interrupts by enabling or disabling interrupt requests generated when the CAN module goes to a bus-off state. Setting this bit to 1 enables a bus-off interrupt request.

Bit 1: Error passive interrupt mask bit (EPIM)

This bit controls CAN interrupts by enabling or disabling interrupt requests generated when the CAN module goes to an error passive state. Setting this bit to 1 enables an error passive interrupt request.

Bit 2: CAN bus error interrupt mask bit (BEIM)

This bit controls CAN interrupts by enabling or disabling interrupt requests generated by occurrence of a CAN bus error. Setting this bit to 1 enables a CAN bus error interrupt request.

Figure 1.22.16. CAN0 error interrupt status register

14. CAN0 error interrupt status register

When using CAN interrupts, the CAN Error Interrupt Status Register helps to verify the causes of error-derived interrupts.

Bit 0: Bus-off interrupt status bit (BOIS)

This bit is set to 1 when the CAN module goes to a bus-off state. To clear this bit, write 0 in software (Note 1).

Bit 1: Error passive interrupt status bit (EPIS)

This bit is set to 1 when the CAN module goes to an error passive state. To clear this bit, write 0 in software (Note 1).

Bit 2: CAN bus error interrupt status bit (BEIS)

This bit is set to 1 when a CAN communication error is detected. To clear this bit, write 0 in software (Note 1).

Note 1: To clear any bit of the CAN Error Interrupt Status Register, write 0 to the bit to be cleared and

1 to all other bits, without using bit clear instructions.

Example: Assembler language mov.B #006h, C0EISTR C language c0eistr = 0x06;

Figure 1.22.17. CAN0 transmit, receive and error interrupt block diagram (1/3)

Under Deprest Rev.B2 for proof reading

Figure 1.22.19. CAN0 transmit, receive and error interrupt block diagram (3/3)

b7 b6 b5 b4 b3 b2 b	b1 b0	Symb COGM COLM COLM	ol Address MR0 022816 IAR0 023016 IBR0 023816	When reset (Note) XXX0 00002 XXX0 00002 XXX0 00002	
		Bit symbol	Bit name	Function	RW
		SID6M	Standard ID6	0: ID not checked 1: ID checked	00
		SID7M	Standard ID7	0: ID not checked 1: ID checked	00
		SID8M	Standard ID8	0: ID not checked 1: ID checked	00
		SID9M	Standard ID9	0: ID not checked 1: ID checked	00
		SID10M	Standard ID10	0: ID not checked 1: ID checked	00
			Nothing is assigned. V When read, their conte	Vhen write, set to "0". nts are indeterminate.	
					¦

15. CAN0 global mask register standard ID0

CAN0 local mask register A, B standard ID0

The mask registers used for acceptance filtering consist of the global mask register, local mask register A, and local mask register B.

The global mask register takes care of message slots 0–13 whereas local mask registers A and B are used for message slots 14 and 15, respectively.

- If any bit of this register is set to 0, its corresponding ID bit is masked during acceptance filtering. (The masked bit is not checked for ID; the ID is assumed to be matching.)
- If any bit of this register is set to 1, its corresponding ID bit is compared with the received ID during acceptance filtering. If it matches the ID that is set in any message slot, the received data is stored in that slot.
- Note 1: The global mask register can only be modified when none of the slots 0–13 has receive requests set.

Note 2: The local mask register A can only be modified when slot 14 has no receive requests set.

Note 3: The local mask register B can only be modified when slot 15 has no receive requests set.

16. CAN0 global mask register standard ID1

CAN0 local mask register A, B standard ID1

The mask registers used for acceptance filtering consist of the global mask register, local mask register A, and local mask register B.

The global mask register takes care of message slots 0–13 whereas local mask registers A and B are used for message slots 14 and 15, respectively.

- If any bit of this register is set to 0, its corresponding ID bit is masked during acceptance filtering. (The masked bit is not checked for ID; the ID is assumed to be matching.)
- If any bit of this register is set to 1, its corresponding ID bit is compared with the received ID during acceptance filtering. If it matches the ID that is set in any message slot, the received data is stored in that slot.
- Note 1: The global mask register can only be modified when none of the slots 0–13 has receive requests set.

17. CAN0 global mask register extend ID0

CAN0 local mask register A, B extend ID0

The mask registers used for acceptance filtering consist of the global mask register, local mask register A, and local mask register B.

The global mask register takes care of message slots 0–13 whereas local mask registers A and B are used for message slots 14 and 15, respectively.

- If any bit of this register is set to 0, its corresponding ID bit is masked during acceptance filtering. (The masked bit is not checked for ID; the ID is assumed to be matching.)
- If any bit of this register is set to 1, its corresponding ID bit is compared with the received ID during acceptance filtering. If it matches the ID that is set in any message slot, the received data is stored in that slot.
- Note 1: The global mask register can only be modified when none of the slots 0–13 has receive requests set.

b6 b5	b5 b4 b3 b2 b1 b0	Symb COGN COLM COLM	ol Ad MR3 02 IAR3 02	ddress 22B16 23316 23B16	When reset (Note) 0016 0016 0016	
		Bit	Bit na	ime	Function	R
		EID6M	Extend ID6		0: ID not checked 1: ID checked	0
		EID7M	Extend ID7		0: ID not checked 1: ID checked	0
	· · · · · ·	EID8M	Extend ID8		0: ID not checked 1: ID checked	0;0
	L	EID9M	Extend ID9		0: ID not checked 1: ID checked	
		EID10M	Extend ID10		0: ID not checked 1: ID checked	0;0
		EID11M	Extend ID11		0: ID not checked 1: ID checked	0
		EID12M	Extend ID12		0: ID not checked 1: ID checked	0
		EID13M	Extend ID13		0: ID not checked 1: ID checked	0

Figure 1.22.23. CAN0 global mask register extend ID1 and CAN0 local mask register A, B extend ID1

18. CAN0 global mask register extend ID1

CAN0 local mask register A, B extend ID1

The mask registers used for acceptance filtering consist of the global mask register, local mask register A, and local mask register B.

The global mask register takes care of message slots 0–13, whereas local mask registers A and B are used for message slots 14 and 15, respectively.

- If any bit of this register is set to 0, its corresponding ID bit is masked during acceptance filtering. (The masked bit is not checked for ID; the ID is assumed to be matching.)
- If any bit of this register is set to 1, its corresponding ID bit is compared with the received ID during acceptance filtering. If it matches the ID that is set in any message slot, the received data is stored in that slot.
- Note 1: The global mask register can only be modified when none of the slots 0–13 has receive requests set.

b6 b5 b4 b3 b2 b1 b0	Symb COGM COLM COLM	ol Address /IR4 022C16 /IAR4 023416 /IBR4 023C16	When reset (Note) XX00 00002 XX00 00002 XX00 00002	
	Bit symbol	Bit name	Function	RW
	EIDOM	Extend ID0	0: ID not checked 1: ID checked	0
· · · · · · · · · · · · · · · · · · ·	EID1M	Extend ID1	0: ID not checked 1: ID checked	0
· · · · · · · · · · · · · · · · · · ·	EID2M	Extend ID2	0: ID not checked 1: ID checked	0
	EID3M	Extend ID3	0: ID not checked 1: ID checked	0
<u>.</u>	EID4M	Extend ID4	0: ID not checked 1: ID checked	0
	EID5M	Extend ID5	0: ID not checked 1: ID checked	0
	·	Nothing is assigned. When read, their cont	When write, set to "0". ents are indeterminate.	

Figure 1.22.24. CAN0 global mask register extend ID2 and CAN0 local mask register A, B extend ID2

19. CAN0 global mask register extend ID2

CAN0 local mask register A, B extend ID2

The mask registers used for acceptance filtering consist of the global mask register, local mask register A, and local mask register B.

The global mask register takes care of message slots 0–13, whereas local mask registers A and B are used for message slots 14 and 15, respectively.

- If any bit of this register is set to 0, its corresponding ID bit is masked during acceptance filtering. (The masked bit is not checked for ID; the ID is assumed to be matching.)
- If any bit of this register is set to 1, its corresponding ID bit is compared with the received ID during acceptance filtering. If it matches the ID that is set in any message slot, the received data is stored in that slot.
- Note 1: The global mask register can only be modified when none of the slots 0–13 has receive requests set.

b6 b5 l	o4 b3 b2	2 b1 b0	Symb	ol Ad	dress	When reset (Note 1
			COMC	CTLi(i=0 to 5) 02	3016, 023116, 023216, 023316, 023416, 023516	0016
└╌╵╌╵	.':':		COMC	CTLi(i=6 to 11) 02	3616, 023716, 023816, 023916, 023A16, 023B16	0016
11	: : :	11	COMC	CTLi(i=12 to 15) 02	3C16, 023D16, 023E16, 023F16	0016
			Bit symbol	Bit name	Function	RW
			When receive, NewData When transmit, SentData	Transmit/receive finished flag	When transmitting When receiving 0: Not transmitted yet 0: Not received 1: Finished transmitting 1: Finished received	yet viving
			When receive, InvalData When transmit, TrmActive	Transmitting/ receiving flag	When transmitting When receiving 0: Stopped transmitting 0: Stopped received 1: Accepted transmit request 1: Storing received	ving O'
			MsgLost	Overwrite flag	0: Over run error not occurred 1: Over run error occurred (N	lote 2) 0 0
			RemActive	Remote flame transmit/receive status flag	Using BasicCan mode 0: Data flame received (status) (N 1: Remote flame received (status) Not using BasicCan mode 0: Data flame 1: Remote flame	ote 2)
			RspLock	Automatic answering disable bit	0: Automatic answering of remote flame e 1: Automatic answering of remote flame d	isable
· · · ·			Remote	Remote frame set bit	0: Transmit/receive data flame 1: Transmit/receive remote flame	00
			RecReq	Receive request bit	0: Reception not requested 1: Reception requested	0,0
			TrmReq	Transmit request bit	0: Transmission not requested 1: Transmission requested	0:0
Note 1	: This ap	plies wh	en the CAI	N module is suppl	ied with a clock by setting the sleep mod	e control bit
	(bit 0 at	t address	s 024216) to	o 1 after reset		
Note 2	. "0"	ho oot		o "1" the province	a value is remained	

Figure 1.22.25. CAN0 message slot i control register

20. CAN0 message slot i control register

Bit 0: Transmission finished flag /reception finished flag (SentData, NewData)

This bit indicates that the CAN module finished transmitting or receiving a message.

• For transmit slots

The bit is set to 1 when the CAN module finished transmitting from the message slot.

This bit is cleared by writing 0 in software. However, it cannot be cleared when the TrmActive (transmit/receive status) bit = 1.

• For receive slots

The bit is set to 1 when the CAN module finished receiving a message normally that is to be stored in the message slot.

This bit is cleared by writing 0 in software. However, it cannot be cleared when the InvalData (transmit/receive status) bit = 1.

Note 1: Before reading received data from the message slot, be sure to clear the NewData (transmission/reception finished status) bit. Also, if the NewData bit is set to 1 after readout, it means that new received data has been stored in the message slot while reading out from the slot, and that the read data contains an indeterminate value. In this case, discard the read data and clear the NewData bit before reading out from the slot again.

Note 2: The NewData bit is not set by a completion of remote frame transmission or reception.

Bit 1: Transmitting flag /receiving flag (TrmActive, InvalData)

This bit indicates that the CAN module is transmitting or receiving a message, with the message slot being accessed. The bit is set to 1 when the CAN module is accessing the message slot and set to 0 when not accessing the message slot.

For transmit slots

This bit is set to 1 when the message slot has its transmit request accepted. If the message slot failed in arbitration, this bit is cleared to 0 by occurrence of a CAN bus error or completion of transmission.

• For receive slots

This bit is set to 1 when the CAN module is receiving a message, with the received message being stored in the message slot. Note that the value read out from the message slot while this bit remains set is indeterminate.

Bit 2: Overwrite flag (MsgLost)

This bit is useful for the receive slots, those that are set for reception. This bit is set to 1 when while the message slot contains an unread received message, it is overwritten by a new received message.

This bit is cleared by writing 0 in software.

Bit 3: Remote frame transmit/receive status flag (RemActive)

This bit functions differently for slots 0–13 and slots 14, 15.

• For slots 0–13

If the slot is set for remote frame transmission (or reception), this bit is set to 1. Then, when the slot finished transmitting (or receiving) a remote frame, this bit is cleared to 0.

For slots 14 and 15

The RemActive bit functions differently depending on how the CAN Control Register's BasicCAN (BasicCAN mode) bit is set.

When BasicCAN = 0 (operating normally), if the slot is set for remote frame transmission (or reception), the RemActive bit is set to 1.

When BasicCAN = 1 (operating in BasicCAN mode), the RemActive bit indicates which frame type of message was received. During BasicCAN mode, slots 14 and 15 store the received data whether it be a data frame or a remote frame.

If RemActive = 0, it means that the message stored in the slot is a data frame.

If RemActive = 1, it means that the message stored in the slot is a remote frame.

Bit 4: Automatic answering disable bit (RspLock)

This bit is useful for the slots set for remote frame reception, indicating the processing to be performed after receiving a remote frame.

If this bit is set to 0, the slot automatically changes to a transmit slot after receiving a remote frame and the message stored in the slot is transmitted as a data frame.

If this bit is set to 1, the slot stops operating after receiving a remote frame.

Note 1: This bit must always be set to 0 for any slots other than those set for remote frame reception.

Bit 5: Remote frame set bit (Remote)

Set this bit to 1 for the message slots that handle a remote frame.

Message slots can be set to handle a remote frame in the following two ways.

• Set to transmit a remote frame and receive a data frame

The message stored in the message slot is transmitted as a remote frame. The slot automatically changes to a data frame receive slot after it finished transmitting.

However, if it receives a data frame before it finishes transmitting a remote frame, the data frame is stored in the message slot and the remote frame is not transmitted.

• Set to receive a remote frame and transmit a data frame

The slot receives a remote frame. The processing to be performed after receiving a remote frame depends on how the RspLock (automatic answering disable) bit is set.

Bit 6: Receive request bit (RecReq)

Set this bit to 1 when using any message slot as a receive slot.

Set this bit to 0 when using any message slot as a data frame transmit or remote frame transmit slot. If the TrmReq (transmit request) bit and RecReq (receive request) bit both are set to 1, the operation of the CAN module is indeterminate.

Bit 7: Transmit request bit (TrmReq)

Set this bit to 1 when using any message slot as a transmit slot. Set this bit to 0 when using any message slot as a data frame receive or remote frame receive slot.

Figure 1.22.26. CAN0 slot buffer select register

21. CAN0 slot buffer select register

Bits 0-3: CAN0 message slot buffer 0 slot number select bits (SBS0)

The message slot whose number is selected with these bits appears in CAN0 message slot buffer 0.

Bits 4-7: CAN0 message slot buffer 1 slot number select bits (SBS1)

The message slot whose number is selected with these bits appears in CAN0 message slot buffer 1.

The selected message slot can be identified by reading the message slot buffer. A message written to the message slot buffer is stored in the selected message slot.

	Symb C0SL	ool Address .OTi_0(i=0,1) 01E016, 01F	When reset 016 Indeterminate	
	Bit symbol	Bit name	Function	RW
	SID6	Standard ID6	Message slot j (j=0 to 15)	oc
	- SID7	Standard ID7	Message slot j (j=0 to 15)	0
	SID8	Standard ID8	Message slot j (j=0 to 15)	oc
	- SID9	Standard ID9	Message slot j (j=0 to 15)	00
	SID10	Standard ID10	Message slot j (j=0 to 15)	0
	·	Nothing is assigned. V When read, their conte	Vhen write, set to "0". nts are indeterminate.	
	.			_!_
Note: CAN0 message s buffer select regi CAN0 message s	slot j standa ster. Iot buff	ard ID0 (j=0 to 15) is stor er i standard ID [*] pol Address	ed in this register. j is selected wit 1 (i=0,1) (Note) When reset	th the slot
Note: CAN0 message s buffer select regi	lot j standa ster. lot buff Symt CosL	ard ID0 (j=0 to 15) is stor er i standard ID [*] pol Address .OTi_1(i=0,1) 01E116, 011	ed in this register. j is selected wit 1 (i=0,1) (Note) When reset F1 ₁₆ Indeterminate	th the slot
Note: CAN0 message s buffer select regi	lot j standa ster. lot buff CosL Bit symbol	ard ID0 (j=0 to 15) is stor er i standard ID pol Address .OTi_1(i=0,1) 01E116, 011 Bit name	ed in this register. j is selected wit 1 (i=0,1) (Note) F116 When reset Indeterminate Function	h the slot
Note: CAN0 message s buffer select regi CAN0 message s	lot j standa ster. lot buff Cosi Bit symbol SID0	ard ID0 (j=0 to 15) is stor er i standard ID ⁺ pol Address .OTi_1(i=0,1) 01E116, 011 Bit name Standard ID0	ed in this register. j is selected wit 1 (i=0,1) (Note) F116 When reset Indeterminate Function Message slot j (j=0 to 15)	R W
Note: CAN0 message s buffer select regi	lot j standa ster. lot buff CosL Bit symbol SID0	ard ID0 (j=0 to 15) is stor er i standard ID ⁺ pol Address .OTi_1(i=0,1) 01E116, 011 Bit name Standard ID0 Standard ID1	ed in this register. j is selected wit 1 (i=0,1) (Note) F116 When reset Indeterminate Function Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R W
Note: CAN0 message s buffer select regi	lot j standa ster. lot buff CoSL Bit symbol SID0 SID1 SID2	ard ID0 (j=0 to 15) is stor er i standard ID ⁷ pol Address OTi_1(i=0,1) 01E116, 011 Bit name Standard ID0 Standard ID1 Standard ID2	ed in this register. j is selected wit 1 (i=0,1) (Note) F116 When reset Indeterminate Function Message slot j (j=0 to 15) Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R W
Note: CAN0 message s buffer select regi	Iot j standa ster. Iot buff Cosi Bit symbol SID0 SID1 SID2 SID2 SID3	ard ID0 (j=0 to 15) is stor er i standard ID ⁷ pol Address OTi_1(i=0,1) 01E116, 011 Bit name Standard ID0 Standard ID1 Standard ID2 Standard ID3	ed in this register. j is selected wit 1 (i=0,1) (Note) F116 When reset Indeterminate Function Message slot j (j=0 to 15) Message slot j (j=0 to 15) Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R V 0 C
Note: CAN0 message s buffer select regi	Iot j standa ster. Iot buff Cosi Sipo Sipo Sipo Sipo Sipo Sipo Sipo Sip	ard ID0 (j=0 to 15) is stor er i standard ID ⁷ pol Address OTi_1(i=0,1) 01E116, 011 Bit name Standard ID0 Standard ID1 Standard ID2 Standard ID3 Standard ID4	ed in this register. j is selected wit 1 (i=0,1) (Note) F116 When reset Indeterminate Function Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R W 0 C
Note: CAN0 message s buffer select regi	Iot buff Ster. Iot buff Cost Symbol SiD0 SID1 SID2 SID3 SID4 SID5	ard ID0 (j=0 to 15) is stor er i standard ID7 pol Address OTi_1(i=0,1) 01E116, 011 Bit name Standard ID0 Standard ID1 Standard ID2 Standard ID3 Standard ID4 Standard ID5	ed in this register. j is selected wit 1 (i=0,1) (Note) F116 When reset Indeterminate Function Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R W 0 C 0 C 0 C

Figure 1.22.27. CAN0 message slot buffer i standard ID0 and ID1

b7 b6 b5 b4 b3	b2 b1 b0	Symb C0SL	ODI Address OTi_2(i=0,1) 01E216, 0	When reset 1F216 Indeterminate	
		Bit symbol	Bit name	Function	RV
		EID14	Extended ID14	Message slot j (j=0 to 15)	00
		EID15	Extended ID15	Message slot j (j=0 to 15)	0
		EID16	Extended ID16	Message slot j (j=0 to 15)	00
		EID17	Extended ID17	Message slot j (j=0 to 15)	0
			-	When write, get to "0"	
			When read, their con	tents are indeterminate.	
Note 1: Wher Note 2: CANO buffe	n receive s 0 message r select reg age slo	lot is stan slot j exte gister.	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1	s are indeterminate when saving red tored in this register. j is selected w (i=0,1) (Note 1,2)	ceived data. //ith the slot
Note 1: When Note 2: CAN buffe CANO mess	n receive s 0 message r select rec cage slo	lot is stan slot j exte gister. Dt buffe Symb COSL	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 pol Address .OTi_3(i=0,1) 01E316.0°	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) When reset IF316 Indeterminate	ceived data.
Note 1: When Note 2: CAN(buffe	n receive s 0 message or select reg	lot is stan slot j exte gister. Dt buffe Symb COSL Bit symbol	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 pol Address .OTi_3(i=0,1) 01E316, 07 Bit name	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) When reset IF316 Indeterminate Function	R V
Note 1: Wher Note 2: CAN buffe	n receive s 0 message r select rec sage slo	lot is stan slot j exte gister. Dt buffe Symb COSL Bit symbol EID6	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 vol Address .OTi_3(i=0,1) 01E316, 0 Bit name Extended ID6	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) IF316 When reset Indeterminate Function Message slot j (j=0 to 15)	R V
Note 1: Wher Note 2: CAN buffe	n receive s 0 message r select rec sage slo	lot is stan slot j exte gister. Dt buffe Symb COSL Bit symbol EID6 EID7	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 ol Address OTi_3(i=0,1) 01E316,07 Bit name Extended ID6 Extended ID7	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) When reset IF316 Indeterminate Function Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R V
Note 1: Wher Note 2: CAN buffe	n receive s 0 message r select reg	lot is stan slot j exte gister. Dt buffe Symb COSL Bit symbol EID6 EID7 EID8	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 ool Address OTi_3(i=0,1) 01E316, 0 Bit name Extended ID6 Extended ID7 Extended ID8	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) When reset IF316 Indeterminate Function Message slot j (j=0 to 15) Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R V
Note 1: Wher Note 2: CAN buffe	n receive s 0 message r select reg	lot is stan slot j exte gister. Dt buffe Symb COSL Bit symbol EID6 EID7 EID8 EID9	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 ool Address .OTi_3(i=0,1) 01E316, 0' Bit name Extended ID6 Extended ID7 Extended ID8 Extended ID8	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) When reset IF316 Indeterminate Function Message slot j (j=0 to 15) Message slot j (j=0 to 15) Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R V
Note 1: Wher Note 2: CAN buffe	n receive s 0 message r select reg	lot is stan slot j exte gister. Dt buffe Symb COSL Bit symbol EID6 EID7 EID8 EID9 EID10	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 ool Address OTi_3(i=0,1) 01E316,0' Bit name Extended ID6 Extended ID7 Extended ID8 Extended ID9 Extended ID9	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) When reset IF316 Function Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R V
Note 1: Wher Note 2: CAN buffe	n receive s 0 message r select reg	lot is stan slot j exte gister. Dt buffe Symb COSL Bit symbol EID6 EID7 EID8 EID9 EID10 EID11	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 ool Address OTi_3(i=0,1) 01E316, 07 Bit name Extended ID6 Extended ID7 Extended ID8 Extended ID8 Extended ID9 Extended ID10 Extended ID11	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) When reset IF316 Function Message slot j (j=0 to 15) Message slot j (j=0 to 15)	R V
Note 1: Wher Note 2: CAN buffe	n receive s 0 message r select reg sage slo	lot is stan slot j exte gister. Dt buffe Symb COSL Bit symbol EID6 EID7 EID8 EID9 EID10 EID11 EID11	dard ID format, EID bit end ID0 (j=0 to 15) is s er i extend ID1 ol Address OTi_3(i=0,1) 01E316, 0' Bit name Extended ID6 Extended ID7 Extended ID7 Extended ID7 Extended ID9 Extended ID10 Extended ID11 Extended ID11	s are indeterminate when saving rec tored in this register. j is selected w (i=0,1) (Note 1,2) ^{IF316} ^{When reset Indeterminate ^{IF316} ^{When reset} Message slot j (j=0 to 15) ^{Message slot j (j=0 to 15)} ^{Message slot j (j=0 to 15)}}	R V R V O C O C O C O C O C O C O C O C O C O C

buffer select register.

Figure 1.22.28. CAN0 message slot buffer i extended ID0 and ID1

	Symb C0SL	ool Address .OTi_4(i=0,1) 01E416, 01F	When reset 416 Indeterminate	
	Bit symbol	Bit name	Function	RW
	EID0	Extended ID0	Message slot j (j=0 to 15)	0
	EID1	Extended ID1	Message slot j (j=0 to 15)	o¦c
	EID2	Extended ID2	Message slot j (j=0 to 15)	0
	EID3	Extended ID3	Message slot j (j=0 to 15)	0
	EID4	Extended ID4	Message slot j (j=0 to 15)	0
	EID5	Extended ID5	Message slot j (j=0 to 15)	00
		Nothing is assigned. W When read, their conter	hen write, set to "0". hts are indeterminate.	
<u>.</u>	·			
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j extre egister. Ot buffe	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c	ore indeterminate when saving red ed in this register. j is selected w Ode (i=0,1)(Note) When reset	ceived data /ith the slot
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j ext egister. Ot buffe Symb COSL	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516, 01F	ore indeterminate when saving reduced in this register. j is selected w ODDE (i=0,1)(Note) When reset 1516	ceived data
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j ext egister. Ot buffe Symb COSLO Bit symbol	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516, 01F Bit name	ore indeterminate when saving rec ed in this register. j is selected w Ode (i=0,1)(Note) When reset Indeterminate Function	reived data /ith the slot
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j ext egister. Ot buffe Symbo CosLo Bit symbol DLC0	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516, 01F Bit name	ore indeterminate when saving red ed in this register. j is selected w Ode (i=0,1)(Note) When reset 516 Indeterminate Function	R W
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j ext egister. Ot buffe Symbol DLC0 DLC1	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516, 01F Bit name	ore indeterminate when saving red ed in this register. j is selected w Ode (i=0,1)(Note) When reset 516 Indeterminate Function	R W
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j ext egister. Ot buffe Symbol COSLI Bit symbol DLC0 DLC1 DLC2	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516, 01F Bit name Data length set bit	are indeterminate when saving red ed in this register. j is selected w OCE (i=0,1)(Note) When reset 516 Indeterminate Function Message slot j (j=0 to 15)	R W
Note 1: When receive Note 2: CAN0 message buffer select re CANO message sl	slot is stan e slot j extr egister. Ot buffe Symbol OLC0 DLC1 DLC2 DLC3	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516, 01F Bit name Data length set bit	ore indeterminate when saving red ed in this register. j is selected w Ode (i=0,1)(Note) When reset 516 Indeterminate Function Message slot j (j=0 to 15)	R W O C O C
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j ext egister. Ot buffe Symbo COSLO Bit symbol DLC0 DLC1 DLC2 DLC3	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516,01F Bit name	are indeterminate when saving red ed in this register. j is selected w Ode (i=0,1)(Note) When reset 516 Indeterminate Function Message slot j (j=0 to 15)	R W
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	Bit symbol Bit symbol DLC0 DLC1 DLC2 DLC3 DLC3	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516,01F Bit name Data length set bit	are indeterminate when saving recevent of this register. j is selected w OCE (i=0,1)(Note) When reset '516 Indeterminate Function Message slot j (j=0 to 15)	R W
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j ext egister. Ot buffe Symbol OLC0 DLC1 DLC2 DLC3	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516, 01F Bit name Data length set bit Nothing is assigned. Wh	are indeterminate when saving red ed in this register. j is selected w OCE (i=0,1)(Note) When reset '516 Indeterminate Function Message slot j (j=0 to 15) hen write, set to "0". ts are indeterminate.	R W
Note 1: When receive Note 2: CAN0 message buffer select re CAN0 message sl	slot is stan e slot j extregister. ot buffe Symbol OLC0 DLC1 DLC2 DLC3	dard ID format, EID bits a end ID2 (j=0 to 15) is stor er i data length c ol Address OTi_5(i=0,1) 01E516, 01F Bit name Data length set bit Nothing is assigned. Wh	are indeterminate when saving red ed in this register. j is selected w Ode (i=0,1)(Note) When reset '516 Indeterminate Function Message slot j (j=0 to 15) wen write, set to "0". ts are indeterminate.	R W

Figure 1.22.29. CAN0 message slot buffer i extended ID2 and CAN0 message slot buffer i data lengthcode

Figure 1.22.30. CAN0 message slot buffer i data m and CAN0 message slot buffer i time stamp

Under Rev.B2 for proof reading **CAN Module**

Under

Intelligent I/O

Intelligent I/O uses multifunctional I/O ports for time measurement, waveform generation, clock-synchronous/asynchronous (UART) serial I/O, IE bus ^(Note) communications, HDLC data processing and more. A single Intelligent I/O group comes with one 16-bit base timer for free running, eight 16-bit registers for time measurement and waveform generation, and two shift registers for 8-bit and 16-bit communications. The M32C/83 has four internal Intelligent I/O groups. Table 1.23.1 lists functions by group.

Function	Group 0	Group 1	Group 2	Group 3	Group 0,1
					cascaded
Configuration					
•Base timer	1	1	1	1	1
•TM	4ch(2ch)	_	_	_	_
 TM/WG register (shared) 	4chs(1ch)	4chs(2chs)	-	-	8chs(3chs)
•WG register	-	4chs(1ch)	8chs	8chs(3chs)	8chs(2chs)
 Communication shift register 	8bits X 2chs	8bits X 2chs	8bits X 2chs	-	-
Time measurement functions	Max. 8chs	Max. 4chs	_	_	Max. 8chs
	(3chs)	(2chs)			(3chs)
 Digital filter function 	\checkmark	\checkmark	-	-	\checkmark
 Trigger input prescale function 	2chs	2chs	-	-	2chs
 Gate function for trigger input 	2chs	2chs	-	-	2chs
WG function	Max. 4chs	Max. 8chs	Max. 8chs	Max. 8chs	Max. 8chs
	(1ch)	(3chs)	(3chs)	(2chs)	(1ch)
 Single phase waveform output 	\checkmark	\checkmark			\checkmark
 Phase delayed waveform output 	\checkmark				
 Set/reset waveform output 	\checkmark				
 Bit modulation PWM output 	-	-			-
 Real-time port output 	-	—			-
Parallel real-time port output	-	_	\checkmark	\checkmark	-
Communication functions					
•Bit length	8 bits fixed	8 bits fixed	Variable length	_	_
 Communication mode 					
1. Clock synchronous serial I/O	\checkmark	\checkmark	\checkmark	_	_
2. UART	\checkmark	\checkmark	_	_	_
3. HDLC data processing	\checkmark	\checkmark	_	_	_
4. IE Bus sub set	-	_	\checkmark	_	_

Table 1.23.1.	List of functions	of intelligent I/O
		or miconigent #O

Note 1: IE Bus is a trademark of NEC.

Note 2: 100-pin specification are in parentheses.

 $\sqrt{1}$: Present

- : Not present

TM:Time Measurement

WG:Waveform Genaration

Block diagrams for groups 0 to 3 are given in Figures 1.23.1 to 1.23.4.

Intelligent I/O

Figure 1. 23 . 4. Block diagram of intelligent I/O group 3

Base timer (group 0 to 3)

The internally generated count source is a free run source. Base timer specifications are given in Table 1.23.2, base timer registers in Figures 1.23.5 to 1.23.9 and a block diagram in Figure 1.23.10.

Figure 1. 23. 5. Base timer-related register (1)

Under Development Rev.B2 for proof reading

	Symb GiBC	Address CR1 (i=0,1) 00E316, 0	When reset 12316 0016	
	Bit symbol	Bit name	Function	R
	RST0	Base timer reset cause select bit 0	 0: Synchronizes the base timer reset without resetting the timer 1: Synchronizes the base timer reset with resetting the timer (Note1) 	0
······	RST1	Base timer reset cause select bit 1	0: Does not reset the base timer when it matches WG register ch0 1: Reset the base timer when it matches WG register ch0 (Note 2)	0.0
	RST2	Base timer reset cause select bit 2	0: Does not reset the base timer when input to the INT pin is "L" level 1: Reset the base timer when input to the INT pin is "L" level (Note 3)	0;0
		Reserved bit	Must always set to "0".	0
	BTS	Base timer start bit	0: Base timer reset 1: Base timer count start	0
	UD0	Up / down	b6b5 0 0 : Up mode 0 1 : Up / down mode (triangle wave)	0
	UD1	control bit	10: Iwo-phase pulse signal processing mode (Note 4) 11: Must not be set	0
	CAS	Groups 0 and 1 cascaded function select bit	0: 16-bit TM / WG function 1: 32-bit TM / WG function (Note 5)	0
Note 1: With group 0, res group 0 base time Note 2: The base timer is Note 3: With group 0, the "L" level is input to Note 4:Operation of this t	et synch er. reset 2 o base tim o INT1. mode is e	conizing with group 1 t clock cycles after it ma ner is reset when "L" le	base timer. With group 1, reset synchronizing the synchronizing the synchronizing the synchronizing the synchronizing the synchronizing the standard processing except count the synchronizing the standard processing except count the synchronizing	ng w whe

Figure 1. 23. 6. Base timer-related register (2)

Under Oppment Rev.B2 for proof reading

b7 00	0 b0	Symb G2B0	ol Add CR1 0163	ress When reset 316 0016		
		Bit symbol	Bit name	Function	R	V
		RST0	Base timer reset cause select bit 0	0 : Synchronizes the group 1 base timer reset without resetting the timer1 : Synchronizes the group 1 base timer reset with resetting the timer	0	-
		RST1	Base timer reset cause select bit 1	 0 : Does not reset the base timer when it matches WG register ch0 1 : Reset the base timer when it matches WG register ch0 (Note) 	0	
		RST2	Base timer reset cause select bit 2	 0 : Does not reset the base timer when a reset is requested from the communication additional circuit 1 : Reset the base timer when a reset is requested from the communication additional circuit 	0	
		RST3	Reserve bit	Must always set to "0".	0	
		BTS	Base timer start bit	0 : Base timer reset 1 : Base timer count start	0	
		UD0	Decence bit	Must shusus set to "0"	0	
		UD1	Reserve bit	Must always set to 0.	0	
		PRP	Parallel real-time port function select bit	0 : Not use 1 : Use	0	

Figure 1. 23. 7. Base timer-related register (3)

		Symb G3B0	ol Addı CR1 01A	ress When reset 316 0XX0 X0002		
		Bit symbol	Bit name	Function	R	¦۷
		RST0	Base timer reset cause select bit 0	 0 : Synchronizes the base timer 2 reset without resetting the timer 1 : Synchronizes the base timer 2 reset with resetting the timer 	0	
		RST1	Base timer reset cause select bit 1	 0 : Does not reset the base timer when it matches WG register ch0 1 : Reset the base timer when it matches WG register ch0 (Note) 	0	
			Reserved bit	Must always set to "0".	0	
			Nothing is assig When read, the	ned. When write, set to "0". content is indeterminate.	_	
	[BTS	Base timer start bit	0 : Base timer reset 1 : Base timer count start	0	: :C
	PRP		Nothing is assigned. When write, set to "0".		_	
			When read, the	ir contents are indeterminate.	-	- - - -
			Parallel real-time port function select bit	0 : Not use 1 : Use	0	

Figure 1. 23. 8. Base timer-related register (4)

Figure 1. 23. 9. Base timer-related register (5)

Item		Specifications
Count source		f1/2(n+1)n: Set by count source division ratio select bit(n=0 to 31, however, please note when n=31, the counter source is not divided.)
Count operation		Up count / down count
Count start condition		Writes "1" for the start bit in the base timer start register or base timer control register 1. (After writing the bit, the base timer resets to "000016" and counting starts.)
Count stop condition		Writes "0" for both the start bit in the base timer start register and base timer control register 1.
Count reset condition	Group 0, 1 Group 2, 3	 (1) Synchronizes and resets the base timer with that of another group. Group 0: Synchronizes base timer reset with the group 1 base timer. Group 1: Synchronizes base timer reset with the group 0 base timer. (2) Matches the value of the base timer to the value of WG register 0. (3) Input "L" to INT pin Group 0 : INT 0 pin Group 1 : INT 1 pin The above 3 factors can be used in conjunction with one another. (1) Synchronizes and resets the base timer with that of another group. Group 2: Synchronizes base timer reset with the group 1 base timer.
		 Group 3: Synchronizes base timer reset with the group 2 base timer. (2) Matches the value of the base timer to the value of WG register 0. (3) Reset request from communication additional circuit (group 2 only) The above 3 factors can be used in conjunction with one another.
Interrupt request gene	eration timing	When bit 14 or bit 15 overflows
Read from timer		 When the base timer is running The count is output when the base timer is read. When the base timer not running An undefined value is output when the base timer is read.
Write to timer		Possible. Values that are written while the base timer is resetting are ignored. If values are written while the base timer is running, counting continues after the values are written.

Table 1. 23.2. Base timer specifications

Under opment Rev.B2 for proof reading

Figure 1. 23.11. Operation timing of base timer

Time measurement (group 0 and 1)

Synchronizes external trigger input and stores the base timer value in the time measurement register j. Specifications for the time measurement function are given in Table 1.23.3, the time measurement control registers in Figures 1.23.12 to 1.23.13, and the operating timing of the time measurement function in Figure 1.23.14 and 15.

ьо 	Symb GiTM GiTM GiTM GiTM	ol Address CRj(i=0/j=0 to 3) 00D816, 0 CRj(i=0/j=4 to 7) 00DC16, 0 CRj(i=1/j=1, 2) 011916, 0 CRj(i=1/j=6, 7) 011E16, 0	0D916, 00DA16, 00DB16 00DD16, 00DE16, 00DF16 11A16 11F16	When reset 0016 0016 0016 0016	
	Bit symbol	Bit name	Functio	n	RW
	CST0	Time measurement	b1 b0 0 0 : No time measu 0 1 : Rising edge	urement	00
	CST1	trigger select bit	1 0 : Falling edge 1 1 : Both edges		00
	DF0	Digital filter function	b3 b2 0 0 : No digital filter	+	00
	DF1	select bit	1 0 : Base timer clo	ck	00
ļ	GT	Gate function select bit (Note 2, 4)	0 : Gate function not 1 : Gate function use	used d	00
	GOC	Gate function release select bit (Note 2, 3)	0 : No effect 1 : Release the gate matches WG regis	when it ster	00
	GSC	Gate function release bit (Note 2, 3)	0 : No effect 1 : Gate released		0¦0
	PR	Prescaler function select bit (Note 2)	0 : Not used 1 : Used		0:0

Note 1: The 16-bit time measurement function is available for 8 channels (ch0 to 7) with group 0 and 4 channels (ch1, 2, 6 and 7) with group 1. When using the 16-bit time measurement function, use the time measurement register values for ch0, 3, 4 and 5 of group 1 as they are, or, if writing values, write "0016". The 32-bit time measurement function can be used with 8 channels (ch0 to 7) by linking groups 0 and 1. When using the 32-bit time measurement function, write the same value for time measurement registers of similar channels in groups 0 and 1.

- Note 2: These functions are available only for time measurement ch6 and 7 (time measurement registers 6 and 7). For ch0 to 5, set "0" for bits 4 to 7 of the time measurement register.
- Note 3: These bits are valid only when "1" is set for the gate function select bit.

Note 4: The gate function cannot be used at the same time as the 32-bit time measurement function.

Figure 1. 23. 12. Time measurement-related register (1)

Figure 1. 23. 13. Time measurement-related register (2)

Item	Specifications
Time resolution	t=1/(base timer count source)
Trigger input polarity select	•Rising edge •Falling edge •Both edges
Measurement start condition (Note)	Write "1" to the function enable bit
Measurement stop condition	Write "0" to the function enable bit
Time measurement timing	•Prescaler (only ch6 and ch7) : Every the (m+1) trigger input
	•No prescaler : Every trigger input
Interrupt request generation timing	Same timing as time measurement
INPC pin function	Trigger input pin
	(Set the corresponding pin to input with the function select register)
Select function	•Digital filter function Pulses will pass when they match either f1 or the base timerclock 3 times .
	 Prescaler function (only for ch6 and ch7) Counts trigger inputs and measures time by inputting a trigger of +1 the value of the time measurement prescale register.
	 Gate function (only for ch6 and ch7) Prohibits the reception of trigger inputs after the time measurement starts for the first trigger input. Trigger input is newly enabled when the below conditions are satisfied. (1) When the base timer i matches the value in WG register j (2) When "1" is written for the gate function release bit This bit automatically becomes "0" after the gate function is released.

Table 1. 23.3. Specifications of time measurement function

Note: On channels where both the time measurement function and waveform output function can be used, select the time measurement function for the function select register (addresses 00E716 and 012716).

Table 1. 23.4.	List of time measurement	channels with	prescaler function an	d gate function

Group	Channel	TM register	WG register matches signal to release gate function
Group 0	ch6	TM register 6	Base timer 0 matches to WG register 4
	ch7	TM register 7	Base timer 0 matches to WG register 5
Group 1	ch6	TM register 6	Base timer 1 matches to WG register 4
	ch7	TM register 7	Base timer 1 matches to WG register 5

(a) When the ris	sing edge has been selected as the trigger input polarity
Base timer count source	
Base timer value	<u></u>
Trigger input	
Time measurement interrupts request signal	Delay by 1 clock
Time measurement register	V n V n+5 V n+8
(b) When both e	edges have been selected as the trigger input polarity
Base timer count source	
Base timer value	<u></u>
Trigger input	
Time measurement interrupts request signal	
Time measurement register	n n+2 n+5 n+8 n+12
(c) When digital f	ilter is used (count of digital filter)
Digital filter count source	
Trigger input	
Triggers signal	Signals which do not match 3 times are stripped off
through digital filter	Trigger signal delayed by digital filter

Figure 1. 23. 14 Operation timing of time measurement function

Base timer counter source	
Base timer	<u></u>
Trigger input	
Internal time measurement trigger	
Prescaler	
Time measurement interrupts request signal	ŤŤ
Time measurement register	
counter source	
counter source	
counter source	FFFF16 WG register value (XXXX16) 000016
Counter source Base timer Function enabled flag	FFFF16 WG register value (XXXX16) 000016
Counter source Base timer Function enabled flag Trigger input	FFFF16 WG register value (XXXX16) 000016
counter source Base timer Function enabled flag Trigger input Internal time measurement trigger	FFFF16 WG register value (XXXX16) 000016 This trigger input is invalid because of gate function.
counter source Base timer Function enabled flag Trigger input Internal time measurement trigger Waveform generation register match signal	FFFF16 WG register value (XXXX16) 000016 This trigger input is invalid because of gate function.
Counter source Base timer Function enabled flag Trigger input Internal time measurement trigger Waveform generation register match signal Gate signal	FFFF16 WG register value (XXXX16) 000016 This trigger input is invalid because of gate function.
Counter source Base timer Function enabled flag Trigger input Internal time measurement trigger Waveform generation register match signal Gate signal Time measurement interrupts request signal	FFFF16 WG register value (XXXX16) 000016 This trigger input is invalid because of gate function.

Figure 1. 23. 15. Operation timing when gate function and prescaler function is used

Waveform generation (WG) function (group 0 to 3)

Waveforms are generated when the base timer value matches the value of WG register j. There are five mode in WG function: single phase waveform output mode (group 0 to 3), phase delayed waveform output mode (group 0 to 3), SR (Set/Reset) waveform output mode (group 0 to 3), bit modulation PWM output mode (group 2 and 3) and parallel real-time port output mode (group 2 and 3). The WG function related registers are shown in Figures 1.23.16 to 1.23.19.

Intelligent I/O

Figure 1. 23. 17. WG-related register (2)

Symb GiPC GiPC GiPC GiPC	ol A DCRj (i=2/j=0 to 3) 0 DCRj (i=2/j=4 to 7) 0 DCRj (i=3/j=0 to 3) 0 DCRj (i=3/j=4 to 7) 0	Address Wh 15016, 015116, 015216, 015316 0X 15416, 015516, 015616, 015716 0X 19016, 019116, 019216, 019316 0X 19416, 019516, 019616, 019716 0X	nen re 00 X (00 X (00 X (00 X (eset 0002 0002 0002 0002
Bit symbol	Bit name	Function		R¦W
 MOD0		0 0 0: Single PWM mode 0 0 1: S-R PWM mode 0 0 1: S-R PWM mode	ote 1)	0;0
 MOD1	Operation mode select bit	0 10: Phase delayed PWW mode 0 11: Must not be set 1 00: Bit modulation PWM mode 1 01: Must not be set	;	0¦0
 MOD2		1 10: Must not be set 1 11: Assigns communication ou to a port (No	tput ote 2)	- <u>-</u> 0 0
 PRT	Parallel RTP output trigger select bit	0: Match of WG register j isn't trig 1: Match of WG register j is trigge	ger er	- <u>-</u> 0 0:
 IVL	Output initial value select bit	0: Outputs "0" as the initial value 1: Outputs "1" as the initial value		0
 RLD	Reload timing select bit	0: Reloads a new count when CF writes the count1: Reloads a new count when the base timer i is reset	U ,	<u>0</u> 0
 RTP	RTP port function select bit	0: Not use 1: Use		000
 INV	Inverted output function select bit (Note 3	0: Output is not inverted 1: Output is inverted		00

Note 1: This setting is valid only on even-numbered channels. When this mode is selected, settings for corresponding odd-numbered (even number + 1) channels are ignored. Waveforms are output for even-numbered channels, not output for odd-numbered channels.

Note 2: This setting is valid only for group 2 WG function ch0 and 1. Do not set this value for other channels. Note 3: Inverted output function is allocated at the final stage of WG circuit. Therefore, when selecting "0"

output by IVL bit and inverted output by INV bit, "1" is output.

Group i function enable register (i=0 to 3)

b7	b0	Symb GiFE	Address (i=0 to 3) 00E616, 01267	When reset 6, 016616, 01A616 0016	
		Bit symbol	Bit name	Function	RW
		IFE0	Ch0 function enable bit	Whether the corresponding port	0¦0
		IFE1	Ch1 function enable bit	functions is selected	0;0
		IFE2	Ch2 function enable bit	1 : Enables function on ch i	0:0
		IFE3	Ch3 function enable bit		0¦0
		IFE4	Ch4 function enable bit		0;0
	L	IFE5	Ch5 function enable bit	-	0:0
ļ i		IFE6	Ch6 function enable bit		0¦0
!		IFE7	Ch7 function enable bit		0;0

Figure 1. 23. 18. WG-related register (3)

Figure 1. 23. 19. WG-related register (4)

(1) Single phase waveform output mode (group 0 to 3)

This mode is set when the base timer value matches the value of WG register j, and reset when the base timer overflows or the count is reset. Specifications for the single phase waveform output mode are given in Table 1.23.5 and an operating chart for the single phase waveform output mode in Figure 1.23.20.

Item	Specifications				
Output waveform	•When free run operation				
	Period	Period : Base timer count source x 1/65536			
	"H" level width : 1/base timer count source x (65536 - m)				
	•Resetting when the	base timer matches V	VG register 0 (ch0)		
	Period	: Base timer count s	source x 1/(k+2)		
	"H" level width	: 1/base timer count	t source x (k+2-m)		
	m : values set to	WG register j	k: values set to WG register 0		
Waveform output start condition	Write "1" to the function enable bit ^(Note)				
Waveform output stop condition	Write "0" to the function enable bit				
Interrupt generation timing	When the base timer value matches the WG register j				
OUTC pin	Pulse output (Corresponding pins are set with the function select register.)				
Read from the WG register 0	The set value is outp	put			
Write to the WG register 0	Can always write				
Select function	Initial value setting function				
	Sets output level used at waveform output start				
	 Inverted output fund 	ction			
	Inverts waveform output level and outputs the waveform from the OUTC pin				

Table 1. 23.5.	Specifications	of single phas	e waveform ou	Itput mode
----------------	----------------	----------------	---------------	------------

Note: On channels where both the time measurement function and waveform output function can be used, select the waveform output function for the function select register (addresses 00E716 and 012716).

When WG register is "xxxa ₁₆ "		Reset when channel 0 (xxxa16) is matched
Base timer (xxxa) xxxb (xxxc) xxxd (xxxe)	((0000)(0001)	
Output "H" waveform "L"		
Interrupt "1" request flag "0" Cleared by software.		

Figure 1. 23. 20. Operation timing in single phase waveform output mode

(2) Phase delayed waveform output mode (group 0 to 3)

This mode is repeatedly set and reset when the base timer value matches the value of WG register j. Specifications for the phase delayed waveform output mode are given in Table 1.23.6 and an operation timing in phase delayed waveform output mode in Figure 1.23.21.

Item	Specifications			
Output waveform	•When free run operation			
	Period	: Base timer count source x 1/65536 x 1/2		
	"H" and "L" level width	: 1/base timer count source x 65536		
	•Resetting when group i base timer	matches WG register 0 (ch0)		
	Period	: Base timer count source x 1/(k+2) x 1/2		
	"H" and "L" level width	: 1/base timer count source x (k+2)		
	k : values set to WG register 0			
Waveform output start condition	Write "1" to the function enable bit (Note)			
Waveform output stop condition	Write "0" to the function enable bit			
Interrupt generation timing	When the base timer value matches the WG register j			
OUTCij pin	Pulse output (Corresponding pins are set with the function select register.)			
Read from the WG register	The set value is output			
Write to the WG register	Can always write			
Select function	Initial value setting function			
	Sets output level used at waveform output start			
	•Inverted output function			
	Inverts waveform output level and	outputs the waveform from the OUTC pin		

Table 1. 23.6. Specifications of phase delayed waveform output mode

Note : On channels where both the time measurement function and waveform output function can be used, select the waveform output function for the function select register (addresses 00E716 and 012716).

Figure 1. 23. 21. Operation timing in phase delayed waveform output mode

(3) SR (Set/Reset) waveform output mode (group 0 to 3)

This mode is set when the base timer value matches the value of WG register j (j is an even-numbered channel), and reset when the base timer matches the WG register (j + 1) or the base timer value is "0". Specifications for the SR waveform output mode are given in Table 1.23.7 and an operating chart for the SR waveform output mode in Figure 1.23.22.

Item	Specifications					
Output waveform	•When free run operation					
	Period	: Base timer count source x 1/65536				
	"H" level width	: 1/base timer count source x (m-p)				
	 Resetting when base timer 	Resetting when base timer matches WG register 0 (ch0)				
	Period : Base timer count source x 1/(k+2) (N-					
	"H" level width	: 1/base timer count source x (m-p)				
	m : values set to WG register j p : values set to WG register i(j+1					
	k : values set to WG reg	gister 0 (j is an even-numbered channel) $(Note 2)$				
Waveform output start condition	Write "1" to the function enable bit (Note 3)					
Waveform output stop condition	Write "0" to the function enable bit					
Interrupt generation timing	When the base timer value matches the WG register j					
OUTC pin ^(Note 4)	Pulse output (Corresponding pins are set with the function select register.)					
Read from the WG register	The set value is output					
Write to the WG register	Can always write					
Select function (Note 5)	Initial value setting function					
	Sets output level used at waveform output start					
	 Inverted output function 					
	Inverts waveform output lev	vel and outputs the waveform from the OUTC pin				

Table 1. 23.7.	Specifications of S	R waveform output mode
----------------	---------------------	------------------------

Note 1: The SR waveform output function that sets and resets the mode on ch0 and 1 cannot be used when the base timer is reset by WG register 0 (ch0).

Note 2: Set WG register values for odd-numbered channels that are lower than even-numbered channels.

Note 3: On channels where both the time measurement function and waveform output function can be used, select the waveform output function for the function select register (addresses 00E716 and 012716).

Note 4: SR waveforms are output for even-numbered channels only.

Note 5: Settings for the WG control register on the odd-numbered channels are ignored.

Figure 1. 23. 22. Operation timing in SR waveform output mode

(4) Bit modulation PWM output mode (group 2 and 3)

This mode performs PWM to improve output resolution. Specifications for the bit modulation PWM mode are given in Table 1.23.8 and an operating chart for the bit modulation PWM mode in Figure 1.23.23.

Item	Specifications
Output waveform	Period : Base timer count source x 1/64 "H" level width (avelage) : 1/base timer count source x [k+(m/1024)] k : values set to WG register j (six high-order bits) m : values set to WG register j (ten lower-order bits)
Waveform output start condition	Write "1" to the function enable bit
Waveform output stop condition	Write "0" to the function enable bit
Interrupt generation timing	When the base timer value matches the WG register j
OUTC pin	Pulse output (Corresponding pins are set with the function select register.)
Read from the WG register j	The set value is output
Write to the WG register j	Can always write
Select function	 Initial value setting function
	Sets output level used at waveform output start
	•Inverted output function
	Inverts waveform output level and outputs the waveform from the OUTC pin

Table 1. 23.8. Specifications of bit modulation PWM mode

Figure 1. 23. 23. Operation timing in bit modulation PWM mode

(5) Real-time port output mode (group 2 and 3)

This mode outputs the value set in the real-time port register from the OUTC pin when the base timer value matches the value of WG register j. Specifications for the real-time port output mode are given in Table 1.23.9 and a block diagram and timing chart of the real-time port output function in Figure 1.23.24.

Item	Specifications
Waveform output start condition	Write "1" to the function enable bit
Waveform output stop condition	Write "0" to the function enable bit
Interrupt generation timing	When the base timer value matches the WG register j
OUTC pin	RTP output (Corresponding pins are set with the function select register.)
Read from the WG register j	The set value is output
Write to the WG register j	Can always write
Read from the RTP output buffer register	The set value is output
Write to the RTP output buffer register	Can always write
Select function	Initial value setting function
	Sets output level used at waveform output start
	Inverted output function
	Inverts waveform output level and outputs the waveform from the
	OUTC pin

Table 1. 23.9. Specifications of real-time port output mode

Figure 1. 23. 24. Block diagram and operation timing of real-time port output function

(6) Parallel real-time port output mode (group 2 and 3)

This mode outputs the value set in the real-time port register from the OUTC pin when the base timer value matches the value of WG register j. Specifications for the parallel real-time port output mode are given in Table 1.23.10 and a block diagram and timing chart of the real-time port output function in Figure 1.23.25.

Item	Specifications
Waveform output start condition	Write "1" to the function enable bit
Waveform output stop condition	Write "0" to the function enable bit
Interrupt generation timing	When the base timer value matches the WG register
OUTC pin	RTP output (Corresponding pins are set with the function select
	register.)
Read from the WG register	The set value is output
Write to the WG register	Can always write
Read from the RTP output buffer register	The set value is output
Write to the RTP output buffer register	Can always write
Select function	Initial value setting function
	Sets output level used at waveform output start
	Inverted output function
	Inverts waveform output level and outputs the waveform from the
	OUTC pin

 Table 1. 23.10.
 Specifications of parallel real-time port output mode

Intelligent I/O

Figure 1. 23. 25. Block diagram and operation timing of parallel real-time port output function

Serial I/O (group 0 to 2)

Intelligent I/O groups 0 to 2 each have two internal 8-bit shift registers. When used in conjunction with the time measurement (TM) function or WG function, these shift registers enable clock synchronous/asynchronous serial communications.

(1) Clock synchronous serial I/O mode (group 0, 1)

Intelligent I/O groups 0 and 1 each have communication block that have two internal 8-bit shift registers. When used in conjunction with the communication block and WG function, these shift registers enable 8-bit clock synchronous and HDLC data process function. When used in conjunction with the communication block, TM function and WG function, these shift registers enable 8-bit clock asynchronous communication.

Table 1.23.11 lists using registers in group 0 and 1, figure 1.23.26 to 1.23.29 shows the related registers.

	Clock synchronous serial I/O	UART	HDLC
Base timer control register 0	\checkmark	\checkmark	
Base timer control register 1	\checkmark	\checkmark	
Time measument control register 2	-	\checkmark	_
Waveform generate control register 0	\checkmark	\checkmark	
Waveform generate control register 1	-	-	
Waveform generate control register 2	\checkmark	\checkmark	-
Waveform generate control register 3	\checkmark	\checkmark	-
Waveform generate register 0	\checkmark	\checkmark	
Waveform generate register 1	\checkmark	-	\checkmark
Time measument /Waveform generate register 2	\checkmark	\checkmark	_
Waveform generate register 3	\checkmark	\checkmark	_
Function select register	\checkmark	\checkmark	
Function enable register	\checkmark	\checkmark	
SI/O communication mode register	\checkmark	\checkmark	\checkmark
SI/O extended mode register	-	-	\checkmark
SI/O communication control register	\checkmark	\checkmark	\checkmark
SI/O extended transmit control register	-	-	\checkmark
SI/O extended receive control register	-	-	\checkmark
SI/O special communication interrupt detect register	-	-	\checkmark
SI/O receive buffer register	\checkmark	\checkmark	
Transmit buffer	\checkmark	\checkmark	
(Receive data register)	-	-	\checkmark
Data compare register j (j=0 to 3)	-	-	\checkmark
Data mask register j (j=0, 1)	_	_	\checkmark
Transmit CRC code register	_	-	\checkmark
Receive CRC code register	_	_	
Transmit output register	_	-	
Receive input register	_	_	

Table 1.23.11. Using registers in group 0 and 1

 $\sqrt{1}$: Use -: Not use

Intelligent I/O (Serial I/O)

<u> </u>	GiBF(i	=0,1) 00E916,00E816	6, 012916,012816 Indeterminate	
	Bit symbol	Bit name	Function	R۱
		Receive buffer	Receive data	0
		Nothing is assigned. When read, their value a	are indeterminate.	-¦-
	OER	Overrun error flag (Note)	0 : No overrun error 1 : Overrun error found	0¦-
	FER	Framing error flag (Note)	0 : No Framing error 1 : Framing error found	0
	PER	Parity error flag (Note)	0 : No parity error 1 : Parity error found	0
		Nothing is assigned. When read, its value is i	ndeterminate.	-¦-
	Symb GiMR	ol Address R (i=0,1) 00ED16, 012D	When reset 016 0016	
ſ	Bit	Bit name	Function	R
	GMD0	Communication mode	b1 b0 0 0 : UART mode	
	GMD1	select bit	0 1 : Serial I/O mode 1 0 : Special communication mode 1 1 : HDLC data process mode	
	CKDIR	Internal/external clock select bit	0 : Internal clock (Note 2) 1 : External clock (Note 3)	0
	STPS	Stop bit length select bit (Note 1)	0 : 1 stop bit 1 : 2 stop bits	0
	PRY	Odd/even parity select bit (Note 1)	0 : Odd parity 1 : Even parity	0
	PRYE	Parity enable select bit (Note 1)	0 : Parity disabled 1 : Parity enabled	0
	JFORM	Transfer direction select bit	0 : LSB first 1 : MSB first	0
	IRS	Transmit interrupt cause select bit	0 : Transmit buffer is empty 1 : Transmit is completed	0
ed only in for cl nd func smissio	/ in the U lock outp ction sele n pins ar	ART mode. out by setting the waveform act registers A, B and C. re the same as clock outp	n generation control register, input fun ut pins.	ction
	e for re D D D D D D D D	Bit symbol OER PER PER PER PER PER PER pe for receive da DMMUNICA Symbol GiMP GiMP GiMP GiMP CKDIR GMD0 GMD1 CKDIR PRY PRY PRYE PRY PRYE PRY PRYE 	Bit symbol Bit name Image: Bit symbol Receive buffer Image: Bit symbol Nothing is assigned. When read, their value at the value at their value at their value at the value at their value at the value at the value at the value at their value at the v	Bit symbol Bit name Function

Figure 1. 23. 27. Group 0 and 1 related register (2)

Intelligent I/O (Serial I/O)

Group i SI/O expa	nsion r	node register (i=0	0,1) (Note 1)	
b7 b0	Symbo GiEMI	ol Address R (i=0,1) 00FC16, 013C1	When reset 6 0016	
	Bit symbol	Bit name	Function	RW
	SMODE	Synchronous mode select bit	0 : Normal mode 1 : Resynchronous mode	00
	CRCV	CRC initial value select bit	0 : "000016" is set 1 : "FFFF16" is set	00
	ACRC	CRC initialization select bit	0 : Not initialize 1 : Initialize (Note 2)	00
	BSINT	Bit stuffing error interrupt select bit	0 : Not use 1 : Use	00
	RXSL	Reception source select bit	0 : RxD pin 1 : Receive input register	00
	TXSL	Transmission source select bit	0 : TxD pin 1 : Transmit output register	00
	CRC0	CRC polynomial	b7 b6 0 0 : X ⁸ +X ⁴ +X+1 0 1 : Must not be set	00
<u>.</u>	CRC1	select bit	$\begin{array}{c} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ \end{array} \begin{array}{c} x^{16} + x^{15} + x^2 + 1 \\ 1 & 1 \\ \end{array} \begin{array}{c} x^{16} + x^{12} + x^5 + 1 \end{array}$	0:0

Note 1: Other than when in the special communication mode or HDLC data process mode, either use the reset state as is or write "0016".

Note 2: Initialized when the data compare register matches.

Group i SI/O expansion transmit control register (i=0,1) (Note)

b7	b0	Symbol GiETC (i=0,1)		Address 00FF16, 013F1	When reset 6 00000XXX2		
		Bit symbol	Bi	t name	Function	R	w
						_	—
			Nothing is When rea	s assigned. Wh ad, their conten	nen write, set "0". ts are indeterminate.	_	
						_	
		SOF	SOF trans	smit it	0 : No SOF transmit request 1 : SOF transmit request	0	0
		TCRCE	Transmit enable bit	CRC t	0 : Not use 1 : Use	0	0
		ABTE	Arbitration	n enable bit	0 : Not use 1 : Use	0	0
		TBSF0	Transmit I insert sele	bit stuffing "1" ect bit	0 : "1" is not inserted 1 : "1" is inserted	0	0
		TBSF1	Transmit I insert sele	bit stuffing "0" ect bit	0 : "0" is not inserted 1 : "0" is inserted	0	0
Note : Other than use the res	when set sta	in the spe te as is or	cial commu write "0016	unication mode	or HDLC data processing mode,	either	

Figure 1. 23. 28. Group 0 and 1 related register (3)

Under Development Rev.B2 for proof reading

	Symb GiER	ol Addre A	ess When reset 016, 013D16 0016		
	Bit	Bit name	Function	R	1
	CMP0E	Data compare function 0 select bit	0 : Does not compare the received data with data compare register 0 1 : Compare the received data with data compare register 0	0	는 말 :
·····	CMP1E	Data compare function 1 select bit	0 : Does not compare the received data with data compare register 1 1 : Compare the received data with data compare register 1	0	
	CMP2E	Data compare function 2 select bit	 0 : Does not compare the received data with data compare register 2 1 : Compare the received data with data compare register 2 	0	+
	CMP3E	Data compare function 3 select bit	0 : Does not compare the received data with data compare register 3 (Note 2) 1 : Compare the received data with data compare register 3	0	
	RCRCE	Receive CRC enable bit	0 : Not enable 1 : Enable	0	T - 1.
l	RSHTE	Receive shift operation enable bit	0 : Receive shift operation disabled 1 : Receive shift operation enabled	0	
	RBSF0	Receive bit stuffing "1" delete select bit	0 : "1" is not deleted 1 : "1" is deleted	0	
	RBSF1	Receive bit stuffing "1" delete	0 : "0" is not deleted 1 : "0" is deleted	0	
Note 1: Other than whe use the reset st Note 2: To use the CRC set bit 3 to "1".	n in the sp ate as is c initializati	cation interr	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to Tupt detect register (i=0,1) (Not e	er "1' Ə)	")
Note 1: Other than whe use the reset st Note 2: To use the CRC set bit 3 to "1".	n in the sp ate as is c initializati mmunio Symbo GiIRF	cation interr of write "0016". fon function (when cation interr of Addre f (i=0,1) 00FE1	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to CUPT detect register (i=0,1) (Not e the ss When reset 16, 013E16 0000 00XX2	er "1' €)	")
Note 1: Other than whe use the reset st Note 2: To use the CRC set bit 3 to "1".	n in the sp ate as is c initializati mmunic Symbo GiIRF Bit symbol	becial communicat or write "0016". ion function (when cation interr ol Addre i (i=0,1) 00FE1 Bit name	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to Fupt detect register (i=0,1) (Not ass When reset 16, 013E16 0000 00XX2 Function	er "1' e)	")
Note 1: Other than whe use the reset st Note 2: To use the CRC set bit 3 to "1".	n in the sp ate as is c initializati Symbo GiIRF Bit symbol	Decial communication or write "0016". ion function (when Cation interr ol Addre ol Addre (i=0,1) 00FE1 Bit name Nothing in coning	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to Tupt detect register (i=0,1) (Note 16, 013E16 0000 00XX2 Function	er "1' e)	")
Note 1: Other than whe use the reset st Note 2: To use the CRC set bit 3 to "1".	n in the sp ate as is c initializati Symbo GiIRF Bit symbol	becial communicat or write "0016". ion function (when Cation interr ol Addre ol Addre (i=0,1) 00FE1 Bit name Nothing is assign When read, their	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to Fupt detect register (i=0,1) (Note 16, 013E16 0000 00XX2 Function ned. When write, set "0". r contents are indeterminate.	er "1' Ə)	")
botter 1: Other than whe use the reset st Note 2: To use the CRC set bit 3 to "1".	n in the sp ate as is c initializati Symbo GiIRF Bit symbol BSERR	becial communicat or write "0016". ion function (when Cation interr ol Addre ol Addre i (i=0,1) 00FE1 Bit name Nothing is assign When read, their Bit stuffing error detecting flag Bit stuffing flag	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to Fupt detect register (i=0,1) (Note ass When reset 16, 013E16 0000 00XX2 Function ned. When write, set "0". r contents are indeterminate. 0 : Not detected 1 : Detected	er "1' e) R	
bo set bit 3 to "1". Froup i special cor	n in the sp ate as is c initializati Symbol GilRF Bit symbol Bit symbol BSERR BSERR	becial communication or write "0016". ion function (when cation interr ol Addre ol Addre i (i=0,1) 00FE1 Bit name Bit name Nothing is assign When read, their Bit stuffing error detecting flag Arbitration lost detecting flag	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to rupt detect register (i=0,1) (Note ass When reset 16, 013E16 0000 00XX2 Function med. When write, set "0". r contents are indeterminate. 0 : Not detected 1 : Detected 1 : Detected 1 : Detected	er "1" e) R 	
bo iso the reset st Note 2: To use the CRC set bit 3 to "1". iroup i special cor	n in the sp ate as is c initializati Symbol GilRF Bit symbol BSERR BSERR ABT	becial communication or write "0016". ion function (when cation interr bl Addre ci=0,1) 00FE1 Bit name Nothing is assign When read, their Bit stuffing error detecting flag Arbitration lost detecting flag Interrupt cause determination flag 0	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to Fupt detect register (i=0,1) (Note (iss When reset 16, 013E16 0000 00XX2 Function med. When write, set "0". r contents are indeterminate. 0 : Not detected 1 : Detected 0 : Not detected 1 : Detected 0 : Not detected 1 : Detected 0 : Received data does not match data compare register 0 1 : Received data matches data compare register 0	er "1" e) R 	
bo isolation in the interset stands and the consection of the con	n in the sp ate as is c initializati mmunic Symbol GiIRF Bit symbol BSERR BSERR ABT IRF0 IRF1	becial communication or write "0016". ion function (when Cation interr ol Addre (i=0,1) 00FE1 Bit name Nothing is assign When read, their Bit stuffing error detecting flag Arbitration lost detecting flag Interrupt cause determination flag 1	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to Fupt detect register (i=0,1) (Note (iss When reset 16, 013E16 0000 00XX2 Function med. When write, set "0". r contents are indeterminate. 0 : Not detected 1 : Detected 0 : Not detected 1 : Detected 0 : Received data does not match data compare register 0 1 : Received data matches data compare register 0 0 : Received data matches data compare register 0 1 : Received data matches data compare register 1	er "1" e) $[R] = [-1] = [-0] = 0$	
bout 1: Other than whe use the reset st Note 2: To use the CRC set bit 3 to "1".	n in the sp ate as is of initializati mmunic Symbol Bit symbol Bit symbol BSERR BIT IRF0 IRF1 IRF2	Decial communication pr write "0016". ion function (when Cation interr ol Addre i = 0, 1) 00FE1 Bit name Nothing is assign When read, their Bit stuffing error detecting flag Arbitration lost detecting flag Interrupt cause determination flag 1 Interrupt cause determination flag 1	tion mode or HDLC data processing mode, eith a bit 2 of SI/O expansion mode register is set to rupt detect register (i=0,1) (Note The set (i=0,1) (Note (i=0,1) (Note	er "1" e) R R - - 0 0 0 0 0 0 0 0	

Figure 1. 23. 29. Group 0 and 1 related register (4)

Intelligent I/O (Serial I/O)

	Symbol Addr GiDR (i=0,1) 00E/	ress A16, 012A16	When reset Indeterminate	
	Functi	on	Setting range	R
	Transmit data for data co Receive data for data co	ompare is stored ompare is stored		0
Group i data comp	are register j (i=0	,1/j=0 to 3)		
b7 b0	Symbol GiCMPj (i=0/j=0 to 3) GiCMPj (i=1/j=0 to 3)	Address 00F016, 00F116, 00F2 013016, 013116, 01321	When res 16, 00F316 Indetermi 6, 013316 Indetermi	et nate nate
	Functi	on	Setting range	R
	Compare data		0016 to FF16	
I Note : When using t	ne data compare registers (and 1, the data mask	<pre>k registers 0 and 1 mus</pre>	t be se
Group i data mask	register i (i=0.1/i	=0.1)		
b7 b0	Symbol GiMSKj (i=0/j=0, 1) GiMSKj (i=1/j=0, 1)	Address 00F416, 00F516 013416, 013516	When res Indetermi Indetermi	et nate nate
	Functi	on	Setting range	R۱
	Mask data for receive da	ata (masked by "1")	0016 to FF16	0;0
Group i transmit C	Mask data for receive da	ata (masked by "1") (i=0,1) Address 00FB16,00FA16, 0	0016 to FF16 Whe 13B16, 013A16 0000	n reset
Group i transmit C	Mask data for receive da	ata (masked by "1") (i=0,1) Address 00FB16,00FA16, 0	0016 to FF16 Whe 13B16, 013A16 0000 Setting range	n reset
Group i transmit C	Mask data for receive da RC code register Symbol GiTCRC (i=0, 1) Functi Transmit CRC calculatio	ata (masked by "1") (i=0,1) Address 00FB16,00FA16, 0 on n results (Note)	0016 to FF16 Whe 13B16, 013A16 0000 Setting range	
Group i transmit C	Mask data for receive da RC code register Symbol GiTCRC (i=0, 1) Functi Transmit CRC calculatio s are initialized when the tra register) is set to "0". RC code register (ata (masked by "1") (i=0,1) Address 00FB16,00FA16, 0 on n results (Note) ansmit CRC enable bit	0016 to FF16 Whe 13B16, 013A16 0000 Setting range 	n reset
Group i transmit C b15 b8 (b7) (b0) b7 b0 Note : Computed result transmit control of Group i receive CF b15 b8 (b7) (b0) b7 b0	Mask data for receive da RC code register Symbol GiTCRC (i=0, 1) Functi Transmit CRC calculatio s are initialized when the tra register) is set to "0". RC code register (Symbol GiRCRC (i=0, 1)	ata (masked by "1") (i=0,1) Address 00FB16,00FA16, 0 on n results (Note) ansmit CRC enable bit (i=0,1) Address 00F916,00F816, 013916	0016 to FF16 Whe 13B16, 013A16 0000 Setting range t (bit 4 of group i expan- t (bit 4 of group i expan- When res 5, 013816 000016	n reset
Group i transmit C b15 b8 (b7) (b0) b7 b0 Note : Computed result transmit control of Group i receive CF b15 b8 (b7) (b0) b7 b0	Mask data for receive da RC code register Symbol GiTCRC (i=0, 1) Functi Transmit CRC calculatio s are initialized when the tra register) is set to "0". RC code register (Symbol GiRCRC (i=0, 1) Functi	ata (masked by "1") (i=0,1) Address 00FB16,00FA16, 0 on n results (Note) ansmit CRC enable bit (i=0,1) Address 00F916,00F816, 013916 on	0016 to FF16 Whe 13B16, 013A16 0000 Setting range t (bit 4 of group i expan- t (bit 4 of group i expan- t (bit 4 of group i expan- t (bit 5 of group i expan- t (bit 4 of group	n reset
Group i transmit C (b7) (b0) b7 b0 Note : Computed result transmit control b Group i receive CF (b7) (b0) b7 b0 D15 (b0) b7 b0	Mask data for receive da RC code register Symbol GiTCRC (i=0, 1) Functi Transmit CRC calculatio s are initialized when the tra register) is set to "0". RC code register (Symbol GiRCRC (i=0, 1) Functi Receive CRC calculation	ata (masked by "1") (i=0,1) Address 00FB16,00FA16, 0 on n results (Note) ansmit CRC enable bit (i=0,1) Address 00F916,00F816, 013916 on n results	0016 to FF16 Whe 13B16, 013A16 0000 Setting range	n reset

• Clock synchronous serial I/O mode (group 0 and 1)

Table 1.23.12 gives specifications for the clock synchronous serial I/O mode.

Table 1.23.12. Specifications of clock synchronous serial I/O mode (group 0 and 1)

Item	Specification
Transfer data format	Transfer data length: 8 bits fixed
Transfer clock	When internal clock is selected
	- Transfer speed is determined when the base timer is reset by the ch0 WG function
	Transfer rate (bps) = base timer count source (frequency) / (k+2) / 2
	k : values set to WG register 0
	 Transfer clock is generated when the transfer clock in the phase delayed
	waveform output mode
	Transmit clock : ch3 WG function
	Receive clock : ch2 WG function
	Sets the same value in the WG registers on ch2 and ch3
	When external clock is selected
	 Transfer rate (bps) = Clock input to ISCLK pin
Transmission start condition	To start transmission, the following requirements must be met:
	• Transmit enable bit = "1"
	Write data to transmit buffer
Reception start condition	To start reception, the following requirements must be met:
	• Receive enable bit = "1"
Interrupt request	When transmitting
generation timing	 When transmit buffer is empty, transmit interrupt cause select bit = "0"
	 When transmission is completed, transmit interrupt cause select bit = "1"
	When receiving
	When data is transferred to SI/O receive buffer register
Error detection	Overrun error
	This error occurs when the next data is ready before the contents of SI/O receive
	buffer register are read out
Select function	LSB first/MSB first selection
	When transmission/reception begins with bit 0 or bit 7, it can be selected
	Transmit/receive data polarity switching
	This function is reversing ISTxD pin output and ISRxD pin input.
	(All I/O data level is reversed.)

Note: Set the transmission clock to at least 6 divisions of the base timer clock.

Table 1.23.13 lists I/O pin functions for the clock synchronous serial I/O mode of groups 0 and 1. From when the operating mode is selected until transmission starts, the ISTxDi pin is "H" level. Figure 1.23.31 shows typical transmit/receive timings in clock synchronous serial I/O mode in group 0 and 1.

Pin name	Function	Selected method
ISTxD (P76, P150, P73, P110)	Serial data output	 Use the ch0 WG function Sets "111" for the operating mode select bit (bits 2, 1 and 0) in WG control register 0 Selects ISTxD output for the port using function select registers A, B and C
ISRxD (P80, P152, P75, P112)	Serial data input	 Selects a using port with input function select register Selects I/O with function select register A Sets a selected port to input using the port direction register
ISCLK (P77, P151, P74, P111)	Transfer clock output	 Use the ch1 WG function Sets "111" for the operating mode select bit (bits 2, 1 and 0) in WG control register 1 Sets "0" for the internal/external clock select bit (bit 2) of the SI/O communication mode register Selects ISCLK output for the port using function select registers A, B and C
	I ransfer clock input	 Selects a using port with input function select register Sets "1" for the internal/external clock select bit (bit 2) of the SI/O communication mode register Sets a selected port to input using the port direction register Selects I/O port with function select register A

Figure 1.23.31. Typical transmit/receive timings in clock synchronous serial I/O mode in group 0 and 1

(2) Clock asynchronous serial I/O mode (UART) (group 0 and 1)

Table 1.23.14 lists the specifications for the UART mode.

Item	Specification					
Transfer data format	Character bit (tra	nsfer data) : 8 bits				
	Start bit	: 1 bit				
	Parity bit	: Odd, even, or nothing selected				
	Stop bit	: 1 bit or 2 bits selected				
Transfer clock	When internal clock is selected (Generates the transmit/receive clock in the phase					
	delayed waveform output mode)					
	- Transfer speed	d is determined when the base timer is reset by the ch0 WG function				
	Transfer ra	te (bps) = base timer count source (frequency) / (k+2) / 2				
	k : values s	et to WG register 0				
	 Transfer clock 	is generated when the transfer clock in the phase delayed				
	waveform out	put mode				
	Transmit cl	ock : ch3 WG function				
	Receive clo	ock : Change ch2 TM function to WG function				
	Dete	ects falling edge of start bit				
	Changes to the WG mode when the time measurement interrupt arrives					
	When external clock is selected					
	 Transfer rate (bps) = Clock input to ISCLK pin 					
Transmission start condition	To start transmission, the following requirements must be met:					
	 Transmit enabling 	le bit = "1"				
	Write data to tr	ransmit buffer				
Reception start condition	To start reception,	the following requirements must be met:				
	Receive enable	e bit = "1"				
Interrupt request	When transmittin	g				
generation timing	 When transmit 	buffer is empty, transmit interrupt cause select bit = "0"				
	 When transmis 	ssion is completed, transmit interrupt cause select bit = "1"				
	When receiving					
	 When data is t 	ransferred to SI/O receive buffer register				
Error detection	Overrun error	: This error occurs when the next data is ready before contents				
		of SI/O receive buffer register are read out				
	 Framing error 	: This error occurs when the number of stop bits set is not detected				
	 Parity error 	: This error occurs when if parity is enabled, the number of 1's in				
		parity and character bits does not match the number of 1's set				
Select function	Stop bit length	: Stop bit length can be selected as 1 bit or 2 bits				
	 Parity 	: Parity can be turned on/off				
		: When parity is on, odd/even parity can be selected				
	LSB first/MSB first	st selection :				
	Whether transm	it/receive begins with bit 0 or bit 7 can be selected				
	Transmit/receive	data polarity switching :				
	This function is r are reversed.)	reversing ISTxD port output and ISRxD port input. (All I/O data level				
	Data transfer bit	length : Transmission data length can be set between 1 to 8 bits				

Table 1.23.14. Specifications of UART mode

Intelligent I/O (Serial I/O)

Figure 1.23.32. Typical transmit timings in UART mode

Figure 1.23.33. Typical receive timing in UART mode

TxD, RxD I/O polarity reverse function

This function is to reverse TxD pin output and RxD pin input. The level of any data to be input or output (including the start bit, stop bit(s), and parity bit) are reversed. TxD output polarity reverse select bit is set to "0" (not to reverse) for usual use.

(2) Clock synchronous serial I/O mode (group 2)

Intelligent I/O groups 2 has communication block that have two internal 8-bit shift registers. When used in conjunction with the communication block and WG function, these shift registers enable variable clock synchronous and IE Bus ^(Note) communications.

Table 1.23.16 lists using registers in group 2, figure 1.23.34 to 1.23.37 shows the related registers.

Note : IE Bus is a trademark of NEC corporation.

Table 1.23.16. Using registers in group 2

	Clock synchronous serial I/O	IE Bus
Base timer control register 0	\checkmark	\checkmark
Base timer control register 1	\checkmark	\checkmark
Waveform generate control register 0	\checkmark	\checkmark
Waveform generate control register 1	-	\checkmark
Waveform generate control register 2	\checkmark	\checkmark
Waveform generate control register 3	-	\checkmark
Waveform generate control register 4	-	√ (Note 1)
Waveform generate control register 5	-	\checkmark
Waveform generate control register 6	-	\checkmark
Waveform generate control register 7	-	\checkmark
Waveform generate register 0	N	\checkmark
Waveform generate register 1	-	\checkmark
Waveform generate register 2	N	\checkmark
Waveform generate register 3	-	\checkmark
Waveform generate register 4	-	\checkmark
Waveform generate register 5	-	\checkmark
Waveform generate register 6	-	\checkmark
Waveform generate register 7	-	\checkmark
Function enable register	\checkmark	\checkmark
SI/O communication mode register	N	\checkmark
SI/O communication control register	N	\checkmark
IE Bus control register	-	\checkmark
IE Bus address register	-	\checkmark
IE Bus transmit interrupt cause detect register	-	\checkmark
IE Bus receive interrupt cause detect register	-	\checkmark
SI/O receive buffer register	ν	\checkmark
SI/O transmit buffer register	ν	

 $\sqrt{1}$: Use -: Not use

Note 1: When receiving slave, set corresponding value with 32.5 μ s. Don't set 170 μ s.

Intelligent I/O (Serial I/O)

	ьо с	Symbo G2TB	ol Address 016D16	s When reset , 016C16 Indeterminate	
	B sym	Bit nbol	Bit name	Function	R
		_	Transmit buffer	Transmit data	-¦c
	SZ	Z0		b10 b9 b8 0 0 0 : 8-bit long 0 0 1 : 1-bit long	o¦c
	SZ	Z1	Transfer bit length select bit	0 1 0 : 2-bit long 0 1 1 : 3-bit long 1 0 0 : 4-bit long	0¦C
	SZ	Z2		1 0 1 : 5-bit long 1 1 0 : 6-bit long 1 1 1 : 7-bit long	0;0
	_		Nothing is assigned	d. When write, set "0".	
	_	_	When read, their c	ontents are indeterminate.	
<u> </u>	A	Ą	ACK function select bit	0 : No function 1 : Adds an ACK bit after the final transmission bit	0
	P(с	Parity operation continuing bit (Note)	 0 : Adds the parity bit after the transmitted data 1 : Repeats the parity check with the next transmission 	o¦c
	····· F	>	Parity function select bit	0 : No parity 1 : Parity (Only even parity)	0

Group 2 SI/O receive buffer register

b15b14b13b12b1110 bb b8 (b7)(b6)(b5)(b4)(b3)(b2)(b7)(b0)b7 b0	Symb G2RI	ol Address B 016F16, 016E1	When reset 6 Indeterminate	
	Bit symbol	Bit name	Function	R¦W
		Receive buffer	Receive data	0:-
		Nothing is assigned. Wh When read, their content	en write, set "0". s are indeterminate.	
	OER	Overrun error flag (Note)	0 : No overrun error 1 : Overrun error found	0:-
		Nothing is assigned. Wh When read, their content	en write, set "0". s are indeterminate.	

Note : This bit is automatically set to "0" when communication unit reset is selected for the communication mode select bit and the reception enable bit is set to "0".

Under proof reading

	Symbo IECR	ol Address 017216	When reset 00XXX0002	
	Bit symbol	Bit name	Function	R
	IEB	IE Bus enable bit	0 : IE Bus disabled (Note) 1 : IE Bus enabled	0;0
	IETS	IE Bus transmit start request bit	0 : Transmit completed 1 : Transmit start	0
	IEBBS	IE Bus busy flag	0 : Idle state 1 : Busy state (start condition detected)	0
		Nothing is assigned. When read, their conte	Vhen write, set "0". ents are indeterminate.	
	DF	Digital filter select bit	0 : No digital filter 1 : Digital filter	
			0	1 1
Note :When this bit is se	IEM et to "0", ho	IE Bus mode select bit Id "0" for at least 1 cycle	0 : Mode 1 1 : Mode 2 e of base timer .	0
Note :When this bit is se Group 2 IE Bus a	IEM et to "0", ho ddress Symbo IEAR	IE Bus mode select bit old "0" for at least 1 cycle register ol Address 017116, 0170	0 : Mode 1 1 : Mode 2 e of base timer . When reset D16 Indeterminate	0.0
Note :When this bit is se	IEM et to "0", ho ddress Symbo IEAR	IE Bus mode select bit old "0" for at least 1 cycle register ol Address 017116, 0170	0 : Mode 1 1 : Mode 2 e of base timer . When reset D16 Indeterminate	R
Note :When this bit is se	IEM et to "0", ho ddress Symbo IEAR	IE Bus mode select bit old "0" for at least 1 cycle register ol Address 017116, 0170 F s data	0 : Mode 1 1 : Mode 2 e of base timer . When reset Indeterminate	R
Note :When this bit is se	IEM et to "0", ho ddress Symbo IEAR Addres Addres	IE Bus mode select bit old "0" for at least 1 cycle register ol Address 017116, 0170 F s data s data	0 : Mode 1 1 : Mode 2 e of base timer . When reset Indeterminate	R 1
Note :When this bit is se	IEM et to "0", ho ddress Symbo IEAR Addres Addres	IE Bus mode select bit old "0" for at least 1 cycle register ol Address 017116, 0170 F s data s data	0 : Mode 1 1 : Mode 2 e of base timer . When reset Indeterminate	R 10
Note :When this bit is se	IEM et to "0", ho ddress Symbo IEAR Addres Addres	IE Bus mode select bit old "0" for at least 1 cycle register ol Address 017116, 0170 F s data s data	te, set "0".	R 1
Note :When this bit is se	IEM et to "0", ho ddress Symbo IEAR Addres Addres Nothing When re	IE Bus mode select bit old "0" for at least 1 cycle register ol Address 017116, 0170 F s data s data g is assigned. When wri ead, their contents are i	te, set "0".	R 1

Figure 1. 23. 35. Group 2 Intelligent I/O-related register (2)

Intelligent I/O (Serial I/O)

b7	b0	Symbo IETIF	Address 017316	When reset XXX000002		
		Bit svmbol	Bit name	Function		R W
	·	IETNF	Normal termination flag	0 : Terminated in error 1 : Terminated normally	(Note)	00
		IEACK	ACK error flag	0 : No error 1 : Error found	(Note)	00
		IETMB	Max. transfer byte error flag	0 : No error 1 : Error found	(Note)	0¦0
		IETT	Timing error flag	0 : No error 1 : Error found	(Note)	00
		IEABL	Arbitration lost flag	0 : No error 1 : Error found	(Note)	00
			Nothing is assigned. W When read, their conter	/hen write, set "0". nts are indeterminate.		
	Only "0" can be v control register. 2 IE Bus re	vritten for ti At this time ECEIVE i Symi	his bit. Also, it is cleared e, hold "0" for at least 1 c Interrupt cause pol Address F 017416	to "0" when "0" is written for bit (ycle of base timer clock. determination registe When reset XXX000002	0 of the	IE Bu
		Bit symbol	Bit name	Function		R
		IERNF	Normal termination flag	0 : Terminated in error 1 : Terminated normally	(Note	
		- IEPAR	Parity error flag	0 : No error 1 : Error found	(Note	0
		IERMB	Max. transfer byte error flag	0 : No error 1 : Error found	(Note	0
				0 : No error		

1	· · · · · · · · · · · · · · · · · · ·	IERT	Timing error flag	1 : Error found	(Note)	00
		IERETC	Other cause receive completed flag	0 : No error 1 : Error found	(Note)	00
			Nothing is assigned. When read, their content	nen write, set "0". Is are indeterminate.		
	Note : Only "0" can be v control register.	written for t At this time	his bit. Also, it is cleared to e, hold "0" for at least 1 cy	o "0" when "0" is written for bit cle of base timer clock.	0 of the	IE Bus

Figure 1. 23. 36. Group 2 Intelligent I/O-related register (3)

	0 Symb G2M	R 016A16	When reset 00XXX0002	
	Bit symbol	Bit name	Function	RV
	GMD0	Communication mod	b1 b0 0 0 : Communication part is reset (Overrun error flag is cleared)	0;0
	GMD1		1 0 : Special communication mode 1 1 : HDLC data process mode	
· · · · · · · · · · · · · · · · · · ·	CKDIR	Internal/external cloc select bit	k 0 : Internal clock (Note 2) 1 : External clock (Note 3)	
		Nothing is assigned. When read, their con	When write, set "0". itents are indeterminate.	
	UFORM	Transfer direction select bit	0 : LSB first 1 : MSB first	0
	IRS	Transmit interrupt cause select bit	0 : Transmit buffer is empty 1 : Transmit is completed	0
register, and output pins. Note 3: Select which input port us	function sele pins will inpu ing function	at by setting the wave ect registers A, B and C ut the clock with the inp select register A. Data	C. Data transmission pins are the same a but function select register and set those p input pins are the same as with clock inp	s cloc oins to ut pin
register, and output pins. Note 3: Select which input port us Oup 2 SI/O col	function sele pins will inpu ng function s mmunica	act registers A, B and C ut the clock with the inp select register A. Data ation control re nol Address R 016B16	C. Data transmission pins are the same a put function select register and set those p input pins are the same as with clock inp gister When reset 0000 X0002	s cloc bins to ut pin
register, and output pins. Note 3: Select which input port us roup 2 SI/O col	pins will inpund ng function set mmunica Symbol Bit symbol	act registers A, B and C ut the clock with the inp select register A. Data ation control re nol Address R 016B16 Bit name	C. Data transmission pins are the same a put function select register and set those prinput pins are the same as with clock inp gister When reset 0000 X0002	s cloc bins to ut pin:
register, and output pins. Note 3: Select which input port us roup 2 SI/O col	pins will inpund ng function sele mmunica Symbol Bit symbol	act registers A, B and C ut the clock with the inp select register A. Data ation control re nol Address R 016B16 Bit name Transmit enable bit	C. Data transmission pins are the same a put function select register and set those prinput pins are the same as with clock inp gister When reset 0000 X0002 Function 0 : Transmission disabled 1 : Transmission enabled	R W
register, and output pins. Note 3: Select which input port us roup 2 SI/O col	pins will inpund ng function sele mmunica o Symbol G2Cl Bit symbol TE	At by setting the wave ect registers A, B and C ut the clock with the inp select register A. Data ation control re nol Address R 016B16 Bit name Transmit enable bit Transmit register empty flag	C. Data transmission pins are the same a but function select register and set those prinput pins are the same as with clock inp	R W
register, and output pins. Note 3: Select which input port us Oup 2 SI/O col	function sele pins will inpu- ng function s mmunica o Symbol G2Cl Bit Symbol TE TXEPT 	Address A, B and C ut the clock with the inp select register A. Data ation control re ool Address R 016B16 Bit name Transmit enable bit Transmit register empty flag Transmit buffer empty flag	C. Data transmission pins are the same a put function select register and set those prinput pins are the same as with clock inp gister When reset 0000 X0002 Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit register (during transmission) 1 : No data present in transmit puffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register	R W
register, and output pins. Note 3: Select which input port us roup 2 SI/O col	or clock out, function sele ng function : mmunica o Symb G2C Bit Symbol TE TXEPT TI	Address A, B and C at the clock with the inp select register A. Data ation control re ol Address R 016B16 Bit name Transmit enable bit Transmit register empty flag Nothing is assigned. When read, the conte	C. Data transmission pins are the same a but function select register and set those prinput pins are the same as with clock inp gister When reset 0000 X0002 Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) 0 : Data present in transmit buffer register 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register	R W
register, and output pins. Note 3: Select which input port us roup 2 SI/O col	pins will inpund function selection selection selection selection in the selection selection is mmunicated with the selection selection is selection in the selection in the selection in the selection is selection in the selection in the selection in the selection is selection in the selection in the selection in the selection in the selection is selection in the	Address A, B and C at the clock with the inp select register A. Data ation control re ation contre ation control re ation con	C. Data transmission pins are the same a put function select register and set those prinput pins are the same as with clock inp gister When reset 0000 X0002 Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 0 : Reception disabled 1 : Reception enabled	
register, and output pins. Note 3: Select which input port us roup 2 SI/O col	pins will inpund function selection selection selection selection in the selection selection is mmunicated with the symbol of th	Address A, B and C act registers A, B and C at the clock with the inp select register A. Data ation control re ol Address R 016B16 Bit name Transmit enable bit Transmit enable bit Transmit register empty flag Nothing is assigned. When read, the conte Receive enable bit Receive complete flag	C. Data transmission pins are the same a but function select register and set those prinput pins are the same as with clock inp gister When reset 0000 X0002 Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 1 : No data present in transmit buffer register 0 : Reception disabled 1 : Reception enabled 0 : No data present in receive buffer register 1 : Data present in receive buffer register	R W O'
register, and output pins. Note 3: Select which input port us roup 2 SI/O col	or clock out, function sele pins will inpu- ng function : mmunica o Symb G2C G2C G2C G2C G2C G2C G2C G2C G2C G2C	Address A, B and C at the clock with the inp select register A. Data ation control re ation control re Address R 016B16 Bit name Transmit enable bit Transmit register empty flag Nothing is assigned. When read, the conte Receive enable bit Receive complete flag TxD output polarity reverse select bit	C. Data transmission pins are the same a but function select register and set those p input pins are the same as with clock inp gister When reset 0000 X0002 Function 0 : Transmission disabled 1 : Transmission enabled 0 : Data present in transmit register (during transmission) 1 : No data present in transmit register (transmission completed) 0 : Data present in transmit buffer register 1 : No data present in transmit buffer register 2 : Reception disabled 1 : Reception enabled 0 : No data present in receive buffer register 1 : Data present in receive buffer register 0 : No reverse (Usually set to "0") 1 : Reverse	

Figure 1. 23. 37. Group 2 Intelligent I/O-related register (4)

• Clock synchronous serial I/O mode (group 2)

Table 1.23.17 gives specifications for the group 2 clock synchronous serial I/O mode.

Table 1.23.17.	Specificati	ons of clock synchronous serial I/O mode

Item	Specification
Transfer data format	Transfer data length: Variable length (group2)
Transfer clock	• When internal clock is selected, the transfer clock in the single waveform output
	mode is generated.
	- Transfer speed is determined when the base timer is reset by the ch0 WG function
	Transfer rate (bps) = base timer count source (frequency) / (k+2)
	k : values set to WG register 0
	 Transfer clock is generated by ch2 single phase WG function
	Ch3 WG register = $(k+2)/2$ (Note 1)
	When external clock is selected
	 Transfer rate (bps) = Clock input to ISCLK pin (Note 2)
Transmission start condition	 To start transmission, the following requirements must be met:
	– Transmit enable bit = "1"
	 Write data to SI/O transmit buffer register
Reception start condition	To start reception, the following requirements must be met:
	– Receive enable bit = "1"
	– Transmit enable bit = "1"
	 Write data to SI/O transmit buffer register
Interrupt request	When transmitting
generation timing	- When SI/O communication buffer register is empty, transmit interrupt cause select
	bit = "0"
	– When transmission is completed, transmit interrupt cause select bit = "1"
	When receiving
	 When data is transferred to SI/O receive buffer register
Error detection	Overrun error
	This error occurs when the next data is ready before the contents of SI/O receive
	buffer register are read out
Select function	LSB first/MSB first selection
	When transmission/reception begins with bit 0 or bit 7, it can be selected.
	Transmit/receive data polarity switching
	 This function is reversing ISTxD pin output and ISRxD pin input.
	(All I/O data level is reversed.)
	Data transfer bit length
	 Transmission data length can be set between 1 to 8 bits

Note 1: When the transfer clock and transfer data are transmission, transfer clock is set to at least 6 divisions of the base timer clock. Except this, transfer clock is set to at least 20 divisions of the base timer clock.

Note 2: Transfer clock is set to at least 20 divisions of the base timer clock.

Under proof reading

Intelligent I/O (Serial I/O)

Figure 1. 23. 38. Typical transmit/receive timings in clock synchronous serial I/O mode in group 2

Under Development **Rev.B2 for proof reading** A-D Converter

A-D Converter

The A-D converter consists of two 10-bit successive approximation A-D converter circuit with a capacitive coupling amplifier. Pins P100 to P107, P150 to P157, P00 to P07, P20 to P27, P95, and P96 are shared as the analog signal input pins. Pins P150 to P157, P00 to P07 and P20 to P27 can be used as the analog signal input pins and switched by analog input port select bit. However, P00 to P07 and P20 to P27 can be used in single chip mode. Set input to direction register corresponding to a pin doing A-D conversion.

The result of A-D conversion is stored in the A-D registers of the selected pins.

Table 1.24.1 shows the performance of the A-D converter. Figure 1.24.1 shows the block diagram of the A-D converter, and Figures 1.24.2 to 1.24.7 show the A-D converter-related registers.

This section is described to 144-pin version as example.

In 100-pin version, AN10 to AN17 cannot be selected because there is no P15.

Figure 1.24.1. Block diagram of A-D converter

Under Rev.B

Item	Performance
Method of A-D conversion	Successive approximation (capacitive coupling amplifier)
Analog input voltage ^(Note 1)	0V to AVcc (Vcc)
Operating clock ØAD (Note 2)	fad, fad/2, fad/3 , fad/4 fad=f(Xin)
Resolution	8-bit or 10-bit (selectable)
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	and repeat sweep mode 1
Analog input pins	34 pins
	AN, AN0, AN2, AN15 ^(Note 3) each 8 pins
	Extended input 2 pins (ANEX0 ^(Note 4) and ANEX1 ^(Note 5))
A-D conversion start condition	Software trigger
	A-D conversion starts when the A-D conversion start flag changes to "1"
	• External trigger (can be retriggered)
	A-D conversion starts by outbreak of the following factors chosen among in three (Note 6)
	 ADTRG/P97 input changes from "H" to "L"
	Timer B2 interrupt occurrences frequency counter overflow
	 Interrupt of Intelligent I/O group 2 or 3 channel 1
Conversion speed per pin	Without sample and hold function
	8-bit resolution: 49 ØAD cycles
	10-bit resolution: 59 ØAD cycles
	With sample and hold function
	8-bit resolution: 28 ØAD cycles
	10-bit resolution: 33 ØAD cycles

Table 1.24.1. Performance of A-D converter

Rev.B2 for proof reading

Note 1: Does not depend on use of sample and hold function.

- Note 2: When f(XIN) is over 10 MHz, the fAD frequency must be under 10 MHz by dividing.
 - Without sample and hold function, set the fAD frequency to 250kHz or more.
 - With the sample and hold function, set the fAD frequency to 1MHz or more.
- Note 3: When port P15 is used as analog input port, port P15 input peripheral function select bit (bit 2 of address 017816) must set to be "1".
- Note 4: When port P95 is used as analog input port, port P95 output peripheral function select bit (bit 5 of address 03B716) must set to be "1".
- Note 5: When port P96 is used as analog input port, port P96 output peripheral function select bit (bit 6 of address 03B716) must set to be "1".
- Note 6: Set the port direction register to input.

Figure 1.24.2. A-D converter-related registers (1)

b6 b5 b4 b3 b2 b1 b0	Symb AD0C	ol Address CON1 039716	When reset 0016	
	Bit symbol	Bit name	Function	RW
	SCAN0	A-D sweep pin select bit	^{b0 b1} 0 0 : ANjo, ANj1 (ANjo)	o¦c
	SCAN1		1 0 : ANjo to ANjo (ANjo to ANj2) 1 1 : ANjo to ANj7 (ANjo to ANj3)	o¦c
	MD2	A-D operation mode select bit 1	0 : Any mode other than repeat sweep mode 1 1 : Repeat sweep mode 1	o¦c
	BITS	8/10-bit mode select bit	0 : 8-bit mode 1 : 10-bit mode	o¦c
	CKS1	Frequency select bit (Note 3)	0 : fAD/2 or fAD/4 is selected 1 : fAD/1 or fAD/3 is selected	o¦c
	VCUT	VREF connect bit	0 : VREF not connectec 1 : VREF connectec	o¦c
	OPA0	External op-amp connection mode	0 0 : ANEX0 and ANEX1 are not used (Note 5)	o¦c
	OPA1	bit (Note 4)	10: ANEX1 input is A-D converted (Note 7) 11: External op-amp connection mode (Note 8)	0
Note 1: If the A-D0 contri- Note 2: This bit is invalid becomes valid v Note 3: When f(XIN) is ove Note 4: In single sweep r Note 5: When this bit is s Note 6: When this bit is s	ol register in One-sh when repe er 10 MHz mode and set, set "0 set, set "1 set, set "1	1 is rewritten during not mode and Repeat eat sweep mode 1(bit2 , the AD frequency m repeat sweep mode 10" to bit6 and bit5 of " to bit6 of function so " to bit6 of function so	A-D conversion, the conversion result is inc mode. Channel shown in the parentheses, 2="1") is selected. nust be under 10 MHz by dividing. 0, 1, bit 7 and bit 6 cannot be set "01" and " function select register B3. elect register B3. elect register B3.	detern '10".

Figure 1.24.3. A-D converter-related registers (2)

Figure 1.24.5. A-D converter-related registers (4)

Figure 1.24.6. A-D converter-related registers (5)

A-D Converter

(1) One-shot mode

In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conversion. Table 1.24.2 shows the specifications of one-shot mode.

Item	Specification	
Function	The pin selected by the analog input pin select bit is used for one A-D conversion	
Start condition	Writing "1" to A-Di conversion start flag, external trigger	
Stop condition	• End of A-Di conversion (A-Di conversion start flag changes to "0", except when	
	external trigger is selected)	
	Writing "0" to A-D conversion start flag	
Interrupt request generation timing	End of A-D conversion	
Input pin	One of ANjo to ANj7 (j =non, 0, 2, 15), ANEX0, ANEX1	
Reading of result of A-D converter	Read A-D register corresponding to selected pin	

Table 1.24.2. One-shot mode specifications

(2) Repeat mode

In repeat mode, the pin selected using the analog input pin select bit is used for repeated A-D conversion. Table 1.24.3 shows the A-D control register in repeat mode.

Table 1.24.3.	Repeat mode	specifications

Item	Specification
Function	The pin selected by the analog input pin select bit is used for repeated A-D con-
	version
Start condition	Writing "1" to A-D conversion start flag, external trigger
Stop condition	Writing "0" to A-D conversion start flag
Interrupt request generation timing	None generated
Input pin	One of ANjo to ANj7 (j =non, 0, 2, 15), ANEX0, ANEX1
Reading of result of A-D converter	Read A-D register corresponding to selected pin

(3) Single sweep mode

In single sweep mode, the pins selected using the A-D sweep pin select bit are used for one-by-one A-D conversion. Table 1.24.4 shows the A-D control register in single sweep mode.

Table 1.24.4.	Single sweep	mode specifications
---------------	--------------	---------------------

ltem	Specification	
Function	The pins selected by the A-Di sweep pin select bit are used for one-by-one	
	A-D conversion	
Start condition	Writing "1" to A-D converter start flag, external trigger	
Stop condition	• End of A-Di conversion (A-D conversion start flag changes to "0", except	
	when external trigger is selected)	
	Writing "0" to A-Di conversion start flag	
Interrupt request generation timing	End of sweep	
Input pin	ANjo and ANj1 (2 pins), ANjo to ANj3 (4 pins), ANjo to ANj5 (6 pins), or ANjo to ANj7	
	(8 pins) (j =non, 0, 2, 15)	
Reading of result of A-D converter	Read A-D register corresponding to selected pin	

(4) Repeat sweep mode 0

In repeat sweep mode 0, the pins selected using the A-D sweep pin select bit are used for repeat sweep A-D conversion. Table 1.24.5 shows the specifications of repeat sweep mode 0.

Item	Specification	
Function	The pins selected by the A-D sweep pin select bit are used for repeat sweep	
	A-D conversion	
Start condition	Writing "1" to A-D conversion start flag	
Stop condition	Writing "0" to A-D conversion start flag	
Interrupt request generation timing	None generated	
Input pin	ANjo and ANj1 (2 pins), ANjo to ANj3 (4 pins), ANjo to ANj5 (6 pins), or ANjo to AN7	
	(8 pins) (j =non, 0, 2, 15)	
Reading of result of A-D converter	Read A-D register corresponding to selected pin	

Table 1.24.5.	Repeat sweep	mode 0 s	pecifications

(5) Repeat sweep mode 1

In repeat sweep mode 1, all pins are used for A-D conversion with emphasis on the pin or pins selected using the A-D sweep pin select bit. Table 1.26.6 shows the specifications of repeat sweep mode 1.

Item	Specification		
Function	All pins perform repeat sweep A-D conversion, with emphasis on the pin or pins		
	selected by the A-D sweep pin select bit		
	Example : ANo selected		
	$ANj_0 \rightarrow ANj_1 \rightarrow ANj_0 \rightarrow ANj_2 \rightarrow ANj_0 \rightarrow ANj_3$ etc. (j =non, 0, 2, 15)		
Start condition	Writing "1" to A-D conversion start flag		
Stop condition	Writing "0" to A-D conversion start flag		
Interrupt request generation timing	None generated		
Input pin	ANjo to ANj7 (j =non, 0, 2, 15)		
With emphasis on the pin	ANjo (1 pin), ANjo and ANj1 (2 pins), ANjo to ANj2 (3 pins), ANjo to ANj3 (4 pins) (j		
	=non, 0, 2, 15)		
Reading of result of A-D converter	Read A-D register corresponding to selected pin		

Table 1.26.6. Repeat sweep mode 1 specifications

(a) Resolution select function

8/10-bit mode select bit of A-D control register 1 (bit 3 at address 039716, 01D716)

When set to 10-bit precision, the low 8 bits are stored in the even addresses and the high 2 bits in the odd addresses. When set to 8-bit precision, the low 8 bits are stored in the even addresses.

(b) Sample and hold

Sample and hold are selected by setting bit 0 of the A-D control register 2 (address 039416, 01D416) to "1". When sample and hold are selected, the rate of conversion of each pin increases. As a result, a 28 ØAD cycle is achieved with 8-bit resolution and 33 ØAD with 10-bit resolution. Sample and hold can be selected in all modes. However, in all modes, be sure to specify before starting A-D conversion whether sample and hold are to be used.

(c) Trigger select function

Can appoint start of conversion, by a combination of setting of trigger select bit (bit 5 at address 039616, 01D616) and external trigger request cause select bit (bit 5 and bit 6 at address 039416, 01D416), as follows.

		Trigger select bit="1"			
	Trigger select bit="0"	External trigger cause select bits			
		00 01 10			
A-D0	Software trigger	ADTRG	Timer B2 OFCOI ^(Note)	Group 2 channel 1 interrupt	
A-D1	Software trigger	ADTRG	Timer B2 OFCOI ^(Note)	Group 3 channel 1 interrupt	

Table 1.24.7. Trigger select function setting

Timer B2 OFCOI : Timer B2 occurrence frequency counter overflow interrupt Note :Valid in three-phase PWM mode.

(d) Two circuit same time start (software trigger)

Two A-D converters can start at the same time by setting simultaneous start bit (bit 7 of address 039416) to "1".

During the A-D circuit of either of A-D0 and A-D1 are operated, do not set "1" to the simultaneous start bit. Do not set to "1" when external trigger is selected. When using this bit, do not set A-D conversion start flag (bit 6 of address 039616, 01D616) to "1".

(e) Replace function of input pin

Setting "1" to A-D channel replace select bit of A-D0 control register 2 (ADS:bit 4 at address 039416) can replace channel of A-D0 and A-D1. A-D conversion reliability is confirmed by replacing channels. When ADS bit is "1", a corresponding pin of A-D0 register i is selected by analog input port select bits of A-D1 control register 2 (bits 2 and 1 at address 01D416). In this case, A-D0 control register 0 and A-D1 control register 0 must be set to same value.

A-D Converter

Table 1.24.8.	. Setting of analog input port replace of A-D converter
---------------	---

Setting value	A-D channel replace select bit		1	
A-D conversion stored register	Analog output port select bit	00	10	11
A-D0 register 0		AN150	AN00	AN20
A-D0 register 1		AN151	AN01	AN21
A-D0 register 2		AN152	AN02	AN22
A-D0 register 3		AN153	AN03	AN23
A-D0 register 4		AN154	AN04	AN24
A-D0 register 5		AN155	AN05	AN25
A-D0 register 6		AN156	AN06	AN26
A-D0 register 7			AN07	AN27
A-D1 register 0			ANo	
A-D1 register 1		AN1		
A-D1 register 2	AN2			
A-D1 register 3	AN3			
A-D1 register 4	AN4			
A-D1 register 5	AN5			
A-D1 register 6		AN6		
A-D1 register 7		AN7		

(f) Extended analog input pins

In one-shot mode and repeat mode, the input via the extended analog input pins ANEX0 and ANEX1 can also be converted from analog to digital as AN₀ and AN₁ analog input signal respectively. Set the related input peripheral function of the function select register B3 to disabled.

(g) External operation amp connection mode

In this mode, multiple external analog inputs via the extended analog input pins, ANEX0 and ANEX1, can be amplified together by just one operation amp and used as the input for A-D conversion.

When bit 6 and bit 7 of the A-D control register 1 (address 039716) is "11", input via ANo to AN7 is output from ANEX0.

The input from ANEX1 is converted from analog to digital and the result stored in the corresponding A-D register. The speed of A-D conversion depends on the response of the external operation amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 1.24.8 is an example of how to connect the pins in external operation amp mode.

Set the related input peripheral function of the function select register B3 to disabled.

A-D0 control register 1		ANEX0 function	ANEX1 function	
Bit 7	Bit 6			
0	0	Not used	Not used	
0	1	P95 analog input	Not used	
1	0	Not used	P96 analog input	
1	1	Output to external ope-amp	Input from external ope-amp	

Table 1.24.9. Setting of extended analog input pins

Figure 1.24.8. Example of external op-amp connection mode

(h) Power consumption reduction function

VREF connect bit (bit 5 at addresses 039716, 01D716)

The VREF connect bit (bit 5 at address 039716, 01D716) can be used to isolate the resistance ladder of the A-D converter from the reference voltage input pin (VREF) when the A-D converter is not used. Doing so stops any current flowing into the resistance ladder from VREF, reducing the power dissipation. When using the A-D converter, start A-D conversion only after connecting VREF.

Do not write A-D conversion start flag and VREF connect bit to "1" at the same time. Do not clear VREF connect bit to "0" during A-D conversion. This VREF is without reference to D-A converter's VREF.

Precaution

After A-D conversion is complete, if the CPU reads the A-D register at the same time as the A-D conversion result is being saved to A-D register, wrong A-D conversion value is saved into the A-D register. This happens when the internal CPU clock is selected from divided main clock or sub-clock.

• When using the one-shot or single sweep mode

Confirm that A-D conversion is complete before reading the A-D register. (Note: When A-D conversion interrupt request bit is set, it shows that A-D conversion is completed.)

• When using the repeat mode or repeat sweep mode 0 or 1 Use the undivided main clock as the internal CPU clock.

Under B2 for proof reading Mitsubishi Microcomputers M32C/83 aroup SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

D-A Conversion

D-A Converter

Under

This is an 8-bit, R-2R type D-A converter. The microcomputer contains two independent D-A converters of this type.

D-A conversion is performed when a value is written to the corresponding D-A register. Bits 0 and 1 (D-A output enable bits) of the D-A control register decide if the result of conversion is to be output. Set the function select register A3 to I/O port, the related input peripheral function of the function select register B3 to disabled and the direction register to input mode. Do not set the target port to pulled-up when D-A output is enabled.

Output analog voltage (V) is determined by a set value (n : decimal) in the D-A register.

V = VREF X n / 256 (n = 0 to 255)

VREF : reference voltage (This is unrelated to bit 5 of A-D control register 1 (addresses 039716, 01D716)

Table 1.25.1 lists the performance of the D-A converter. Figure 1.25.1 shows the block diagram of the D-A converter. Figure 1.25.2 shows the D-A control register. Figure 1.25.3 shows the D-A converter equivalent circuit.

When the D-A converter is not used, set the D-A register to "00" and D-A output enable bit to "0".

Table 1.25.1. Performance of D-A converter

Item	Performance
Conversion method	R-2R method
Resolution	8 bits
Analog output pin	2 channels

Figure 1.25.1. Block diagram of D-A converter

D-A Conversion

CRC Calculation Circuit

The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) to generate CRC code.

The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC code is set in a CRC data register each time one byte of data is transferred to a CRC input register after writing an initial value into the CRC data register. Generation of CRC code for one byte of data is completed in two machine cycles.

Figure 1.26.1 shows the block diagram of the CRC circuit. Figure 1.26.2 shows the CRC-related registers. Figure 1.26.3 shows the CRC example.

Rev.B2 for proof reading

Under

Figure 1.26.3. CRC example

X-Y Converter

X-Y conversion rotates the 16 x 16 matrix data by 90 degrees. It can also be used to invert the top and bottom of the 16-bit data. Figure 1.27.1 shows the XY control register.

The Xi and the Yi registers are 16-bit registers. There are 16 of each (where i= 0 to 15).

The Xi and Yi registers are mapped to the same address. The Xi register is a write-only register, while the Yi register is a read-only register. Be sure to access the Xi and Yi registers in 16-bit units from an even address. Operation cannot be guaranteed if you attempt to access these registers in 8-bit units.

Figure 1.27.1. XY control register

The reading of the Yi register is controlled by the read-mode set bit (bit 0 at address 02E016). When the read-mode set bit (bit 0 at address 02E016) is "0", specific bits in the Xi register can be read at the same time as the Yi register is read.

For example, when you read the Y0 register, bit 0 is read as bit 0 of the X0 register, bit 1 is read as bit 0 of the X1 register, ..., bit 14 is read as bit 0 of the X14 register, bit 15 as bit 0 of the X15 register. Similarly, when you read the Y15 register, bit 0 is bit 15 of the X0 register, bit 1 is bit 15 of the X1 register, ..., bit 14 is bit 15 of the X14 register, bit 1 is bit 15 of the X14 register, ..., bit 14 is bit 15 of the X15 register.

Figure 1.27.2 shows the conversion table when the read mode set bit = "0". Figure 1.27.3 shows the X-Y conversion example.

Figure 1.27.2. Conversion table when the read mode set bit = "0"

When the read-mode set bit (bit 0 at address 02E016) is "1", you can read the value written to the Xi register by reading the Yi register. Figure 1.27.4 shows the conversion table when the read mode set bit = "1".

Figure 1.27.4. Conversion table when the read mode set bit = "1"

The value written to the Xi register is controlled by the write mode set bit (bit 1 at address 02E016). When the write mode set bit (bit 1 at address 02E016) is "0" and data is written to the Xi register, the bit

stream is written directly.

When the write mode set bit (bit 1 at address $02E0_{16}$) is "1" and data is written to the Xi register, the bit sequence is reversed so that the high becomes low and vice versa. Figure 1.27.5 shows the conversion table when the write mode set bit = "1".

Figure 1.27.5. Conversion table when the write mode set bit = "1"

DRAM Controller

There is a built in DRAM controller to which it is possible to connect between 512 Kbytes and 8 Mbytes of DRAM. Table 1.28.1 shows the functions of the DRAM controller.

DRAM space	512KB, 1MB, 2MB, 4MB, 8MB
Bus control	2CAS/1W
Refresh	CAS before RAS refresh, Self refresh-compatible
Function modes	EDO-compatible, fast page mode-compatible
Waits	1 wait or 2 waits, programmable

Table 1.28.1. DRAM Controller Functions

To use the DRAM controller, use the DRAM space select bit of the DRAM control register (address 004016) to specify the DRAM size. Figure 1.28.1 shows the DRAM control register.

The DRAM controller cannot be used in external memory mode 3 (bits 1 and 2 at address 000516 are "112"). Always use the DRAM controller in external memory modes 0, 1, or 2.

When the data bus width is 16-bit in DRAM area, set "1" to R/W mode select bit (bit 2 at address 000416). Set wait time between after DRAM power ON and before memory processing, and processing necessary for dummy cycle to refresh DRAM by software.

Figure 1.28.1. DRAM control register

DRAM Controller Multiplex Address Output

The DRAM controller outputs the row addresses and column addresses as a multiplexed signal to the address bus A8 to A20. Figure 1.28.2 shows the output format for multiplexed addresses.

oit bus mode													
Pin function	MA12 (A20)	MA11 (A19)	MA10 (A18)	MA9 (A17)	MA8 (A16)	MA7 (A15)	MA6 (A14)	MA5 (A13)	MA4 (A12)	MA3 (A11)	MA2 (A10)	MA1 (A9)	MA0 (A8)
Row address	(A20)	(A19)	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	-
Column address	(A22)	(A22)	A19	A8	A7	A6	A5	A4	A3	A2	A1	A0	-
			-			51	2KB, 11	MB					
Row address	(A20)	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	-
Column address	(A22)	A21	A20	A8	A7	A6	A5	A4	A3	A2	A1	A0	-
	. ,					2M	B, 4MB	L					
Pow addross	120	A10	۸19	A17	A16	A15	A14	A12	A12	۸11	A10	10	
Row address	A20	AI9	Alo	AIT	AIO	AIS	A14	AIS	AIZ	ATT	AIU	АЭ	-
Column address	(A22)	A22	A21	A8	A7	A6	A5	A4	A3	A2	A1	A0	-
	-					8ME	3						
oit bus mode													
Pin function	MA12 (A20)	MA11 (A19)	MA10 (A18)	MA9 (A17)	MA8 (A16)	MA7 (A15)	MA6 (A14)	MA5 (A13)	MA4 (A12)	MA3 (A11)	MA2 (A10)	MA1 (A9)	MA0 (A8)
Row address	(A20)	(A19)	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	-
Column address	(A22)	(A20)	A9	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	-
			-			5	12KB						
Row address	(A20)	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	-
Column address	(A22)	A20	A9	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	-
		•				1MB,	2MB						
Row address	A20	A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	(A9)	-
Column address	A22	A21	A9	A8	A7	A6	A5	A4	A3	A2	A1	(A0)	-
	└── ◀──			4	MB, 8N	1B (Not	e 2)				>	. /	
											-		
Note 1: () invalio	d bit:	b	its tha	t chang	ge acc	ording	to sele	ected n	node (8-bit/16	6-bit bu	us moc	le, DR
Note 2: The figu	re is fo	r 4Mx1	or 4N	1x4 me	mory	configu	iration.	If you	are us	sing a 4	4Mx16	config	uratior
use com MA2 to I	ibinatic MA8, N	ons of t /IA11, a	he folle and M/	owing: A12. O	For ro r for ro	w addi w add	resses resses	, MA0 MA1 1	to MA ² to MA1	12; for 2; for (colum columr	n addre n addre	esses esses
MA2 to I	MA9, N	1A11, I	MA12.										
INDLE 3: "-" IS INC	ierermi	inate.											

Figure 1.28.2. Output format for multiplexed addresses

Refresh

The refresh method is \overline{CAS} before \overline{RAS} . The refresh interval is set by the DRAM refresh interval set register (address 004116). The refresh signal is not output in HOLD state. Figure 1.28.3 shows the DRAM refresh interval set register.

Use the following formula to determine the value to set in the refresh interval set register.

Refresh interval set register value (0 to 255) = refresh interval time / (BCLK frequency X 32) - 1

Figure 1.28.3. DRAM refresh interval set register

The DRAM self-refresh operates in STOP mode, etc.

When shifting to self-refresh, select DRAM ignored by the DRAM space select bit. In the next instruction, simultaneously set the DRAM space select bit and self-refresh ON by self-refresh mode bit. Also, insert two NOPs after the instruction that sets the self-refresh mode bit to "1".

Do not access external memory while operating in self-refresh. (All external memory space access is inhibited.)

When disabling self-refresh, simultaneously select DRAM ignored by the DRAM space select bit and self-refresh OFF by self-refresh mode bit. In the next instruction, set the DRAM space select bit.

Do not access the DRAM space immediately after setting the DRAM space select bit.

Example) One wait is selected by the wait select bit and 4MB is selected by the DRAM space select bit Shifting to self-refresh

	•••		
	mov.b	#00000001b,DRAMCONT	;DRAM ignored, one wait is selected
	mov.b	#10001011b,DRAMCONT	;Set self-refresh, select 4MB and one wait
	nop		;Two nops are needed
	nop		;
	•••		
Disab	ole self-re	efresh	
	•••		
	mov.b	#00000001b,DRAMCONT	;Disable self-refresh, DRAM ignored, one wait is ;selected
	mov.b	#00001011b,DRAMCONT	;Select 4MB and one wait
	nop		;Inhibit instruction to access DRAM area
	nop		
	•••		

Figures 1.28.4 to 1.28.6 show the bus timing during DRAM access.

CLK					
IA0 to MA12	Row	Column address 1	Column address 2	Column address 3	
ĀS					
ASH ASL	 'н'	<u>\</u>	<u> </u>		
W					
o to D15 EDO mode)))X{{	>>X{{	
Note : Or	nly CASL is operating in 8	B-bit data bus width.			
Write cy	cle (wait control l	oit = 0) >			
CLK					
IA0 to MA12	Row address	Column address 1	Column address 2	Column address 3	
AS					
ASH ASL		\	<u> </u>		
10/					
vv			Χ	Χ	<u>}</u>
0 to D15	\				

DRAM Controller

Programmable I/O Ports

There are 123 programmable I/O ports in 144-pin version: P0 to P15 (excluding P85). There are 87 programmable I/O ports in 100-pin version: P0 to P10 (excluding P85). Each port can be set independently for input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is an input-only port and has no built-in pull-up resistance.

Figures 1.29.1 to 1.29.4 show the programmable I/O ports.

Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.

To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A converter), set the corresponding function select registers A, B and C. When pins are to be used as the outputs for the D-A converter, set the function select register A3 of each pin to I/O port, and set the direction registers to input mode.

See the descriptions of the respective functions for how to set up the built-in peripheral devices.

(1) Direction registers

Figurs 1.29.5 shows the direction registers.

These registers are used to choose the direction of the programmable I/O ports. Each bit in these registers corresponds one for one to each I/O pin.

In memory expansion and microprocessor mode, the contents of corresponding direction register of pins A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY are not changed.

Note: There is no direction register bit for P85.

(2) Port registers

Figure 1.29.6 shows the port registers.

These registers are used to write and read data for input and output to and from an external device. A port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit in a port register corresponds one for one to each I/O pin.

In memory expansion and microprocessor mode, the contents of corresponding port register of pins A0 to A22, A23, D0 to D15, MA0 to MA12, CS0 to CS3, WRL/WR/CASL, WRH/BHE/CASH, RD/DW, BCLK/ALE/CLKOUT, HLDA/ALE, HOLD, ALE/RAS, and RDY are not changed.

(3) Function select register A

Figures 1.29.7 to 1.29.11 show the function select registers A.

The register is used to select port output and peripheral function output when the port functions for both port output and peripheral function output.

Each bit of this register corresponds to each pin that functions for both port output and peripheral function output.

Under proof reading

(4) Function select register B

Figures 1.29.12 and 1.29.13 show the function select registers B.

This register selects the first peripheral function output and second peripheral function output when multiple peripheral function outputs are assigned to a pin. For pins with a third peripheral function, this register selects whether to enable the function select register C, or output the second peripheral function. Each bit of this register corresponds to each pin that has multiple peripheral function outputs assigned to it. This register is enabled when the bits of the corresponding function select register A are set for peripheral functions.

The bit 3 to bit 6 of function select register B3 is ignored bit for input peripheral function. When using DA0/DA1 and ANEX0/ANEX1, set related bit to"1". When not using DA0/DA1 or ANEX0/ANEX1, set related bit to "0".

(5) Function select register C

Figure 1.29.14 shows the function select register C.

This register is used to select the first peripheral function output and the third peripheral function output when three peripheral function outputs are assigned to a pin.

This register is effective when the bits of the function select register A of the counterpart pin have selected a peripheral function and when the function select register B has made effective the function select register C.

The bit 7 (PSC_7) is assigned the key-in interrupt inhibit bit. Setting "1" in the key-in interrupt inhibit bit causes no key-in interrupts regardless of the settings in the interrupt control register even if "L" is entered in pins $\overline{KI_0}$ to $\overline{KI_3}$. With "1" set in the key-in interrupt inhibit bit, input from a port pin cannot be effected even if the port direction register is set to input mode.

(6) Pull-up control registers

Figures 1.29.15 to 1.29.17 show the pull-up control registers.

The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is set for input.

Since P0 to P5 operate as the bus in memory expansion mode and microprocessor mode, do not set the pull-up control register. However, it is possible to select pull-up resistance presence to the usable port as I/O port by setting.

(7) Port control register

Figure 1.29.18 shows the port control register.

This register is used to choose whether to make port P1 a CMOS port or an Nch open drain. In the Nch open drain, the CMOS port's Pch is kept always turned off so that the port P1 cannot be a complete open drain. Thus the absolute maximum rating of the input voltage falls within the range from "- 0.3 V to Vcc + 0.3 V".

The port control register functions similarly to the above. Also in the case in which port P1 can be used as a port when the bus width in the full external areas comprises 8 bits in either microprocessor mode or in memory expansion mode.

Figure 1.29.2. Programmable I/O ports (2)

Figure 1.29.3. Programmable I/O ports (3)

Under Development Rev.B2 for proof reading

Programmable I/O Port

Figure 1.29.5. Direction register

Programmable I/O Port

7 b6 b5 b4 b3 b2 b1 b0	Symb Pi(i=0 Pi(i=6 Pi(i=1	bol Address 0 to 5) 03E016, 03E1 5 to 11) 03C016, 03C1 2 to 15) 03CC16, 03C1	16, 03E416, 03E516, 03E816, 03E916 16, 03C416, 03C516, 03C816, 03C916 D16, 03D016, 03D116	When res Indetermi Indetermi Indetermi
	Bit symbol	Bit name	Function	RW
	Pi_0	Port Pio register	0 : "L" level 1 : "H" level (Note 4)	00
	Pi_1	Port Pi1 register	0 : "L" level 1 : "H" level (Note 4)	00
	Pi_2	Port Pi2 register	0 : "L" level 1 : "H" level	0'0
	Pi_3	Port Pi3 register	0 : "L" level 1 : "H" level	00
	Pi_4	Port Pi4 register	0 : "L" level 1 : "H" level	00
	Pi_5	Port Pi5 register	0 : "L" level 1 : "H" level (Note 5) (Note 6)	00
	Pi_6	Port Pi6 register	0 : "L" level (Note 6) 1 : "H" level	00
	Pi_7	Port Pi7 register	0 : "L" level 1 : "H" level (Note 6)	0:0
Note 1: Data is input and c Note 2: In memory expans of pins Ao to A22, A RD/DW, BCLK/ALE Note 3: Port 11 to 15 direct Note 4: Port P7o and P71 c	butput to a ion and m 23, Do to I E/CLKOUT tion regist butput hig	and from each pin by read nicroprocessor mode, the D15, MA0 to MA12, CS0 to , HLDA/ALE, HOLD, ALE/ ers exist in 144-pin version h impedance because of l	ing and writing to and from each corres contents of corresponding port direction o CS3, WRL/WR/CASL, WRH/BHE/CA (RAS, and RDY are not changed. on. N-channel open drain output.	ponding bit. n register SH ,
Note 6: Nothing is assigne	d in bit7 t	b bit5 of port P11 and bit7	of port P14.	
When write, set to	"0". Wher	read, its content is indete	erminate.	

Figure 1.29.6. Port register

Programmable I/O Port

b6 b5 b4 b3 b2 b1 b0	Symb	ol Addres	s When reset	
╷┥╷┥╷┥	PS0	03B016	0016	
	Bit symbol	Bit name	Function	R
	PS0_0	Port P60 function select bit	0 : I/O port 1 : UART0 output (RTS₀)	0
	PS0_1	Port P61 function select bit	0 : I/O port 1 : UART0 output (CLKo output)	0
	PS0_2	Port P62 function select bit	0 : I/O port 1 : Function that was selected in bit2 of function select register B0	0
	PS0_3	Port P63 function select bit	0 : I/O port 1 : UART0 output (TxD0/SDA0)	0
	PS0_4	Port P64 function select bit	0 : I/O port 1 : Function that was selected in bit4 of function select register B0	0
	PS0_5	Port P65 function select bit	0 : I/O port 1 : UART1 output (CLK1 output)	0
	PS0_6	Port P66 function select bit	0 : I/O port 1 : Function that was selected in bit6 of function select register B0	0
	PS0_7	Port P67 function	0 : I/O port	0:0
			1 : UART1 output (TXD1/SDA1)	
	e gister / ^{Syml} PS1	A1 pol Addre 03B11	ss When reset 6 0016	
	e gister A Symi PS1 Bit symbol	A1 pol Addre 03B11 Bit name	ss When reset 6 0016 Function	R
	egister / Syml PS1 Bit symbol · PS1_0	A1 Dol Addre 03B11 Bit name Port P70 function select bit	1 : UART1 output (TXD1/SDA1) ss When reset 6 0016 Function 0 : I/O port 1 : Function that was selected in bit0 of function select register B1	R
	egister A PS1 Bit symbol PS1_0 PS1_1	A1 Dol Addre 03B11 Bit name Port P70 function select bit Port P71 function select bit	1 : UART1 output (TXD1/SDA1) ss When reset 6 0016 Function 0 : I/O port 1 : Function that was selected in bit0 of function select register B1 0 : I/O port 1 : Function that was selected in bit1 of function select register B1	R
	egister A PS1 Bit symbol PS1_0 PS1_1 PS1_2	A1 Bit name Port P70 function select bit Port P71 function select bit Port P72 function select bit	1 : UART1 output (TXD1/SDA1) ss When reset 6 0016 Function 0 : I/O port 1 : Function that was selected in bit0 of function select register B1 0 : I/O port 1 : Function that was selected in bit1 of function select register B1 0 : I/O port 1 : Function that was selected in bit1 of function select register B1 0 : I/O port 1 : Function that was selected in bit2 of function select register B1	R 0 0
	egister A Symi PS1 Bit symbol PS1_0 PS1_0 PS1_1 PS1_2 PS1_3	A1 Bit name Port P70 function select bit Port P71 function select bit Port P72 function select bit Port P73 function select bit	1 : UART1 output (TXD1/SDA1) ss When reset 6 0016 Function 0 : I/O port 1 : Function that was selected in bit0 of function select register B1 0 : I/O port 1 : Function that was selected in bit1 of function select register B1 0 : I/O port 1 : Function that was selected in bit2 of function select register B1 0 : I/O port 1 : Function that was selected in bit2 of function select register B1 0 : I/O port 1 : Function that was selected in bit3 of function select register B1	R 0 0
	egister / Syml PS1 Bit symbol PS1_0 PS1_0 PS1_1 PS1_2 PS1_3 PS1_4	A1 Bit name Port P70 function select bit Port P71 function select bit Port P72 function select bit Port P73 function select bit Port P74 function select bit	1 : UART1 output (TXD1/SDA1) ss When reset 6 0016 Function 0 : I/O port 1 : Function that was selected in bit0 of function select register B1 0 : I/O port 1 : Function that was selected in bit1 of function select register B1 0 : I/O port 1 : Function that was selected in bit2 of function select register B1 0 : I/O port 1 : Function that was selected in bit3 of function select register B1 0 : I/O port 1 : Function that was selected in bit3 of function select register B1 0 : I/O port 1 : Function that was selected in bit3 of function select register B1 0 : I/O port 1 : Function that was selected in bit4 of function select register B1	R 0 0 0
	sgister / Syml PS1 Bit symbol PS1_0 PS1_1 PS1_1 PS1_2 PS1_3 PS1_4 PS1_5	A1 Bit name Port P70 function select bit Port P71 function select bit Port P72 function select bit Port P73 function select bit Port P74 function select bit Port P75 function select bit	1: UART1 output (TXD1/SDA1) ss When reset 6 0016 Function 0: I/O port 1: Function that was selected in bit0 of function select register B1 0: I/O port 1: Function that was selected in bit1 of function select register B1 0: I/O port 1: Function that was selected in bit2 of function select register B1 0: I/O port 1: Function that was selected in bit3 of function select register B1 0: I/O port 1: Function that was selected in bit3 of function select register B1 0: I/O port 1: Function that was selected in bit3 of function select register B1 0: I/O port 1: Function that was selected in bit4 of function select register B1 0: I/O port 1: Function that was selected in bit4 of function select register B1 0: I/O port 1: Function that was selected in bit5 of function select register B1	R 0 0 0
	sgister / Syml PS1 Bit symbol PS1_0 PS1_0 PS1_1 PS1_1 PS1_2 PS1_3 PS1_4 PS1_5 PS1_6	A1 Bit name Port P70 function select bit Port P71 function select bit Port P72 function select bit Port P73 function select bit Port P74 function select bit Port P75 function select bit Port P76 function	1: UART1 output (TXD1/SDA1) ss When reset 6 0016 Function 0: I/O port 1: Function that was selected in bit0 of function select register B1 0: I/O port 1: Function that was selected in bit1 of function select register B1 0: I/O port 1: Function that was selected in bit2 of function select register B1 0: I/O port 1: Function that was selected in bit3 of function select register B1 0: I/O port 1: Function that was selected in bit3 of function select register B1 0: I/O port 1: Function that was selected in bit4 of function select register B1 0: I/O port 1: Function that was selected in bit5 of function select register B1 0: I/O port 1: Function that was selected in bit5 of function select register B1 0: I/O port 1: Function that was selected in bit5 of function select register B1 0: I/O port 1: Function that was selected in bit5 of function select register B1 0: I/O port 1: Function that was selected in bit6 of function select register B1	R 0 0 0 0

	Symb PS2	ol Address 03B416	When reset 00X000002	
	Bit symbol	Bit name	Function	F
	PS2_0	Port P80 function select bit	0 : I/O port1 : Function that was selected in bit0 of function select register B2	C
	- PS2_1	Port P81 function select bit	0 : I/O port1 : Function that was selected in bit1 of function select register B2	
	• PS2_2	Port P82 function select bit	0 : I/O port1 : Function that was selected in bit2 of function select register B2	C
		Reserve hit	Must always be "0"	
		Noting is assigned When read, their c	. When write, set to "0". ontents are indeterminate.	-
	-	Reserve hit	Muet always be "0"	(
	• —	Reserve bit	Nusi always be 0.	(
Unction select re		A3 (Note)	s When reset	1
	egister / Syml PS3	A3 (Note) pol Addres 03B516 Bit Nomo	s When reset 0016	
	egister / Syml PS3 Bit symbol	A3 (Note) Dol Addres 03B516 Bit Name Port P90 function	s When reset 0016 Function	
	egister / Syml PS3 Bit symbol	A3 (Note) Dol Addres 03B516 Bit Name Port P90 function select bit	s When reset 0016 Function 0 : I/O port 1 : UART3 output (CLK3)	
	egister / Syml PS3 Bit symbol - PS3_0	A3 (Note) Dol Addres 03B516 Bit Name Port P90 function select bit Port P91 function select bit	s When reset 0016 Function 0 : I/O port 1 : UART3 output (CLK3) 0 : I/O port 1 : Function that was selected in bit1 of function select register B3	
	egister / Symi PS3 Bit symbol - PS3_0 - PS3_1 - PS3_2	A3 (Note) Dol Addres 03B516 Bit Name Port P90 function select bit Port P91 function select bit Port P92 function select bit	s When reset 0016 Function 0 : I/O port 1 : UART3 output (CLK3) 0 : I/O port 1 : Function that was selected in bit1 of function select register B3 0 : I/O port 1 : Function that was selected in bit2 of function select register B3	
	egister / Symi PS3 Bit symbol PS3_0 PS3_1 PS3_2 PS3_3	A3 (Note) Dol Addres 03B516 Bit Name Port P90 function select bit Port P91 function select bit Port P92 function select bit Port P93 function select bit	s When reset 0016 Function 0 : I/O port 1 : UART3 output (CLK3) 0 : I/O port 1 : Function that was selected in bit1 of function select register B3 0 : I/O port 1 : Function that was selected in bit2 of function select register B3 0 : I/O port 1 : Function that was selected in bit2 of function select register B3 0 : I/O port 1 : UART3 output (RTS3)	
	egister / PS3 Bit symbol - PS3_0 - PS3_1 - PS3_2 - PS3_2 - PS3_3 - PS3_4	A3 (Note) Dol Addres 03B516 Bit Name Port P90 function select bit Port P91 function select bit Port P92 function select bit Port P93 function select bit Port P94 function select bit	s When reset 0016 Function 0 : I/O port 1 : UART3 output (CLK3) 0 : I/O port 1 : Function that was selected in bit1 of function select register B3 0 : I/O port 1 : Function that was selected in bit2 of function select register B3 0 : I/O port 1 : Function that was selected in bit2 of function select register B3 0 : I/O port 1 : UART3 output (RTS3) 0 : I/O port 1 : UART4 output (RTS4)	
	egister / PS3 Bit symbol - PS3_0 - PS3_1 - PS3_2 - PS3_3 - PS3_4 - PS3_5	A3 (Note) Dol Addres 03B516 Bit Name Port P90 function select bit Port P91 function select bit Port P92 function select bit Port P93 function select bit Port P94 function select bit Port P95 function select bit	s When reset 0016 0 : I/O port 1 : UART3 output (CLK3) 0 : I/O port 1 : Function that was selected in bit1 of function select register B3 0 : I/O port 1 : Function that was selected in bit2 of function select register B3 0 : I/O port 1 : UART3 output (RTS3) 0 : I/O port 1 : UART3 output (RTS3) 0 : I/O port 1 : UART4 output (RTS4) 0 : I/O port 1 : UART4 output (CLK4)	
	egister / Symi PS3 Bit symbol - PS3_0 - PS3_1 - PS3_1 - PS3_2 - PS3_3 - PS3_4 - PS3_5 - PS3_6	A3 (Note) Addres 03B516 Bit Name Port P90 function select bit Port P91 function select bit Port P92 function select bit Port P93 function select bit Port P94 function select bit Port P95 function select bit	s When reset 0016 0 : I/O port 1 : UART3 output (CLK3) 0 : I/O port 1 : Function that was selected in bit1 of function select register B3 0 : I/O port 1 : Function that was selected in bit2 of function select register B3 0 : I/O port 1 : UART3 output (RTS3) 0 : I/O port 1 : UART3 output (RTS3) 0 : I/O port 1 : UART4 output (RTS4) 0 : I/O port 1 : UART4 output (CLK4) 0 : I/O port 1 : UART4 output (TxD4/SDA4)	

Figure 1.29.8. Function select register A (2)

Programmable I/O Port

17 b6 b5 b4 b3 b2 b1 b0 1 0 1	Symbo PS5	ol Address 03B916	When reset XXX0 00002	
Γ	Bit symbol	Bit name	Function	R
	PS5_0	Port P110 function select bit	0 : I/O port 1 : Intelligent I/O group 1 output (OUTC10/ ISTxD1/BE1out)	0
	PS5_1	Port P111 function select bit	0 : I/O port 1 : Intelligent I/O group 1 output (OUTC11/ ISCLK1)	0
	PS5_2	Port P112 function select bit	0 : I/O port 1 : Intelligent I/O group 1 output (OUTC12)	0
	PS5_3	Port P113 function select bit	0 : I/O port 1 : Intelligent I/O group 1 output (OUTC13)	0
		Reserve bit	Must always be "0".	0
		Noting is assigned. When read, their c	When write, set to "0". ontents are indeterminate.	
				_!
	Note: This	s register exists in 14	I4-pin version.	
Function select reg	Note: This gister /	s register exists in 14	I4-pin version.	•
Function select reg	Note: This gister / Symb PS6	s register exists in 14 A6 (Note) pol Address 03BC16	14-pin version. s When reset 0016	
	Note: This gister / Symb PS6 Bit symbol	s register exists in 14 A6 (Note) Dol Address 03BC16 Bit name	14-pin version. s When reset 0016 Function	R
	Note: This gister / Symb PS6 Bit symbol PS6_0	a register exists in 14 A (Note) Dol Address 03BC16 Bit name Port P120 function select bit	Vhen reset 0016 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC30)	R
	Note: This gister / Symb PS6 Bit symbol PS6_0 PS6_1	a register exists in 14 A (Note) bol Address 03BC16 Bit name Port P120 function select bit Port P121 function select bit	I4-pin version. When reset 0016 Function 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC30) 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC31)	ROO
	Note: This gister / Symb PS6 Bit symbol PS6_0 PS6_1 PS6_2	Bit name Port P120 function select bit Port P121 function select bit Port P122 function select bit	I4-pin version. When reset 0016 Function 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC30) 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC31) 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC32)	R 0 0
	Note: This gister / Symt PS6 Bit symbol PS6_0 PS6_1 PS6_2 PS6_2	a register exists in 14 A6 (Note) Not Address 03BC16 Bit name Port P120 function select bit Port P121 function select bit Port P122 function select bit Port P123 function select bit	 I4-pin version. When reset 0016 Function 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC30) 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC31) 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC32) 0 : I/O port 1 : Intelligent I/O group 3 output (OUTC32) 	R 0 0
	Note: This gister / Symb PS6 Bit symbol PS6_0 PS6_1 PS6_1 PS6_2 PS6_3 PS6_4	a register exists in 14 A6 (Note) bol Address 03BC16 Bit name Port P120 function select bit Port P121 function select bit Port P122 function select bit Port P123 function select bit Port P124 function select bit	 I4-pin version. When reset 0016 Function I/O port Intelligent I/O group 3 output (OUTC30) I/O port Intelligent I/O group 3 output (OUTC31) I/O port Intelligent I/O group 3 output (OUTC32) I/O port Intelligent I/O group 3 output (OUTC33) I/O port Intelligent I/O group 3 output (OUTC33) I/O port Intelligent I/O group 3 output (OUTC34) 	R 0 0 0
	Note: This gister / Symb PS6 Bit symbol PS6_0 PS6_1 PS6_1 PS6_2 PS6_3 PS6_4 PS6_5	Bit name Port P120 function select bit Port P121 function select bit Port P122 function select bit Port P123 function select bit Port P124 function select bit Port P124 function select bit Port P124 function select bit	 When reset 0016 Function I/O port Intelligent I/O group 3 output (OUTC30) I/O port Intelligent I/O group 3 output (OUTC31) I/O port Intelligent I/O group 3 output (OUTC32) I/O port Intelligent I/O group 3 output (OUTC33) I/O port Intelligent I/O group 3 output (OUTC33) I/O port Intelligent I/O group 3 output (OUTC34) I/O port Intelligent I/O group 3 output (OUTC35) 	R 0 0 0
	Note: This gister / Symb PS6 Bit symbol PS6_0 PS6_1 PS6_1 PS6_2 PS6_3 PS6_4 PS6_5 PS6_5	a register exists in 14 A6 (Note) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	 When reset 0016 Function I/O port Intelligent I/O group 3 output (OUTC30) I/O port Intelligent I/O group 3 output (OUTC31) I/O port Intelligent I/O group 3 output (OUTC32) I/O port Intelligent I/O group 3 output (OUTC33) I/O port Intelligent I/O group 3 output (OUTC33) I/O port Intelligent I/O group 3 output (OUTC34) I/O port Intelligent I/O group 3 output (OUTC35) I/O port Intelligent I/O group 3 output (OUTC35) I/O port Intelligent I/O group 3 output (OUTC36) 	R 0 0 0 0

Figure 1.29.9. Function select register A (3)

Programmable I/O Port

Note: This register exists in 144-pin version.

Figure 1.29.10. Function select register A (4)

b7 b6 b5 b4 b3 b2 b1 b0 0	Symbo PS9	bl Address 03A116	When reset 0016		
	Bit symbol	Bit name	Function	R	w
	PS9_0	Port P150 function select bit	0 : I/O port 1 : Intelligent I/O group 0 output (OUTC00/ ISTxD0/BE0оuт)	0	0
	- PS9_1	Port P151 function select bit	0 : I/O port 1 : Intelligent I/O group 0 output (OUTC01/ ISCLK0)	0	0
	·			0	0
		Reserve bit	Must always be "0".	0	0
	• PS9_4	Port P154 function select bit	0 : I/O port 1 : Intelligent I/O group 0 output (OUTC04)	0	0
	• PS9_5	Port P155 function select bit	0 : I/O port 1 : Intelligent I/O group 0 output (OUTC05)	0	0
	·	Reserve hit	Must always he "0"	0	0
				0	0

Figure 1.29.11. Function select register A (5)

7 b6 b5 b4 b3 b2 b1 b0	Symbo	ol Address	When reset	
	PSL0	03B216	0016	
	Bit symbol	Bit name	Function	R
		Reserve bit	Must always be "0".	0 0
	PSL0_2	Port P62 peripheral function select bit	0 : UART0 output (SCL0) 1 : UART0 output (STxD0)	0
		Reserve bit	Must always be "0".	0
	PSL0_4	Port P64 peripheral function select bit	0 : UART1 output (RTS1) 1 : Intelligent I/O group 2 output (OUTC21/ISCLK2)	0
		Reserve bit	Must always be "0".	0
	PSL0_6	Port P66 peripheral function select bit	0 : UART1 output (SCL1) 1 : UART1 output (STxD1)	0
		Reserve bit	Must always be "0".	0
Function select re	gister E _{Symb} PSL1	31 ol Address 03B316	When reset 0016	
	gister E ^{Symb} PSL1	31 ol Address 03B316	When reset 0016	
	gister E Symb PSL1 Bit symbol	31 ol Address 03B316 Bit name	When reset 0016 Function	R
	gister E Symb PSL1 Bit symbol PSL1_0	31 ol Address 03B316 Bit name Port P70 peripheral function select bit	When reset 0016 Function 0 : Function that was selected in bit0 of function select register C 1 : Timer output (TA0ouT)	R
	gister E Symb PSL1 Bit Symbol PSL1_0 • PSL1_1	Address 03B316 Bit name Port P70 peripheral function select bit Port P71 peripheral function select bit	When reset 0016 Function 0 : Function that was selected in bit0 of function select register C 1 : Timer output (TAOouT) 0 : Function that was selected in bit1 of function select register C 1 : UART2 output (STxD2)	R O O
	gister E Symb PSL1 Bit symbol PSL1_0 • PSL1_1 • PSL1_2	Address 03B316 Bit name Port P70 peripheral function select bit Port P71 peripheral function select bit Port P72 peripheral function select bit	When reset 0016 Function 0 : Function that was selected in bit0 of function select register C 1 : Timer output (TA00UT) 0 : Function that was selected in bit1 of function select register C 1 : UART2 output (STxD2) 0 : Function that was selected in bit2 of function select register C 1 : Timer output (TA10UT)	R 0 0
	gister E Symb PSL1 Bit symbol PSL1_0 PSL1_1 PSL1_2 PSL1_3	Address 03B316 Bit name Port P70 peripheral function select bit Port P71 peripheral function select bit Port P72 peripheral function select bit Port P73 peripheral function select bit	When reset 0016 Function 0 : Function that was selected in bit0 of function select register C 1 : Timer output (TA0ouT) 0 : Function that was selected in bit1 of function select register C 1 : UART2 output (STxD2) 0 : Function that was selected in bit2 of function select register C 1 : Timer output (TA1ouT) 0 : Function that was selected in bit3 of function select register C 1 : Three-phase PWM output (V)	R 0 0
	gister E Symb PSL1 Bit symbol PSL1_0 PSL1_0 PSL1_1 PSL1_2 PSL1_3 PSL1_4	Address 03B316Bit namePort P70 peripheral function select bitPort P71 peripheral function select bitPort P72 peripheral function select bitPort P73 peripheral function select bitPort P74 peripheral function select bit	When reset 0016 Function 0 : Function that was selected in bit0 of function select register C 1 : Timer output (TA0ouT) 0 : Function that was selected in bit1 of function select register C 1 : UART2 output (STxD2) 0 : Function that was selected in bit2 of function select register C 1 : Timer output (TA10uT) 0 : Function that was selected in bit3 of function select register C 1 : Three-phase PWM output (V) 0 : Function that was selected in bit4 of function select register C	R 0 0
	gister E Symb PSL1 Bit symbol PSL1_0 PSL1_0 PSL1_1 PSL1_2 PSL1_3 PSL1_4 PSL1_5	Address 03B316Bit namePort P70 peripheral function select bitPort P71 peripheral function select bitPort P72 peripheral function select bitPort P73 peripheral function select bitPort P74 peripheral function select bitPort P75 peripheral function select bit	When reset 0016 Function 0 : Function that was selected in bit0 of function select register C 1 : Timer output (TAOOUT) 0 : Function that was selected in bit1 of function select register C 1 : UART2 output (STxD2) 0 : Function that was selected in bit2 of function select register C 1 : Timer output (TA10UT) 0 : Function that was selected in bit3 of function select register C 1 : Three-phase PWM output (V) 0 : Function that was selected in bit4 of function select register C 1 : Three-phase PWM output (W) 0 : Three-phase PWM output (W) 0 : Three-phase PWM output (W) 1 : Intelligent I/O group 1 output (OUTC12)	R 0 0 0
	gister E Symb PSL1 PSL1_0 PSL1_0 PSL1_1 PSL1_2 PSL1_2 PSL1_3 PSL1_4 PSL1_5 PSL1_6	Address ol Address O3B316 Bit name Port P70 peripheral function select bit Port P71 peripheral function select bit Port P72 peripheral function select bit Port P73 peripheral function select bit Port P74 peripheral function select bit Port P75 peripheral function select bit Port P76 peripheral function select bit	When reset 0016 Function 0 : Function that was selected in bit0 of function select register C 1 : Timer output (TAOOUT) 0 : Function that was selected in bit1 of function select register C 1 : UART2 output (STxD2) 0 : Function that was selected in bit2 of function select register C 1 : Timer output (TA1OUT) 0 : Function that was selected in bit3 of function select register C 1 : Three-phase PWM output (V) 0 : Function that was selected in bit4 of function select register C 1 : Three-phase PWM output (W) 0 : Three-phase PWM output (W) 1 : Intelligent I/O group 1 output (OUTC12) 0 : Function that was selected in bit6 of function select register C 1 : Timer output (TA30UT)	R 0 0 0 0

Figure 1.29.12. Function select register B (1)

Programmable I/O Port

Function select	ct reg	ister B	2		
b7 b6 b5 b4 b3 b2 0 0 0 0 0	b1 b0	Symbo PSL2	I Address 03B616	When reset 00X000002	
		Bit symbol	Bit name	Function	RW
		PSL2_0	Port P80 peripheral function select bit	0 : Timer output (TA4ou⊤) 1 : Three-phase PWM output (U)	0-0
		PSL2_1	Port P81 peripheral function select bit	0 : Three-phase PWM output (U) 1 : Intelligent I/O group 3 output (OUTC30)	00
		PSL2_2	Port P82 peripheral function select bit	0 : Intelligent I/O group 3 output (OUTC32) 1 : CAN output (CANouT)	00
			Reserve bit	Must always be "0".	0:0
			Noting is assigned. V When read, their cor	When write, set to "0". htents are indeterminate.	
			Reserve bit	Must always be "0".	0 <u>-</u> 0- 0-0
Function sele		gister E ^{Symb} PSL3	33 ol Address 03B716	When reset 0016	<u> </u>
		Bit symbol	Bit name	Function	R
			Reserve bit	Must always be "0".	0
		PSL3_1	Port P91 peripheral function select bit	0 : UART3 output (SCL3) 1 : UART3 output (STxD3)	
		PSL3_2	Port P92 peripheral function select bit	0 : UART3 output (TxD3/SDA3) 1 : Intelligent I/O group 2 output (OUTC20/IEOUT)	

Note: Although DA0, DA1, ANEX0 and ANEX1 can be used when "0" is set in these bits, the power supply may be increased.

0 : Input peripheral function enabled

1 : Input peripheral function disabled (DA0 output) 0 : Input peripheral function enabled

1 : Input peripheral function disabled (DA1 output)0 : Input peripheral function enabled

1 : Input peripheral function disabled (ANEX0 output)0 : Input peripheral function enabled

1 : Input peripheral function disabled (ANEX1 output)

(Note)

(Note)

(Note)

(Note)

OiO

0¦0

0:0

OiO

0¦0

(Expect DA0 output)

(Expect DA1 output)

(Expect ANEX0 output)

(Expect ANEX1 output)

0: UART4 output (SCL4)

1 : UART4 output (STxD4)

Port P93 peripheral

Port P94 peripheral

function select bit

Port P95 peripheral

function select bit

Port P96 peripheral

Port P97 peripheral

function select bit

function select bit

function select bit

PSL3_3

PSL3_4

PSL3_5

PSL3_6

PSL3_7

Figure 1.29.14. Function select register C

Pull-up control regi	ister 0	(Note)		
b7 b6 b5 b4 b3 b2 b1 b0	Symb PUR0	ol Address 03F016	When reset 000000002	
	Bit symbol	Bit name	Function	RW
	PU00	P00 to P03 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU01	P04 to P07 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU02	P1o to P13 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU03	P14 to P17 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU04	P20 to P23 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU05	P24 to P27 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU06	P30 to P33 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU07	P34 to P37 pull-up	0 : Not pulled high 1 : Pulled high	00

Note: Since P0 to P5 operate as the bus in memory expansion mode and microprocessor mode, do not set the pull-up control register. However, it is possible to select pull-up resistance presence to the usable port as I/O port by setting.

Pull-up control register 1 (Note)

b7 b6 b5 b4	b3 b2 b1 b0	Symb	ol Address	When reset	
	╷┥╷┥	PUR1	03F116	XXXX00002	
		Bit symbol	Bit name	Function	RW
		PU10	P40 to P43 pull-up	0 : Not pulled high 1 : Pulled high	oc
		PU11	P44 to P47 pull-up	0 : Not pulled high 1 : Pulled high	0
		PU12	P50 to P53 pull-up	0 : Not pulled high 1 : Pulled high	00
		PU13	P54 to P57 pull-up	0 : Not pulled high 1 : Pulled high	0
			Noting is assigned. Whe When read, their conten	en write, set to "0". ts are indeterminate.	
No	ote: Since P0 t	o P5 oper	ate as the bus in memory	expansion mode and microproces	ssor mode
	do not set presence t	the pull-up o the usat	o control register. However ble port as I/O port by sett	er, it is possible to select pull-up re ing.	sistance

Figure 1.29.15. Pull-up control register (1)

Pull-up control reg	ister 2	(Note 1)		
b7 b6 b5 b4 b3 b2 b1 b0	Symb PUR2	ol Address 03DA16	When reset 00000002	
	Bit symbol	Bit name	Function	RW
	PU20	P60 to P63 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU21	P64 to P67 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU22	P70 to P73 pull-up	0 : Not pulled high 1 : Pulled high (Note 2)	00
	PU23	P74 to P77 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU24	P80 to P83 pull-up	0 : Not pulled high 1 : Pulled high	0:0
	PU25	P84 to P87 pull-up	0 : Not pulled high 1 : Pulled high (Note 3)	00
	PU26	P90 to P93 pull-up	0 : Not pulled high 1 : Pulled high	000
	PU27	P94 to P97 pull-up	0 : Not pulled high 1 : Pulled high	00

Note 1: Since P70 and P71 are N-channel open drain ports, pull-up is not available for them. Note 2: Except port P85.

Pull-up control register 3

<144-pin version>

b7 b6 b5 b4 b3 b2 b1 b0	Symbo PUR3	ol Address 03DB16	When reset 000000002	
	Bit symbol	Bit name	Function	RW
	PU30	P100 to P103 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU31	P104 to P107 pull-up	0 : Not pulled high 1 : Pulled high	0:0
	PU32	P110 to P113 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU33	P114 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU34	P120 to P123 pull-up	0 : Not pulled high 1 : Pulled high	0:0
	PU35	P124 to P127 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU36	P130 to P133 pull-up	0 : Not pulled high 1 : Pulled high	00
	PU37	P134 to P137 pull-up	0 : Not pulled high 1 : Pulled high	00

Figure 1.29.16. Pull-up control register (2)

Under Rev.B2 for proof reading

Programmable I/O Port

i all-up control reg	jister 3		<100-pin ve	ersion>
b7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0 0	Symbo PUR3	ol Address 03DB16	When reset 0016	
	Bit symbol	Bit name	Function	RW
	PU30	P100 to P103 pull-up	0 : Not pulled high 1 : Pulled high	
· · · · · · · · · · · · · · · · · · ·	PU31	P104 to P107 pull-up	0 : Not pulled high 1 : Pulled high	0
Pull-up control re	 gister 4	Reserve bit (Note)	Must always be "0".	
b7 b6 b5 b4 b3 b2 b1 b0) Symb PUR4	4 Address 03DC16	When reset XXXX00002	
	Bit symbol	Bit name	Function	R
	- PU40	P140 to P143 pull-up	0 : Not pulled high 1 : Pulled high	0
	DUAA	P1/4 to P1/6 pull-up	0 : Not pulled high	
· · · · · · · · · · · · · · · · · · ·	P041	1 144 to 1 148 pail-ap	1 : Pulled high	0
· · · · · · · · · · · · · · · · · · ·	•• PU41	P150 to P153 pull-up	1 : Pulled high 0 : Not pulled high 1 : Pulled high	0
	PU41 PU42 PU43	P150 to P153 pull-up P154 to P157 pull-up	1 : Pulled high 0 : Not pulled high 1 : Pulled high 0 : Not pulled high 1 : Pulled high 1 : Pulled high	0

Under Rev.B2 for proof reading

Figure 1.29.18. Port control register and input function select register

Table 1.29.1. Example connection of unused pins in single-chip mode

Pin name	Connection
Ports P0 to P15 (excluding P85) (Note 1)	After setting for input mode, connect every pin to Vss via a resistance (pull-down); or after setting for output mode, leave these pins open.
XOUT (Note 2)	Open
NMI	Connect via resistance to Vcc (pull-up)
AVcc	Connect to Vcc
AVSS, VREF, BYTE	Connect to Vss

Note 1: Ports P11 to P15 exist in 144-pin version.

Note 2: With external clock input to XIN pin.

Table 1.29.2. Example connection of unused pins in memory expansion mode and microprocessor mode

Pin name	Connection
Ports P6 to P15 (excluding P85) (Note 1)	After setting for input mode, connect every pin to Vss via a resistance (pull-down); or after setting for output mode, leave these pins open.
BHE, ALE, HLDA, XOUT(Note 2), BCLK	Open
$\overline{HOLD}, \overline{RDY}, \overline{NMI}$	Connect via resistance to Vcc (pull-up)
AVcc	Connect to Vcc
AVss, Vref	Connect to Vss

Note 1: Ports P11 to P15 exist in 144-pin version.

Note 2: With external clock input to XIN pin.

Figure 1.29.19. Example connection of unused pins

Table 1.29.3. Port P6 output control

	PS0 register	PSL0 register
Bit 0	0: P60	Must set to "0"
	1: UART0 output (RTS0) ^(Note)	
Bit 1	0: P61	Must set to "0"
	1: UART0 output (CLK0) ^(Note)	
Bit 2	0: P62	0: UART0 output (SCL0)
	1: Selected by PSL0 register	1: UART0 output (STxD0)
Bit 3	0: P63	Must set to "0"
	1: UART0 output (TxD0/SDA0) ^(Note)	
Bit 4	0: P64	0: UART1 output (RTS1)
	1: Selected by PSL0 register	1: Intelligent I/O group 2 (OUTC21/ISCLK2)
Bit 5	0: P65	Must set to "0"
	1: UART1 output (CLK1) ^(Note)	
Bit 6	0: P66	0: UART1 output (SCL1)
	1: Selected by PSL0 register	1: UART1 output (STxD1)
Bit 7	0: P67	Must set to "0"
	1: UART1 output (TxD1/SDA1) ^(Note)	

PS0 register: Function select register A0

PSL0 register: Function select register B0

Note : Select "0" in corresponding bit of PSL0 register.

Table 1.29.4. Port P7 output control

	PS1 register	PSL1 register	PSC register
Bit 0	0: P70 1: Selected by PSL1 register	0: Selected by PSC register 1: TImer output (TA0out) ^(Note 1)	0: UART2 output (TxD2/SDA2) 1: Intelligent I/O group 2 (OUTC20/ISTxD2/IEOUT)
Bit 1	0: P71 1: Selected by PSL1 register	0: Selected by PSC register 1: UART2 output (STxD2) ^(Note 1)	0: UART2 output (SCL2) 1: Intelligent I/O group 2 (OUTC22)
Bit 2	0: P72 1: Selected by PSL1 register	0: Selected by PSC register 1: TImer output (TA1out) ^(Note 1)	0: UART2 output (CLK2) 1: Three-phase PWM output (V)
Bit 3	0: P73 1: Selected by PSL1 register	0: Selected by PSC register 1: Three-phase PWM output $(\overline{V})^{(Note 1)}$	0: UART2 output (RTS2) 1: Intelligent I/O group 1 (OUTC10/ISTxD1/BE10UT)
Bit 4	0: P74 1: Selected by PSL1 register	0: Selected by PSC register 1: Three-phase PWM output (W) ^(Note 1)	0: TImer output (TA2out) 1: Intelligent I/O group 1 (OUTC11/ISCLK1)
Bit 5	0: P75 1: Selected by PSL1 register	0: Three-phase PWM output (W) ^(Note 1) 1: Intelligent I/O group 1 (OUTC12)	Must set to "0"
Bit 6	0: P76	0: Selected by PSC register	0: Intelligent I/O group 0 (OUTC00/ISTxD0/BE0out)
	1: Selected by PSL1 register	1: Timer output (TA3OUT)	1: CAN output (CANOUT)
Bit 7	0: P77 1: Intelligent I/O group 0 (OUTC01/ISCLK0)	Must set to "0"	0: Key input interrupt signal enabled 1: Key input interrupt signal disabled

PS1 register: Function select register A1

PSL1 register: Function select register B1

PSC register: Function select register C

Note 1: Select "0" in corresponding bit of PSC register.

Note 2: Select "0" in corresponding bit of PSL1 register.

Table 1.29.5. Port P8 output control

	-	
	PS2 register	PSL2 register
Bit 0	0: P80	0: Timer output (TA4out)
	1: Selected by PSL2 register	1: Three-phase PWM output (U)
Bit 1	0: P81	0: Three-phase PWM output (U)
	1: Selected by PSL2 register	1: Intelligent I/O group 3(OUTC30)
Bit 2	0: P82	0: Intelligent I/O group 3(OUTC32)
	1: Selected by PSL2 register	1: CAN output (CANOUT)
Bit 3	to 7 Must set to "0"	

PS2 register: Function select register A2

PSL2 register: Function select register B2

Table 1.29.6. Port P9 output control

	•	
	PS3 register	PSL3 register
Bit 0	0: P90	Must set to "0"
	1: UART3 output (CLK3) ^(Note)	
Bit 1	0: P91	0: UART3 output (SCL3)
	1: Selected by PSL3 register	1: UART3 output (STxD3)
Bit 2	0: P92	0: UART3 output (TxD3/SDA3)
	1: Selected by PSL3 register	1: Intelligent I/O group 2 (OUTC20/IEOUT)
Bit 3	0: P93	0: Except DA0 output
	1: UART3 output (RTS3) ^(Note)	1: DA0 output
Bit 4	0: P94	0: Except DA1 output
	1: UART4 output (RTS4) ^(Note)	1: DA1 output
Bit 5	0: P95	0: Except ANEX0
	1: UART4 output (CLK4) ^(Note)	1: ANEX0
Bit 6	0: P96	0: Except ANEX1
	1: UART4 output (TxD4/SDA4) ^(Note)	1: ANEX1
Bit 7	0: P97	0: UART4 output (SCL4)
	1: Selected by PSL3 register	1: UART4 output (STxD4)

PS3 register: Function select register A3

PSL3 register: Function select register B3

Note : Select "0" in corresponding bit of PSL3 register.

Table 1.29.7. Port P11 output control

	PS5 register
Bit 0	0: P110
	1: Intelligent I/O group 1(OUTC10/ISTxD1/BE1out)
Bit 1	0: P111
	1: Intelligent I/O group 1(OUTC11/ISCLK1)
Bit 2	0: P112
	1: Intelligent I/O group 1(OUTC12)
Bit 3	0: P113
	1: Intelligent I/O group 1(OUTC13)
Bit 4	to 7 Must set to "0"

PS5 register: Function select register A5

Table 1.29.8. Port P12 output control

	PS6 register
Bit 0	0: P120
	1: Intelligent I/O group 3(OUTC30)
Bit 1	0: P121
	1: Intelligent I/O group 3(OUTC31)
Bit 2	0: P122
	1: Intelligent I/O group 3(OUTC32)
Bit 3	0: P123
	1: Intelligent I/O group 3(OUTC33)
Bit 4	0: P124
	1: Intelligent I/O group 3(OUTC34)
Bit 5	0: P125
	1: Intelligent I/O group 3(OUTC35)
Bit 6	0: P126
	1: Intelligent I/O group 3(OUTC36)
Bit 7	0: P127
	1: Intelligent I/O group 3(OUTC37)
DSG	ragistar: Function soloct register A6

PS6 register: Function select register A6

Table 1.29.9. Port P13 output control

	PS7 register
Bit 0	0: P130
	1: Intelligent I/O group 2(OUTC24)
Bit 1	0: P131
	1: Intelligent I/O group 2(OUTC25)
Bit 2	0: P132
	1: Intelligent I/O group 2(OUTC26)
Bit 3	0: P133
	1: Intelligent I/O group 2(OUTC23)
Bit 4	0: P134
	1: Intelligent I/O group 2(OUTC20/ISTxD2/IEOUT)
Bit 5	0: P135
	1: Intelligent I/O group 2(OUTC22)
Bit 6	0: P136
	1: Intelligent I/O group 2(OUTC21/ISCLK2)
Bit 7	0: P137
	1: Intelligent I/O group 2(OUTC27)
PS7 I	register: Function select register A7

Table 1.29.10. Port P14 output control

	PS8 register
Bit 0	0: P140
	1: Intelligent I/O group 1(OUTC14)
Bit 1	0: P141
	1: Intelligent I/O group 1(OUTC15)
Bit 2	0: P142
	1: Intelligent I/O group 1(OUTC16)
Bit 3	0: P143
	1: Intelligent I/O group 1(OUTC17)
Bit 4	to 7 Must set to "0"

PS8 register: Function select register A8

Table 1.29.11. Port P15 output control

	PS9 register				
Bit 0	0: P150				
	1: Intelligent I/O group 0 (OUTC00/ISTxD0/BEOUT)				
Bit 1	0: P151				
	1: Intelligent I/O group 0 (OUTC01/ISCLK0)				
Bit 2	Bit 2 to 3 Must set to "0"				
Bit 4	0: P154				
	1: Intelligent I/O group 0 (OUTC04)				
Bit 5	0: P155				
	1: Intelligent I/O group 0 (OUTC05)				
Bit 6	to 7 Must set to "0"				

PS9 register: Function select register A9

VDC

When power-supply voltage is 3.3V or under, set the internal VDC (Voltage Down Converter) unused. Follow the steps given below to disable the VDC.

(1) Set bit 3 of the protect register to "1".

(2) Set the VDC control register 0 to "0F16".

(3) Set the VDC control register 0 to "8F16".

(4) Set bit 3 of the protect register to "0".

These steps must be performed after reset as immediately as possible with divide-by-8 clock. When the VDC select bit has been set to "112" once, do not set any other values.

Figure 1.30.1 shows the VDC control register 0.

b7 b6 b5 b	4 b3 b2 b1 b0	Symb VDC0	ol Address 0 001B ₁₆	When reset 0016	
		Bit symbol	Bit name	Function	R
		VDC00	VDC select hit	1 1: VDC unused	0
	VDC01	VDO Select Dit	Do not set any values other than "11".	0	
		VDC02	VDC reference voltage	^{b3 b2} 1 1: VDC reference voltage Off	0
		VDC03	select bit	Do not set any values other than "11"	0
					0
····		VDC05	Reserved bit	Must set to "0"	0
		VDC06			0
		VDC07	VDC enable bit (Note 2)	0: VDC Off 1: VDC On	0

Figure 1.30.1. VDC control register

Usage precaution

Under

Usage Precaution

Timer A (timer mode)

(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register while reloading gets "FFFF16". Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.

Timer A (event counter mode)

Under B2 for proof reading

- (1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Ai register while reloading gets "FFFF16" by underflow or "000016" by overflow. Reading the timer Ai register after setting a value in the timer Ai register with a count halted but before the counter starts counting gets a proper value.
- (2) When stop counting in free run type, set timer again.
- (3) In the case of using as "Free-Run type", the timer register contents may be unknown when counting begins. If the timer register is set before counting has started, then the starting value will be unknown.
 - In the case where the up/down count will not be changed.
 - Enable the "Reload" function and write to the timer register before counting begins. Rewrite the value to the timer register immediately after counting has started. If counting up, rewrite "000016" to the timer register. If counting down, rewrite "FFFF16" to the timer register. This will cause the same operation as "Free-Run type" mode.
 - In the case where the up/down count has changed.
 - First set to "Reload type" operation. Once the first counting pulse has occurred, the timer may be changed to "Free-Run type".

Timer A (one-shot timer mode)

- (1) Setting the count start flag to "0" while a count is in progress causes as follows:
 - The counter stops counting and a content of reload register is reloaded.
 - The TAiOUT pin outputs "L" level.
 - The interrupt request generated and the timer Ai interrupt request bit goes to "1".
- (2) The output from the one-shot timer synchronizes with the count source generated internally. Therefore, when an external trigger has been selected, a delay of one cycle of count source as maximum occurs between the trigger input to the TAilN pin and the one-shot timer output.
- (3) The timer Ai interrupt request bit goes to "1" if the timer's operation mode is set using any of the following procedures:
 - Selecting one-shot timer mode after reset.
 - Changing operation mode from timer mode to one-shot timer mode.
 - Changing operation mode from event counter mode to one-shot timer mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

(4) If a trigger occurs while a count is in progress, after the counter performs one down count following the reoccurrence of a trigger, the reload register contents are reloaded, and the count continues. To generate a trigger while a count is in progress, generate the second trigger after an elapse longer than one cycle of the timer's count source after the previous trigger occurred.

Timer A (pulse width modulation mode)

- (1) The timer Ai interrupt request bit becomes "1" if setting operation mode of the timer in compliance with any of the following procedures:
 - Selecting PWM mode after reset.
 - Changing operation mode from timer mode to PWM mode.
 - Changing operation mode from event counter mode to PWM mode.

Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to "0" after the above listed changes have been made.

(2) Setting the count start flag to "0" while PWM pulses are being output causes the counter to stop counting. If the TAiOUT pin is outputting an "H" level in this instance, the output level goes to "L", and the timer Ai interrupt request bit goes to "1". If the TAiOUT pin is outputting an "L" level in this instance, the level does not change, and the timer Ai interrupt request bit does not becomes "1".

Timer B (timer mode, event counter mode)

(1) Reading the timer Bi register while a count is in progress allows reading, with arbitrary timing, the value of the counter. Reading the timer Bi register while reloading gets "FFFF16". Reading the timer Bi register after setting a value in the timer Bi register with a count halted but before the counter starts counting gets a proper value.

Timer B (pulse period/pulse width measurement mode)

- (1) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt request bit goes to "1".
- (2) When the first effective edge is input after a count is started, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.
- (3) The value of the counter is indeterminate at the beginning of a count. Therefore, the timer Bi overflow flag may go to "1" and timer Bi interrupt request may be generated during the interval between a count start and an effective edge input.

Stop Mode and Wait Mode

- (1) When returning from stop mode by hardware reset, RESET pin must be set to "L" level until main clock oscillation is stabilized.
- (2) When shifting to WAIT mode or STOP mode, the program stops after reading from the WAIT instruction and the instruction that sets all clock stop control bits to "1" in the instruction queue. Therefore, insert a minimum of 4 NOPs after the WAIT instruction and the instruction that sets all clock stop control bits to "1" in order to flush the instruction queue.

A-D Converter

- (1) Write to each bit (except bit 6) of A-D i (i=0,1) control register 0, to each bit of A-D i control register 1, and to each bit of A-D i control register 2 when A-D conversion is stopped (before a trigger occurs). In particular, when the Vref connection bit is changed from "0" to "1", start A-D conversion after an elapse of 1 µs or longer.
- (2) When changing A-D operation mode, select analog input pin again.
- (3) Using one-shot mode or single sweep mode Read the correspondence A-D register after confirming A-D conversion is finished. (It is known by A-D conversion interrupt request bit.)
- (4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1 Use the undivided main clock as the internal CPU clock.
- (5) When f(XIN) is faster than 10 MHz, make the frequency 10 MHz or less by dividing.
- (6) Output impedance of sensor at A-D conversion (Reference value)

To carry out A-D conversion properly, charging the internal capacitor C shown in Figure 1.31.1 has to be completed within a specified period of time T. Let output impedance of sensor equivalent circuit be R0, microcomputer's internal resistance be R, precision (error) of the A-D converter be X, and the A-D converter's resolution be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

Vc is generally Vc = VIN
$$\{1 - e^{-\frac{C(R0 + R)}{C(R0 + R)}}\}$$

And when t = T, $VC=VIN - \frac{X}{Y}VIN=VIN(1 - \frac{X}{Y})$

$$e^{-\frac{T}{C(R0+R)}} = \frac{X}{Y}$$
$$-\frac{T}{C(R0+R)} = \ln \frac{X}{Y}$$
Hence, R0 = $-\frac{T}{C \cdot \ln \frac{X}{Y}} - R$

With the model shown in Figure 1.31.1 as an example, when the difference between VIN and Vc becomes 0.1LSB, we find impedance R0 when voltage between pins Vc changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A-D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A-D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB. When f(XIN) = 10 MHz, T = 0.3 µs in the A-D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

T = 0.3 $\mu s,\,R$ = 7.8 $k\Omega,\,C$ = 3 pF, X = 0.1, and Y = 1024 . Hence,

$$R0 = - \frac{0.3 \times 10^{-6}}{3.0 \times 10^{-12} \cdot \ln \frac{0.1}{1024}} - 7.8 \times 10^{3} \div 3.0 \times 10^{3}$$

Thus, the allowable output impedance of the sensor circuit capable of thoroughly driving the A-D converter turns out to be approximately 3.0 k Ω . Tables 1.31.1 and 1.31.2 show output impedance values based on the LSB values.

Figure 1.31.1 A circuit equivalent to the A-D conversion terminal

(7) After A-D conversion is complete, if the CPU reads the A-D register at the same time as the A-D conversion result is being saved to A-D register, wrong A-D conversion value is saved into the A-D register. This happens when the internal CPU clock is selected from divided main clock or sub-clock.

• When using the one-shot or single sweep mode

Confirm that A-D conversion is complete before reading the A-D register.

(Note: When A-D conversion interrupt request bit is set, it shows that A-D conversion is completed.)

• When using the repeat mode or repeat sweep mode 0 or 1

Use the undivided main clock as the internal CPU clock.

Interrupts

(1) Setting the stack pointer

• The value of the stack pointer is initialized to 00000016 immediately after reset. Accepting an interrupt before setting a value in the stack pointer may cause runaway. Be sure to set a value in the stack pointer before accepting an interrupt.

When using the $\overline{\text{NMI}}$ interrupt, initialize the stack pointer at the beginning of a program. Regarding the first instruction immediately after reset, generating any interrupts including the $\overline{\text{NMI}}$ interrupt is prohibited.

Set an even address to the stack pointer so that operating efficiency is increased.

- (2) The NMI interrupt
 - As for the NMI interrupt pin, an interrupt cannot be prohibited. Connect it to the Vcc pin via a resistance (pulled-up) if unused.
 - The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time when the NMI interrupt is input.
 - Signal of "L" level width more than 1 clock of CPU operation clock (BCLK) is necessary for NMI pin.

f(XIN) (MHz)	Cycle (µs)	Sampling time (µs)	R (kΩ)	C (pF)	Resolution (LSB)	R0max (kΩ)
10	0.1	0.3	7.8	3.0	0.1	3.0
		(3 X cycle,			0.3	4.5
		Sample & hold			0.5	5.3
		bit is enabled)			0.7	5.9
					0.9	6.4
					1.1	6.8
					1.3	7.2
				-	1.5	7.5
					1.7	7.8
					1.9	8.1
10	0.1	0.2	7.8	3.0	0.3	0.4
		(2 X cycle,			0.5	0.9
			Sample & hold			0.7
		bit is disabled)			0.9	1.7
					1.1	2.0
					1.3	2.2
					1.5	2.4
					1.7	2.6
					1.9	2.8

Tables 1.31.1. Output impedance values based on the LSB values (10-bit mode) Reference value

Tables 1.31.2. Output impedance values based on the LSB values (8-bit mode) Reference value

f(Xin) (MHz)	Cycle (µs)	Sampling time (µs)	R (kΩ)	C (pF)	Resolution (LSB)	R0max (kΩ)
10	0.1	0.3	7.8	3.0	0.1	4.9
		(3 X cycle,			0.3	7.0
		Sample & hold			0.5	8.2
		bit is enabled)			0.7	9.1
					0.9	9.9
					1.1	10.5
					1.3	11.1
					1.5	11.7
					1.7	12.1
					1.9	12.6
10	0.1	0.2	7.8	3.0	0.1	0.7
		(2 X cycle,			0.3	2.1
		Sample & hold			0.5	2.9
		bit is disabled)			0.7	3.5
					0.9	4.0
					1.1	4.4
					1.3	4.8
					1.5	5.2
					1.7	5.5
					1.9	5.8

- (3) External interrupt
 - Edge sense

Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins $\overline{INT_0}$ to $\overline{INT_5}$ regardless of the CPU operation clock.

• Level sense

Either an "L" level or an "H" level of 1 cycle of BCLK + at least 200 ns width is necessary for the signal input to pins $\overline{INT_0}$ to $\overline{INT_5}$ regardless of the CPU operation clock. (When XIN=30MHz and no division mode, at least 233 ns width is necessary.)

• When the polarity of the INT₀ to INT₅ pins is changed, the interrupt request bit is sometimes set to "1". After changing the polarity, set the interrupt request bit to "0". Figure 1.31.2 shows the procedure for changing the INT interrupt generate factor.

Figure 1.31.2. Switching condition of INT interrupt request

- (4) Rewrite the interrupt control register
 - When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the interrupt request bit is not set sometimes even if the interrupt request for that register has been generated. This will depend on the instructions. If this creates problems, use the below instructions to change the register.

Instructions : AND, OR, BCLR, BSET

DMAC

- (1) Do not clear the DMA request bit of the DMAi request cause select register. In M32C/83, when a DMA request is generated while the channel is disabled (Note), the DMA transfer is not executed and the DMA request bit is cleared automatically. Note :The DMA is disabled or the transfer count register is "0".
- (2) When DMA transfer is done by a software trigger, set DSR and DRQ of the DMAi request cause select register to "1" simultaneously using the OR instruction.

e.g.) OR.B #0A0h, DMiSL ; DMiSL is DMAi request cause select register

(3) When changing the DMAi request cause select bit of the DMAi request cause select register, set "1" to the DMA request bit, simultaneously. In this case, disable the corresponding DMA channel to disabled before changing the DMAi request cause select bit. To enable DMA at least 8+6xN cycles (N: enabled channel number) following the instruction to write to the DMAi request cause select register are needed.

Example) When DMA request cause is changed to timer A0 and using DMA0 in single transfer after DMA initial setting

	-	
push.w	R0	; Store R0 register
stc	DMD0, R0	; Read DMA mode register 0
and.b	#11111100b, R0L	; Clear DMA0 transfer mode select bit to "00"
ldc	R0, DMD0	; DMA0 disabled
mov.b	#10000011b, DM0SL	; Select timer A0
		; (Write "1" to DMA request bit simultaneously)
nop		At least 8 + 6 x N cycles
:		(N: enabled channel number)
ldc	R0, DMD0	; DMA0 enabled
pop.wR0	; Re	estore R0 register

Noise

Under opment

Usage precaution

(1) A bypass capacitor should be inserted between Vcc-Vss line for reducing noise and latch-up Connect a bypass capacitor (approx. 0.1µF) between the Vcc and Vss pins using short wiring and thicker circuit traces.

Precautions for using CLKout pin

When using the Clock Output function of P53/CLKOUT pin (f8, f32 or fc output) in single chip mode, use port P57 as an input only port (port P57 direction register is "0").

Although port P57 may be set as an output port (port P57 direction register is "1"), it will become high impedance and will not output "H" or "L" levels.

HOLD signal

When using the HOLD input while P40 to P47 and P50 to P52 are set as output ports in single-chip mode, you must first set all pins for P40 to P47 and P50 to P52 as input ports, then shift to microprocessor mode or memory expansion mode.

Reducing power consumption

- (1) When A-D conversion is not performed, select the Vref not connected with the Vref connect bit of A-D control register 1. When A-D conversion is performed, start the A-D conversion at least 1 μs or longer after connecting Vref.
- (2) When using AN4 (P104) to AN7 (P107), select the input disable of the key input interrupt signal with the key input interrupt disable bit of the function select register C.

When selecting the input disable of the key input interrupt signal, the key input interrupt cannot be used. Also, the port cannot be input even if the direction register of P104 to P107 is set to input (the input result becomes undefined). When the input disable of the key input interrupt signal is selected, use all AN4 to AN7 as A-D inputs.

(3) When ANEX0 and ANEX1 are used, select the input peripheral function disable with port P95 and P96 input peripheral function select bit of the function select register B3. When the input peripheral function disable is selected, the port cannot be input even if the port direc-

tion register is set to input (the input result becomes undefined).

Also, it is not possible to input a peripheral function except ANEX0 and ANEX1.

Under

(4) When D-A converter is not used, set output disabled with the D-A output enable bit of D-A control register and set the D-A register to "0016".

(5) When D-A conversion is used, select the input peripheral function disabled with port P93 and P94 input peripheral function select bit of the function select register B3. When the input peripheral function disabled is selected, the port cannot be input even if the port

direction register is set to input (the input result becomes undefined).

Also, it is not possible to input a peripheral function.

Rev.B2 for proof reading

DRAM controller

The DRAM self-refresh operates in stop mode, etc.

When shifting to self-refresh, select DRAM is ignored by the DRAM space select bit. In the next instruction, simultaneously set the DRAM space select bit and self-refresh ON by self-refresh mode bit. Also, insert two NOPs after the instruction that sets the self-refresh mode bit to "1".

Do not access external memory while operating in self-refresh. (All external memory space access is inhibited.)

When disabling self-refresh, simultaneously select DRAM is ignored by the DRAM space select bit and self-refresh OFF by self-refresh mode bit. In the next instruction, set the DRAM space select bit. Do not access the DRAM space immediately after setting the DRAM space select bit.

Example) One wait is selected by the wait select bit and 4MB is selected by the DRAM space select bit Shifting to self-refresh

	•••		
	mov.b mov.b nop nop	#00000001b,DRAMCONT #10001011b,DRAMCONT	;DRAM is ignored, one wait is selected ;Set self-refresh, select 4MB and one wait ;Two nops are needed ;
Disab	le self-re	fresh	
	•••		
	mov.b	#00000001b,DRAMCONT	;Disable self-refresh, DRAM ignored, one wait is ;selected
	mov.b	#00001011b,DRAMCONT	Select 4MB and one wait
	nop		Inhibit instruction to access DRAM area
	nop		
	••••		

Setting the registers

The registers shown in Table 1.31.3 include indeterminate bit when read. Set immidiate to these registers.

Store the content of the frequently used register to RAM, change the content of RAM, then transfer to the register.

Table 1.31.3 The object registers

Register name	Symbol	Address
Watchdog timer start register	WDTS	000E16
Group0 receive input register	G0RI	00EC16
Group1 receive input register	G1RI	012C16
Group2 SI/O transmit buffer register	G2TB	016D16, 016C16
UART4 bit rate generator	U4BRG	02F916
UART4 transfer buffer register	U4TB	02FB16, 02FA16
Timer A1-1 register	TA11	030316, 030216
Timer A2-1 register	TA21	030516, 030416
Timer A4-1 register	TA41	030716, 030616
Dead time timer	DTT	030C16
Timer B2 interrupt occurrence frequency set counter	ICTB2	030D16
UART3 bit rate generator	U3BRG	032916
UART3 transfer buffer register	U3TB	032B16, 032A16
UART2 bit rate generator	U2BRG	033916
UART2 transfer buffer register	U2TB	033B16, 033A16
Up-down flag	UDF	034416
Timer A0 register (Note)	TA0	034716, 034616
Timer A1 register (Note)	TA1	034916, 034816
Timer A2 register (Note)	TA2	034B16, 034A16
Timer A3 register (Note)	TA3	034D16, 034C16
Timer A4 register (Note)	TA4	034F16, 034E16
UART0 bit rate generator	U0BRG	036916
UART0 transfer buffer register	U0TB	036B16, 036A16
UART1 bit rate generator	U1BRG	02E916
UART1 transfer buffer register	U1TB	02EB16, 02EA16
A-D0 control register 2	ADCON2	039416

Note: In one-shot timer mode and pulse width modulation mode.

Notes on the microprocessor mode and transition after shifting from the microprocessor mode to the memory expansion mode / single-chip mode

In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. For that reason, the internal ROM area cannot be accessed.

After the reset has been released and the operation of shifting from the microprocessor mode has started ("H" applied to the CNVss pin), the internal ROM area cannot be accessed even if the CPU shifts to the memory expansion mode or single-chip mode.

Notes on CNVss pin reset at "H" level

When the CNVss pin is reset at "H" level, the contents of internal ROM cannot be read out.

Electrical characteristics

Table 1.32.1. Absolute maximum ratings

Symbol	Parameter		Condition	Rated value	Unit
Vcc	Supply voltage		Vcc=AVcc	-0.3 to 6.0	V
AVcc	Analog supply v	voltage	Vcc=AVcc	-0.3 to 6.0	V
Vi	Input voltage	RESET, CNVss, BYTE, P00-P07, P10-P17,		-0.3 to Vcc+0.3	V
		P20-P27, P30-P37, P40-P47, P50-P57, P60-			
		P67, P72-P77, P80-P87, P90-P97, P100-P107,			
		P110-P114, P120-P127, P130-P137, P140-			
		P146, P150-P157 ^(Note1) , VREF, XIN			
		P70, P71		-0.3 to 6.0	V
Vo	Output voltage	P00-P07, P10-P17, P20-P27, P30-P37, P40-		-0.3 to Vcc+0.3	V
		P47, P50-P57, P60-P67, P72-P77, P80-P87,			
		P90-P97, P100-P107, P110-P114, P120-P127,			
		P130-P137, P140-P146, P150-P157 ^(Note1) ,			
		Vref, Xin			
		P70, P71		-0.3 to 6.0	V
Pd	Power dissipation	n	Topr=25°C	500	mW
Topr	Operating ambi	ent temperature		-20 to 85/-40 to 85 ^(Note 2)	°C
Tstg	Storage temper	ature		-65 to 150	°C
	1				

Note 1: Ports P11 to P15 exist in 144-pin version.

Note 2: Specify a product of -40 to 85°C to use it.

Under Rev.B2 for proof reading Electrical characteristics

Table 1.32.2. Recommended operating conditions (referenced to VCC = 3.0V to 5.5V at Topr = -20 to 85°C / - 40 to 85°C^(Note3) unless otherwise specified)

Symbol		Parar	neter			tandard		Unit
Cymbol			Min.	Тур.	Max.	Onic		
Vcc	Supply voltage(W	/hen VDC-ON)			3.0	5.0	5.5	V
	Supply voltage(W	/hen VDC-pas	s through)		3.0	3.3	3.6	V
AVcc	Analog supply vo	ltage				Vcc		V
Vss	Supply voltage					0		V
AVss	Analog supply vo	ltage				0		V
Viн	"H" input voltage	P20-P27, P30	D-P37, P40-P47, P50	-P57, P60-P67, P72-	0.8Vcc		Vcc	V
		P77, P80-P87	, P90-P97, P100-P1	07, P110-P114, P120-				
		P127, P130-P	137, P140-P146, P1	50-P157 ^(Note5) , XIN,				
		RESET, CNV	ss, BYTE					
		P70, P71			0.8Vcc		6.0	V
		P00-P07, P10	-P17		0.8Vcc		Vcc	V
		(during single	e-chip mode)					
		P00-P07, P10	-P17		0.5Vcc		Vcc	V
		(during memo	ory-expansion and m	icroprocessor modes)				
VIL	"L" input voltage	P20-P27, P30	D-P37, P40-P47, P50	-P57, P60-P67, P70-	0		0.2Vcc	V
		P77, P80-P87	, P90-P97, P100-P1	07, P110-P114, P120-				
		P127, P130-P	137, P140-P146, P1	50-P157 ^(Note5) , XIN,				
		RESET, CNV	ss, BYTE					
		P00-P07, P10	-P17		0		0.2Vcc	V
		(during single	e-chip mode)					
		P00-P07, P10	P00-P07, P10-P17				0.16Vcc	V
		(during memo	ory-expansion and m	icroprocessor modes)				
IOH(peak)	"H" peak output	P00-P07, P10	D-P17, P20-P27, P30)-P37, P40-P47, P50-			-10.0	mA
	current	P57, P60-P67	7, P70-P77, P80-P84	, P86, P87, P90-P97,				
		P100-P107, F	P110-P114, P120-P12	27, P130-P137, P140-				
		P146, P150-P	157 ^(Note5)					
IOH(avg)	"H" average	P00-P07, P10	D-P17, P20-P27, P30)-P37, P40-P47, P50-			-5.0	mΑ
	output current	P57, P60-P67	7, P70-P77, P80-P84	, P86, P87, P90-P97,				
		P100-P107, F	P110-P114, P120-P12	27, P130-P137, P140-				
		P146, P150-P	157 ^(Note5)					
IOL(peak)	"L" peak output	P00-P07, P10	D-P17, P20-P27, P30)-P37, P40-P47, P50-			10.0	mA
	current	P57, P60-P67	7, P70-P77, P80-P84	, P86, P87, P90-P97,				
		P100-P107, F	P110-P114, P120-P12	27, P130-P137, P140-				
		P146, P150-P	157 ^(Note5)					
IOL(avg)	"L" average	P00-P07, P10	D-P17, P20-P27, P30)-P37, P40-P47, P50-			5.0	mA
	output current	P57, P60-P67	7, P70-P77, P80-P84	, P86, P87, P90-P97,				
		P100-P107, F	P110-P114, P120-P12	27, P130-P137, P140-				
		P146, P150-P	157 ^(Note5)					
f(XIN)	Main clock input	frequency	VDC-ON	Vcc=4.2 to 5.5V	0		30	MHz
				Vcc=3.0 to 4.2V	0		20	MHz
			VDC-pass through	Vcc=3.0 to 3.6V	0		20	MHz
f(XCIN)	Sub-clock oscillation frequency				32.768		kHz	

Note 1: The mean output current is the mean value within 100ms.

Note 2: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be 80mA max. The total IOH (peak) for ports P0, P1, P2, P86, P87, P9, P10, P11, P14 and P15 must be -80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7,P80 to P84, P12 and P13 must be 80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, P80 to P84, P12 and P13 must be -80mA max. Note 3: Specify a product of -40 to 85°C to use it.

Note 4: The specification of VIH and VIL of P87 is not when using as XCIN but when using programmable input port.

Note 5: Port P11 to P15 exist in 144-pin version

Under Rev.B2 for proof reading Electrical characteristics (Vcc = 5V)

Table 1.32.3. Electrical characteristics (referenced to VCC=5V, VSS=0V at Topr=25°C, f(XIN)=30MHz unless otherwise specified)

VCC = 5V

Symbol		Parameter		Condition	St	andar	d	LInit
Gymbol		raidmeter		Condition	Min.	Тур.	Max.	
Vон	"H" output voltage	P00-P07, P10-P17, P20-P2	7, P30-P37, P40-P47,	IOH=-5mA	3.0			V
		P50-P57, P60-P67, P70-P7	7, P80-P84, P86, P87,	1				
		P90-P97, P100-P107, P11	10-P114, P120-P127,	1				
		P130-P137, P140-P146, P1	50-P157 ^(Note1)					
Voн	"H" output voltage	P00-P07, P10-P17, P20-P2	7, P30-P37, P40-P47,	Іон=-200μА	4.7			V
		P50-P57, P60-P67, P70-P7	7, P80-P84, P86, P87,					
		P90-P97, P100-P107, P11	10-P114, P120-P127,					
		P130-P137, P140-P146, P1	50-P157 ^(Note1)					
Vон	"H" output voltage	Хоит	HIGH POWER	Iон=-1mA	3.0			V
			LOW POWER	Iон=-0.5mA	3.0			V
	"H" output voltage	Хсоит		No load applied		3.0		V
Vol	"L" output voltage	P00-P07, P10-P17, P20-P2	7, P30-P37, P40-P47,	IOH=5mA			2.0	V
		P50-P57, P60-P67, P70-P7	7, P80-P84, P86, P87,					
		P90-P97, P100-P107, P11	10-P114, P120-P127,					
		P130-P137, P140-P146, P1	50-P157 ^(Note1)					
Vol	"L" output voltage	P00-P07, P10-P17, P20-P2	7, P30-P37, P40-P47,	Іон=200μА			0.45	V
		P50-P57, P60-P67, P70-P7	7, P80-P84, P86, P87,	1				
		P90-P97, P100-P107, P11	10-P114, P120-P127,	1				
		P130-P137, P140-P146, P1	50-P157 ^(Note1)					
Vol	"L" output voltage	Xout	HIGH POWER	IOL=1mA			2.0	V
			LOW POWER	IOL=0.5mA			2.0	V
	"L" output voltage	Хсоит	1	No load applied		0		V
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN-TA4IN	, TB0IN-TB5IN, INTO-		0.2		1.0	V
		INT5, ADTRG, CTS0-C	TS4, CLK0-CLK4,					
		ΤΑθουτ-ΤΑ4ουτ, ΝΜΙ, ΚΙ	0-KI3, RxD0-RxD4,					
		SCL0-SCL4, SDA0-SDA4						
VT+-VT-	Hysteresis	RESET			0.2		1.8	V
Іін	"H" input current	P00-P07, P10-P17, P20-P2	7, P30-P37, P40-P47,	VI=5V			5.0	μA
		P50-P57, P60-P67, P72-P7	7, P80-P87, P90-P97,					
		P100-P107, P110-P114,	P120-P127, P130-					
		P137, P140-P146, P150-P1	57 ^(Note1) ,					
		XIN, RESET, CNVss, BYTE	Ξ					
lı∟	"L" input current	P00-P07, P10-P17, P20-P2	7, P30-P37, P40-P47,	VI=0V			-5.0	μA
		P50-P57, P60-P67, P72-P7	7, P80-P87, P90-P97,					
		P100-P107, P110-P114,	P120-P127, P130-					
		P137, P140-P146, P150-P1	57 ^(Note1) ,					
		XIN, RESET, CNVss, BYTE	Ξ					
RPULLUP	Pull-up resistance	P00-P07, P10-P17, P20-P2	7, P30-P37, P40-P47,	VI=0V	30	50	167	kΩ
		P50-P57, P60-P67, P72-P77	7, P80-P84, P86, P87,					
		P90-P97, P100-P107, P11	0-P114, P120-P127,					
		P130-P137, P140-P146, P1	50-P157 ^(Note1)					
Rfxin	Feedback resistance	XIN				1.5		MΩ
Rfxcin	Feedback resistance	XCIN				10		MΩ
VRAM	RAM retention voltage	VDC-ON			2.5			V
lcc	Power supply	Measuring condition:	f(XIN)=30MHz, square	wave, no division		38	54	mA
	current	In sigle-chip mode, the out-	f(XCIN)=32kHz, with WAIT	instruction executed		470		μA
	1	put pins are open and other	· · · · · ·		1	+	+	+

Note 1: Port P11 to P15 exist in 144-pin version.

Table 1.32.4. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 5V, Vss = AVSS =0V at Topr = 25°C, f(XIN) = 30MHz unless otherwise specified)

				S			
Symbol	Parameter	Mea	Measuring condition		Тур.	Max.	Unit
-	Resolution	Vref = Vc	C			10	Bits
INL	Integral nonlinearity error	tegral nonlinearity error V _{REF} = V _{CC} = 5V	AN0 to AN7 ANEX0, ANEX1			±3	LSB
			External op-amp connection mode			±7	LSB
DNL	Differential nonlinearity error					±1	LSB
-	Offset error					±3	LSB
-	Gain error					±3	LSB
RLADDER	Ladder resistance	Vref = Vc	C	10		40	kΩ
t CONV	Conversion time(10bit)			3.3			μs
t CONV	Conversion time(8bit)			2.8			μs
t SAMP	Sampling time			0.3			μs
Vref	Reference voltage			2		Vcc	V
VIA	Analog input voltage			0		Vref	V

Note: Divide the frequency if f(XIN) exceeds 10 MHz, and make ØAD equal to or lower than 10 MHz.

Table 1.32.5. D-A conversion characteristics (referenced to VCC = VREF = 5V, VSS = AVSS = 0Vat Topr = 25°C, f(XIN) = 30MHz unless otherwise specified)

Question		NA 1 1141	5	11.1		
Symbol	Parameter	Measuring condition	Min.	Тур.	Max.	Unit
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(Note)			1.5	mA

Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016".

The A-D converter's ladder resistance is not included.

Also, when the Vref is unconnected at the A-D control register 1, IVREF is sent.

Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = 25°C unless otherwise specified)

Table 1.32.6. External clock input

Symbol	Deremeter	Stan	Lloit	
	Falanetei		Max.	Onit
tc	External clock input cycle time	33		ns
tw(H)	External clock input HIGH pulse width	13		ns
tw(L)	External clock input LOW pulse width	13		ns
tr	External clock rise time		5	ns
tf	External clock fall time		5	ns

Table 1.32.7. Memory expansion and microprocessor modes

Cumhal	Parameter		ndard	ard	
Symbol			Max.	Unit	
tac1(RD-DB)	Data input access time (RD standard, no wait)		(Note)	ns	
tac1(AD-DB)	Data input access time (AD standard, CS standard, no wait)		(Note)	ns	
tac2(RD-DB)	Data input access time (RD standard, with wait)		(Note)	ns	
tac2(AD-DB)	Data input access time (AD standard, CS standard, with wait)		(Note)	ns	
tac3(RD-DB)	Data input access time (RD standard, when accessing multiplex bus area)		(Note)	ns	
tac3(AD-DB)	Data input access time (AD standard, CS standard, when accessing multiplex bus area)		(Note)	ns	
tac4(RAS-DB)	Data input access time (RAS standard, DRAM access)		(Note)	ns	
tac4(CAS-DB)	Data input access time (CAS standard, DRAM access)		(Note)	ns	
tac4(CAD-DB)	Data input access time (CAD standard, DRAM access)		(Note)	ns	
tsu(DB-BCLK)	Data input setup time	26		ns	
tsu(RDY-BCLK)	RDY input setup time	26		ns	
tsu(HOLD-BCLK)	HOLD input setup time	30		ns	
th(RD-DB)	Data input hold time	0		ns	
th(CAS -DB)	Data input hold time	0		ns	
th(BCLK -RDY)	RDY input hold time	0		ns	
th(BCLK-HOLD)	HOLD input hold time	0		ns	
td(BCLK-HLDA)	HLDA output delay time		25	ns	

Note: Calculated according to the BCLK frequency as follows:

Note that inserting wait or using lower operation frequency f(BCLK) is needed when calculated value is negative.

$tac1(RD - DB) = \frac{10}{f(BCLk)}$	$\frac{50^9}{50 \times 2} - 35$	[ns]
$tac1(AD - DB) = \frac{10}{f(BC)}$	0 ⁹ ₋K) – 35	[ns]
$tac2(RD - DB) = \frac{10^9}{f(BCLk)}$	$\frac{X m}{X X 2} - 35$	[ns] (m=3, 5 and 7 when 1 wait, 2 wait and 3 wait, respectively)
$tac2(AD - DB) = \frac{10^9}{f(BC)}$	<u>X n</u> _{LK)} – 35	[ns] (n=2, 3 and 4 when 1 wait, 2 wait and 3 wait, respectively)
$tac3(RD - DB) = \frac{10^9}{f(BCLE)}$	<u>X m</u> () X 2 - 35	[ns] (m=3 and 5 when 2 wait and 3 wait, respectively)
$tac3(AD - DB) = \frac{10^9}{f(BCLE)}$	<u>X n</u> () X 2 - 35	[ns] (n=5 and 7 when 2 wait and 3 wait, respectively)
$tac4(RAS - DB) = \frac{10}{f(BC)}$	0 ⁹ X m _{LK)} X 2 – 35	[ns] (m=3 and 5 when 1 wait and 2 wait, respectively)
$tac4(CAS - DB) = \frac{10}{f(BC)}$	0 ⁹ Х n _{LK)} Х 2 — 35	[ns] (n=1 and 3 when 1 wait and 2 wait, respectively)
$tac4(CAD - DB) = \frac{10}{f(B)}$) ⁹ ХІ зсік) – 35	[ns] (I=1 and 2 when 1 wait and 2 wait, respectively)

Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = 25°C unless otherwise specified)

Symbol	Parameter		Parameter Standard		ndard	Unit
,		IVIIA.	iviax.			
tc(TA)	TAilN input cycle time	100		ns		
tw(TAH)	TAilN input HIGH pulse width	40		ns		
tw(TAL)	TAilN input LOW pulse width	40		ns		

Table 1.32.8. Timer A input (count input in event counter mode)

Table 1.32.9. Timer A input (gating input in timer mode)

		Star		
Symbol	Parameter		Max.	Unit
tc(TA)	TAilN input cycle time	400		ns
tw(TAH)	TAilN input HIGH pulse width	200		ns
tw(TAL)	TAilN input LOW pulse width	200		ns

Table 1.32.10. Timer A input (external trigger input in one-shot timer mode)

Sumbol	Deremeter	Star	Linit	
Symbol	Parameter		Max.	Unit
tc(TA)	TAil input cycle time	200		ns
tw(TAH)	TAilN input HIGH pulse width	100		ns
tw(TAL)	TAilN input LOW pulse width	100		ns

Table 1.32.11. Timer A input (external trigger input in pulse width modulation mode)

Question	Demonster		Standard		
Symbol	Parameter	Min.	Max.	Unit	
tw(TAH)	TAilN input HIGH pulse width	100		ns	
tw(TAL)	TAilN input LOW pulse width	100		ns	

Table 1.32.12. Timer A input (up/down input in event counter mode)

Or week at	Dana a dan	Star	1.1	
Symbol	Parameter		Max.	Unit
tc(UP)	TAiout input cycle time	2000		ns
tw(UPH)	TAIOUT input HIGH pulse width	1000		ns
tw(UPL)	TAio∪⊤ input LOW pulse width	1000		ns
tsu(UP-TIN)	TAio∪⊤ input setup time	400		ns
th(TIN-UP)	TAIOUT input hold time	400		ns

Timing requirements (referenced to VCC = 5V, VSS = 0V at Topr = 25°C unless otherwise specified)

Oursels al	Descention	Stan	1.1	
Symbol	Parameter		Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	100		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBin input cycle time (counted on both edges)	200		ns
tw(TBH)	TBin input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns

Table 1.32.13. Timer B input (count input in event counter mode)

Table 1.28.14. Timer B input (pulse period measurement mode)

Sumbol	Parameter		Standard	
Symbol	bol Parameter	Min.	Max.	Unit
tc(TB)	TBilN input cycle time	400		ns
tw(TBH)	TBin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 1.32.15. Timer B input (pulse width measurement mode)

Sumbol	ymbol Parameter	Standard		Linit
Symbol		Min.	Max.	Unit
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 1.32.16. A-D trigger input

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 1.32.17. Serial I/O

Symbol	Devenator	Stan	1.1	
Symbol	Symbol Parameter		Max.	Unit
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
th(C-D)	RxDi input hold time	90		ns

Table 1.32.18. External interrupt INTi inputs

Symbol	vmbol Parameter	Standard		Unit
Symbol	Min.	Max.		
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Topr = 25°C, CM15 = "1" unless otherwise specified)

		Maggining condition	Standard			
Symbol	Parameter	measuring condition	Min.	Max.	Unit	
td(BCLK-AD)	Address output delay time			18	ns	
th(BCLK-AD)	Address output hold time (BCLK standard)		-3		ns	
th(RD-AD)	Address output hold time (RD standard)		0		ns	
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns	
td(BCLK-CS)	Chip select output delay time			18	ns	
th(BCLK-CS)	Chip select output hold time (BCLK standard)		-3		ns	
th(RD-CS)	Chip select output hold time (RD standard)	Figure 1.32.1	0		ns	
th(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns	
td(BCLK-ALE)	ALE signal output delay time			18	ns	
th(BCLK-ALE)	ALE signal output hold time		- 2		ns	
td(BCLK-RD)	RD signal output delay time	_		18	ns	
th(BCLK-RD)	RD signal output hold time		-5		ns	
td(BCLK-WR)	WR signal output delay time			18	ns	
th(BCLK-WR)	WR signal output hold time		-3		ns	
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns	
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns	
tw(WR)	WR signal width		(Note)		ns	

Table 1.52.19. Memory expansion mode and microbrocessor mode (no wait	Table 1.32.19.	Memory ex	pansion mo	de and micro	processor	mode (no wait
---	----------------	-----------	------------	--------------	-----------	--------	---------

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) X 2} - 10 \text{ [ns]}$$

$$tw(WR) = \frac{10^9}{f(BCLK) X 2} - 15 \text{ [ns]}$$

Switching characteristics (referenced to $V_{CC} = 5V$, $V_{SS} = 0V$ at Topr = 25°C unless otherwise specified)

Table 1.32.20. Memory expansion mode and microprocessor mode (with wait, accessing external memory)

	Descention	Measuring condition	Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		- 3		ns
th(RD-AD)	Address output hold time (RD standard)	_	0		ns
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			18	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		- 3		ns
th(RD-CS)	Chip select output hold time (RD standard)	_	0		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time	Figure 1.32.1		18	ns
th(BCLK-ALE)	ALE signal output hold time		- 2		ns
td(BCLK-RD)	RD signal output delay time	_		18	ns
th(BCLK-RD)	RD signal output hold time		- 5		ns
td(BCLK-WR)	WR signal output delay time	_		18	ns
th(BCLK-WR)	WR signal output hold time		- 3		ns
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns
tw(WR)	WR signal width		(Note)		ns

$$\begin{aligned} t_{d}(DB - WR) &= \frac{10^{9} \times n}{f(BCLK)} - 20 \quad [ns] \quad (n=1, 2 \text{ and } 3 \text{ when } 1 \text{ wait, } 2 \text{ wait and } 3 \text{ wait, respectively}) \\ t_{h}(WR - DB) &= \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns] \\ t_{h}(WR - AD) &= \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns] \\ t_{h}(WR - CS) &= \frac{10^{9}}{f(BCLK) \times 2} - 10 \quad [ns] \\ t_{w}(WR) &= \frac{10^{9} \times n}{f(BCLK) \times 2} - 15 \quad [ns] \quad (n=1, 3 \text{ and } 5 \text{ when } 1 \text{ wait, } 2 \text{ wait and } 3 \text{ wait, respectively}) \end{aligned}$$

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Topr = 25°C unless otherwise specified)

		Maggiuring condition	Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		-3		ns
th(RD-AD)	Address output hold time (RD standard)		(Note)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			18	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		-3		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note)		ns
th(WR-CS)	Chip select output hold time (WR standard)	Figure 1.32.1	(Note)		ns
td(BCLK-RD)	RD signal output delay time	_		18	ns
th(BCLK-RD)	RD signal output hold time		-5		ns
td(BCLK-WR)	WR signal output delay time	-		18	ns
th(BCLK-WR)	WR signal output hold time		-3		ns
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			18	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		- 2		ns
td(AD-ALE)	ALE signal output delay time (address standard)		(Note)		ns
th(ALE-AD)	ALE signal output hold time (address standard)		(Note)		ns
tdz(RD-AD)	Address output flowting start time			8	ns

Table 1.32.21. Memory expansion mode and microprocessor mode (with wait, accessing external memory, multiplex bus area selected)

$$\begin{aligned} th(RD - AD) &= \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns] \\ th(WR - AD) &= \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns] \\ th(RD - CS) &= \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns] \\ th(WR - CS) &= \frac{10^9 \times n}{f(BCLK) \times 2} - 10 \quad [ns] \\ td(DB - WR) &= \frac{10^9 \times m}{f(BCLK) \times 2} - 25 \quad [ns] \quad (m=3 \text{ and } 5 \text{ when } 2 \text{ wait and } 3 \text{ wait, respectively}) \\ th(WR - DB) &= \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns] \\ td(AD - ALE) &= \frac{10^9}{f(BCLK) \times 2} - 20 \quad [ns] \\ th(ALE - AD) &= \frac{10^9}{f(BCLK) \times 2} - 10 \quad [ns] \end{aligned}$$

Switching characteristics (referenced to Vcc = 5V, Vss = 0V at Topr = 25°C unless otherwise specified)

	(with wait, accessing external memory, DRAM area selected)							
		Measuring	Stan					
Symbol	Parameter	condition	Min.	Max.	Unit			
td(BCLK-RAD)	Row address output delay time			18	ns			
th(BCLK-RAD)	Row address output hold time (BCLK standard)	-	-3		ns			
td(BCLK-CAD)	String address output delay time	_		18	ns			
th(BCLK-CAD)	String address output hold time (BCLK standard)	-	-3		ns			
th(RAS-RAD)	Row address output hold time after RAS output	-	(Note)		ns			
td(BCLK-RAS)	RAS output delay time (BCLK standard)	-		18	ns			
th(BCLK-RAS)	RAS output hold time (BCLK standard)	Figure 1.32.1	-3		ns			
tRP	RAS "H" hold time	_	(Note)		ns			
td(BCLK-CAS)	CAS output delay time (BCLK standard)	_		18	ns			
th(BCLK-CAS)	CAS output hold time (BCLK standard)		-3		ns			
td(BCLK-DW)	DW output delay time (BCLK standard)			18	ns			
th(BCLK-DW)	DW output hold time (BCLK standard)	_	-5		ns			
tsu(DB-CAS)	CAS output setup time after DB output		(Note)		ns			
th(BCLK-DB)	DB signal output hold time (BCLK standard)		-7		ns			
tsu(CAS-RAS)	CAS output setup time before RAS output (refresh)	-	(Note)		ns			

Table 1.32.22. Memory expansion mode and microprocessor mode () with **.**... ... -1

$$th(RAS - RAD) = \frac{10^{9}}{f(BCLK) X 2} - 13 \text{ [ns]}$$

$$tRP = \frac{10^{9}}{f(BCLK) X 2} X 3 - 20 \text{ [ns]}$$

$$tsu(DB - CAS) = \frac{10^{9}}{f(BCLK)} - 20 \text{ [ns]}$$

$$tsu(CAS - RAS) = \frac{10^{9}}{f(BCLK) X 2} - 13 \text{ [ns]}$$

Under Rev.B2 for proof reading Timing (Vcc = 5V)

Figure 1.32.1. Port P0 to P15 measurement circuit

Under proof reading

Under

Figure 1.32.2. Vcc=5V timing diagram (1)

Under proof reading

Timing (Vcc = 5V)

Under

Figure 1.32.3. Vcc=5V timing diagram (2)

Under Und^{er} Rev.B2 for proof reading development Rev.B2 for proof reading Timing (Vcc = 5V)

$U^{n^{det}}_{development}$ **Rev.B2 for proof reading** Timing (Vcc = 5V)

Figure 1.32.7. Vcc=5V timing diagram (6)

 $U^{nder}_{A^{event}}$ Rev.B2 for proof reading Timing (Vcc = 5V)

$U^{n^{del}}_{A^{evl}} = 0^{n^{en^{t}}} Rev.B2 for proof reading Timing (Vcc = 5V)$

Figure 1.32.9. Vcc=5V timing diagram (8)

 $\int_{U^{nde^{t}} e^{pe^{ne^{n^{t}}}}} Rev.B2 \text{ for proof reading}$ Electrical characteristics (Vcc = 3V)

Electrical characteristics (Vcc = 3V)

Table 1.32.23. Electrical characteristics (referenced to VCC=3.3V, VSS=0V at Topr=25°C, f(XIN)=20MHz unless otherwise specified)

VCC = 3V

Symbol	ol Parameter		Condition	Standard			Unit	
Symbol		raiameter		Condition	Min.	Тур.	Max.	Unit
Vон	"H" output voltage	P00-P07, P10-P17, P2	0-P27, P30-P37, P40-P47,	IOн=-1mA	2.7			V
		P50-P57, P60-P67, P70	-P77, P80-P84, P86, P87,					
		P90-P97, P100-P107,	P110-P114, P120-P127,					
		P130-P137, P140-P146	6, P150-P157 ^(Note1)					
Vон	"H" output voltage	Хоит	HIGH POWER	Іон=-0.1mA	2.7			V
			LOW POWER	Іон=-50μА	2.7			V
	"H" output voltage	Хсоит		No load applied		3.0		V
Vol	"L" output voltage	P00-P07, P10-P17, P2	0-P27, P30-P37, P40-P47,	IOL=1mA			0.5	
		P50-P57, P60-P67, P70	-P77, P80-P84, P86, P87,					
		P90-P97, P100-P107,	P110-P114, P120-P127,					
		P130-P137, P140-P146	6, P150-P157 ^(Note1)					
Vol	"L" output voltage	Xout	HIGH POWER	IOL=0.1mA			0.5	V
		-	LOW POWER	Ιοι=50μΑ			0.5	V
	"L" output voltage	Хсоит		No load applied		0		V
VT+-VT-	Hysteresis	HOLD, RDY, TA0IN-TA	A4IN, TB0IN-TB5IN, INTO-		0.2		1.0	V
		INT5, ADTRG, CTS	0-CTS4, CLK0-CLK4,					
		TA0out-TA4out, NM	$\overline{II}, \overline{KI0}-\overline{KI3}, RxD0-RxD4,$					
		SCL0-SCL4, SDA0-SE	DA4					
VT+-VT-	Hysteresis	RESET			0.2		1.8	V
Іін	"H" input current	P00-P07, P10-P17, P20	0-P27, P30-P37, P40-P47,	VI=3V			4.0	μΑ
		P50-P57, P60-P67, P72	2-P77, P80-P87, P90-P97,					
		P100-P107, P110-P114	4, P120-P127, P130-P137,					
		P140-P146, P150-P157	₇ (Note1),					
		XIN, RESET, CNVss, E	BYTE					
lı∟	"L" input current	P00-P07, P10-P17, P20	0-P27, P30-P37, P40-P47,	VI=0V			-4.0	μΑ
		P50-P57, P60-P67, P72	2-P77, P80-P87, P90-P97,					
		P100-P107, P110-P114	4, P120-P127, P130-P137,					
		P140-P146, P150-P157	₇ (Note1),					
		XIN, RESET, CNVss, E	BYTE					
RPULLUP	Pull-up resistance	P00-P07, P10-P17, P20	0-P27, P30-P37, P40-P47,	VI=0V	66	120	500	kΩ
		P50-P57, P60-P67, P72	2-P77, P80-P84, P86, P87,					
		P90-P97, P100-P107,	P110Å`P114, P120-P127,					
		P130-P137, P140-P146	6, P150-P157 ^(Note1)					
Rfxin	Feedback resistance	Xin				3.0		MΩ
Rfxcin	Feedback resistance	Xcin				20.0		MΩ
VRAM	RAM retention voltage	VDC-ON			2.5			V
		VDC-pass through			2.0			V
Icc	Power supply	Measuring condition:	f(XIN)=20MHz, square wa	ave, no division		26	38	mΑ
	current	In sigle-chip mode,	f(XCIN)=32kHz, with WAIT, V	DC-pass through		5.0		μA
		open and other pins	f(XCIN)=32kHz, with WAIT, V	/DC-ON		340		μΑ
		are Vss.	when clock is stopped To	opr=25°C		0.4	20	μΑ
		D11 to D15 oviet in 111 nin version				I		

Note 1: Port P11 to P15 exist in 144-pin version.

Table 1.32.24. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 3V, VSS = AVSS = 0V at Topr = 25°C, f(XIN) = 20MHz unless otherwise specified)

Ourseland	Denemeter			S	1.1		
Symbol	Parameter		weasuring condition	Min.	Тур.	Max	Unit
-	Resolution		Vref = Vcc			10	Bits
ISL	Integral nonlinearity error	No S&H function(8-bit)				±2	LSB
DSL	Differential nonlinearity error	No S&H function(8-bit)				±1	LSB
-	Offset error	No S&H function(8-bit)				±2	LSB
-	Gain error	No S&H function(8-bit)				±2	LSB
RLADDER	ER Ladder resistance		Vref = Vcc	10		40	kΩ
t CONV	Conversion time(8bit)			9.8			μs
Vref	Reference voltage			2.7		Vcc	V
VIA	Analog input voltage			0		Vref	V

S&H: Sample and hold

Note: Divide the frequency if f(XIN) exceeds 10 MHz, and make ØAD equal to or lower than 10 MHz.

Table 1.32.25. D-A conversion characteristics (referenced to VCC = VREF = 3V, VSS = AVSS = 0V, at Topr = 25°C, f(XIN) = 20MHz unless otherwise specified)

		NA 1 1171	S			
Symbol	Parameter	Measuring condition	Min.	Тур.	Max	Unit
-	Resolution				8	Bits
-	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(Note)			1.0	mA

Note : This applies when using one D-A converter, with the D-A register for the unused D-A converter

set to "0016". The A-D converter's ladder resistance is not included.

Also, the Vref is unconnected at the A-D control register 1, IVREF is sent.

Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = 25°C unless otherwise specified)

Table 1.32.26	. External	clock	input

Symbol	Doromotor	Stan	Lloit	
	Falametei		Max.	Unit
tc	External clock input cycle time	50		ns
tw(H)	External clock input HIGH pulse width	22		ns
tw(L)	External clock input LOW pulse width	22		ns
tr	External clock rise time		5	ns
tf	External clock fall time		5	ns

Table 1.32.27. Memory expansion and microprocessor modes

Symbol	Parameter		ndard	Linit
Symbol	Falalletei	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (RD standard, no wait)		(Note)	ns
tac1(AD-DB)	Data input access time (AD standard, CS standard, no wait)		(Note)	ns
tac2(RD-DB)	Data input access time (RD standard, with wait)		(Note)	ns
tac2(AD-DB)	Data input access time (AD standard, CS standard, with wait)		(Note)	ns
tac3(RD-DB)	Data input access time (RD standard, when accessing multiplex bus area)		(Note)	ns
tac3(AD-DB)	Data input access time (AD standard, CS standard, when accessing multiplex bus area)		(Note)	ns
tac4(RAS-DB)	Data input access time (RAS standard, DRAM access)		(Note)	ns
tac4(CAS-DB)	Data input access time (CAS standard, DRAM access)		(Note)	ns
tac4(CAD-DB)	Data input access time (CAD standard, DRAM access)		(Note)	ns
tsu(DB-BCLK)	Data input setup time	30		ns
tsu(RDY-BCLK)	RDY input setup time	40		ns
tsu(HOLD-BCLK)	HOLD input setup time	60		ns
th(RD-DB)	Data input hold time	0		ns
th(CAS-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		25	ns

Note: Calculated according to the BCLK frequency as follows:

Note that inserting wait or using lower operation frequency f(BCLK) is needed when calculated value is negative.

$\tan(RD - DB) = \frac{1}{f(BCL)}$	$\frac{0^9}{(\kappa) \times 2} - 35$	[ns]
$tac1(AD - DB) = \frac{1}{f(BC)}$	10 ⁹ ськ) – 35	[ns]
$tac2(RD - DB) = \frac{10}{f(BCL)}$	⁹ X m κ) X 2 – 35	[ns] (m=3, 5 and 7 when 1 wait, 2 wait and 3 wait, respectively)
$tac2(AD - DB) = \frac{10^9}{f(BC)}$	⁹ X n _{CLK)} – 35	[ns] (n=2, 3 and 4 when 1 wait, 2 wait and 3 wait, respectively)
$tac3(RD - DB) = \frac{10^5}{f(BCL)}$	⁹ X m _{K)} X 2 - 35	[ns] (m=3 and 5 when 2 wait and 3 wait, respectively)
$tac3(AD - DB) = \frac{10}{f(BCL)}$	⁹ <u>X n</u> .к) X 2 – 35	[ns] (n=5 and 7 when 2 wait and 3 wait, respectively)
$tac4(RAS - DB) = \frac{1}{f(BC)}$	<u>0⁹X m</u> стк) X 2 – 3	5 [ns] (m=3 and 5 when 1 wait and 2 wait, respectively)
$tac4(CAS - DB) = \frac{1}{f(BC)}$	0 ⁹ Х n _{СLK)} Х 2 — 3	5 [ns] (n=1 and 3 when 1 wait and 2 wait, respectively)
$tac4(CAD - DB) = \frac{1}{f_0}$	0 ⁹ XI (BCLK) - 3	5 [ns] (I=1 and 2 when 1 wait and 2 wait, respectively)

Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = 25°C unless otherwise specified)

Symbol	Parameter		Standard			
			Max.	Unit		
tc(TA)	TAin input cycle time	100		ns		
tw(TAH)	TAin input HIGH pulse width	40		ns		
tw(TAL)	TAin input LOW pulse width	40		ns		

Table 1.32.28. Timer A input (counter input in event counter mode)

Table 1.32.29. Timer A input (gating input in timer mode)

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TA)	TAilN input cycle time	400		ns	
tw(TAH)	TAin input HIGH pulse width	200		ns	
tw(TAL)	TAil input LOW pulse width	200		ns	

Table 1.32.30. Timer A input (external trigger input in one-shot timer mode)

Symbol	Parameter	Star	llait	
		Min.	Max.	Unit
tc(TA)	TAil input cycle time	200		ns
tw(TAH)	TAilN input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 1.32.31. Timer A input (external trigger input in pulse width modulation mode)

Quarter	Parameter		Standard	
Symbol			Max.	Unit
tw(TAH)	TAilN input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 1.32.32. Timer A input (up/down input in event counter mode)

Symbol	Derewster	Star	Linit	
	Parameter		Max.	Unit
tc(UP)	TAiout input cycle time	2000		ns
tw(UPH)	TAiout input HIGH pulse width	1000		ns
tw(UPL)	TAiout input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiout input setup time	400		ns
th(TIN-UP)	TAiout input hold time	400		ns

Timing requirements (referenced to VCC = 3V, VSS = 0V at Topr = 25°C unless otherwise specified)

Symbol	Deservator	Star	Idard	11.21
	Parameter	Min.	Ain. Max.	Unit
tc(TB)	TBin input cycle time (counted on one edge)	100		ns
tw(ТВН)	TBin input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBin input cycle time (counted on both edges)	200		ns
tw(ТВН)	TBin input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns

Table 1.32.33. Timer B input (counter input in event counter mode)

Table 1.32.34. Timer B input (pulse period measurement mode)

Symbol	Parameter	Standard		Linit
	i arameter	Min. Max.	Offic	
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 1.32.35. Timer B input (pulse width measurement mode)

Symbol	Parameter	Stan	dard	Llnit
	i alametei	Min.	Max.	Offic
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBin input HIGH pulse width	200		ns
tw(TBL)	TBin input LOW pulse width	200		ns

Table 1.32.36. A-D trigger input

Symbol	Parameter	Standard U Min. Max.	Unit	
		Min.	Max.	Onic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 1.32.37. Serial I/O

Symbol	Parameter		Standard	
Cymbol	T drameter	Min.	Max.	C.III
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
t h(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
th(C-D)	RxDi input hold time	90		ns

Table 1.32.38. External interrupt INTi inputs

Symbol	Parameter	Standard Min. Max.	Llnit	
	T arameter		Onit	
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Topr = 25°C, CM15="1" unless otherwise specified)

			Standard		1.1
Symbol	Parameter	weasuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		0		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			18	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		0		ns
th(RD-CS)	Chip select output hold time (RD standard)		0		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time			18	ns
th(BCLK-ALE)	ALE signal output hold time	Figure 1.32.1	- 2		ns
td(BCLK-RD)	RD signal output delay time			18	ns
th(BCLK-RD)	RD signal output hold time		- 3		ns
td(BCLK-WR)	WR signal output delay time			18	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns
tw(WR)	Write pulse width		(Note)		ns

$$td(DB - WR) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$th(WR - DB) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

$$th(WR - AD) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

$$th(WR - CS) = \frac{10^9}{f(BCLK) \times 2} - 10 \text{ [ns]}$$

$$tw(WR) = \frac{10^9}{f(BCLK) \times 2} - 15 \text{ [ns]}$$

Switching characteristics (referenced to $V_{CC} = 3V$, $V_{SS} = 0V$ at Topr = 25°C unless otherwise specified)

Table 1.32.40. Memory expansion and microprocessor modes (with wait, accessing external memory)

	5	Magazzian agaztition	Standard		1.1-24
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		0		ns
th(RD-AD)	Address output hold time (RD standard)		0		ns
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			18	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		0		ns
th(RD-CS)	Chip select output hold time (RD standard)	Figure 1.32.1	0		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time			18	ns
th(BCLK-ALE)	ALE signal output hold time	_	- 2		ns
td(BCLK-RD)	RD signal output delay time			18	ns
th(BCLK-RD)	RD signal output hold time	_	- 3		ns
td(BCLK-WR)	WR signal output delay time			18	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(DB-WR)	Data output delay time (WR standard)	_	(Note)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns
tw(WR)	Write pulse width		(Note)		ns

$$td(DB - WR) = \frac{10^{9} X n}{f(BCLK)} - 20 \quad [ns] \quad (n=1, 2 \text{ and } 3 \text{ when } 1 \text{ wait, } 2 \text{ wait and } 3 \text{ wait, respectively})$$

$$th(WR - DB) = \frac{10^{9}}{f(BCLK) X 2} - 10 \quad [ns]$$

$$th(WR - AD) = \frac{10^{9}}{f(BCLK) X 2} - 10 \quad [ns]$$

$$th(WR - CS) = \frac{10^{9}}{f(BCLK) X 2} - 10 \quad [ns]$$

$$tw(WR) = \frac{10^{9} X n}{f(BCLK) X 2} - 15 \quad [ns] \quad (n=1, 3 \text{ and } 5 \text{ when } 1 \text{ wait, } 2 \text{ wait and } 3 \text{ wait, respectively})$$

Switching characteristics (referenced to Vcc = 3V, Vss = 0V at Topr = 25°C unless otherwise specified)

			Stan	dard	
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			18	ns
th(BCLK-AD)	Address output hold time (BCLK standard)		0		ns
th(RD-AD)	Address output hold time (RD standard)		(Note)		ns
th(WR-AD)	Address output hold time (WR standard)		(Note)		ns
td(BCLK-CS)	Chip select output delay time			18	ns
th(BCLK-CS)	Chip select output hold time (BCLK standard)		0		ns
th(RD-CS)	Chip select output hold time (RD standard)		(Note)		ns
th(WR-CS)	Chip select output hold time (WR standard)		(Note)		ns
td(BCLK-RD)	RD signal output delay time			18	ns
th(BCLK-RD)	RD signal output hold time	Figure 1.52.1	- 3		ns
td(BCLK-WR)	WR signal output delay time			18	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(DB-WR)	Data output delay time (WR standard)		(Note)		ns
th(WR-DB)	Data output hold time (WR standard)		(Note)		ns
td(BCLK-ALE)	ALE signal output delay time (BCLK standard)			18	ns
th(BCLK-ALE)	ALE signal output hold time (BCLK standard)		-2		ns
td(AD-ALE)	ALE signal output delay time (address standard)		(Note)		ns
th(ALE-AD)	ALE signal output hold time (address standard)		(Note)		ns
tdz(RD-AD)	Address output flowting start time			8	ns

Table 1.32.41. Memory expansion and microprocessor modes (with wait, accessing external memory, multiplex bus area selected)

$$\begin{aligned} th(RD - AD) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ th(WR - AD) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ th(RD - CS) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ th(RD - CS) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ th(WR - CS) &= \frac{10^9 X m}{f(BCLK) X 2} - 10 \quad [ns] \\ td(DB - WR) &= \frac{10^9 X m}{f(BCLK) X 2} - 25 \quad [ns] \quad (m=3 \text{ and } 5 \text{ when } 2 \text{ wait and } 3 \text{ wait, respectively}) \\ th(WR - DB) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \\ td(AD - ALE) &= \frac{10^9}{f(BCLK) X 2} - 20 \quad [ns] \\ th(ALE - AD) &= \frac{10^9}{f(BCLK) X 2} - 10 \quad [ns] \end{aligned}$$

Switching characteristics (referenced to $V_{CC} = 3V$, $V_{SS} = 0V$ at Topr = 25°C unless otherwise specified)

Table 1.32.42. Memory expansion and microprocessor modes (with wait, accessing external memory, DRAM area selected)

		Moosuring condition	Standard		
Symbol	Parameter	weasuring condition	Min.	Max.	Unit
td(BCLK-RAD)	Row address output delay time			18	ns
th(BCLK-RAD)	Row address output hold time (BCLK standard)		0		ns
td(BCLK-CAD)	String address output delay time			18	ns
th(BCLK-CAD)	String address output hold time (BCLK standard)	Figure 1.32.1	0		ns
th(RAS-RAD)	Row address output hold time after RAS output		(Note)		ns
td(BCLK-RAS)	RAS output delay time (BCLK standard)			18	ns
th(BCLK-RAS)	RAS output hold time (BCLK standard)		0		ns
tRP	RAS "H" hold time		(Note)		ns
td(BCLK-CAS)	CAS output delay time (BCLK standard)			18	ns
th(BCLK-CAS)	CAS output hold time (BCLK standard)		0		ns
td(BCLK-DW)	Data output delay time (BCLK standard)			18	ns
th(BCLK-DW)	Data output hold time (BCLK standard)		- 3		ns
tsu(DB-CAS)	CAS after DB output setup time		(Note)		ns
th(BCLK-DB)	DB signal output hold time (BCLK standard)		- 7		ns
tsu(CAS-RAS)	CAS output setup time before RAS output (refresh)		(Note)		ns

$$th(RAS - RAD) = \frac{10^9}{f(BCLK) \times 2} - 13 \text{ [ns]}$$

$$tRP = \frac{10^9 \times 3}{f(BCLK) \times 2} - 20 \text{ [ns]}$$

$$tsu(DB - CAS) = \frac{10^9}{f(BCLK)} - 20 \text{ [ns]}$$

$$tsu(CAS - RAS) = \frac{10^9}{f(BCLK) \times 2} - 13 \text{ [ns]}$$

Under proof reading

Figure 1.32.10. Vcc=3V timing diagram (1)

Under proof reading

Timing (Vcc = 3V)

Figure 1.32.11. Vcc=3V timing diagram (2)

Figure 1.32.12. Vcc=3V timing diagram (3)

Under proof reading Timing (Vcc = 3V)

Under Proof Rev.B2 for proof reading

Under proof reading Timing (Vcc = 3V)

Under Rev.B2 for proof reading Timing (Vcc = 3V)

Figure 1.32.17. Vcc=3V timing diagram (8)

Under Bev.B2 for proof reading

Description (Flash Memory Version)

Outline Performance

Table 1.33.1 shows the outline performance of the M32C/83 (flash memory version).

Table 1 33 1	Outline Performance	of the I	M32C/83	(flash memory	version)
1 able 1.55.1.		or the r	1320/03	(nash memor	y version)

Item		Performance		
Power supply voltage		f(XIN)=30MHz, without wait, 4.2V to 5.5V f(XIN)=20MHz, without wait, 3.0V to 3.6V		
Program/erase voltage		4.2V to 5.5 V : f(BCLK)=12.5MHz, with one wait : f(BCLK)=6.25MHz, without wait		
Flash memory operation mode		Three modes (parallel I/O, standard serial I/O, CPU rewrite)		
Erase block	User ROM area	See Figure 1.33.3		
Boot ROM area		One division (8 Kbytes) ^(Note 1)		
Program method		In units of pages (in units of 256 bytes)		
Erase method		Collective erase/block erase		
Program/erase control method		Program/erase control by software command		
Protect method		Protected for each block by lock bit		
Number of commands		8 commands		
Program/erase count		100 times		
Data holding		10 years		
ROM code protect		Parallel I/O and standard serial modes are supported.		

Note: The boot ROM area contains a standard serial I/O mode control program which is stored in it when shipped from the factory. This area can be erased and programmed in only parallel I/O mode.

The following shows Mitsubishi plans to develop a line of M32C/83 products (flash memory version).

- (1) ROM capacity
- (2) Package 100P6S-A ... Plastic molded QFP 100P6Q-A ... Plastic molded QFP 144P6Q-A ... Plastic molded QFP

Figure 1.33.1. ROM Expansion

The following lists the M32C/83 products to be supported in the future.

Table 1.33.2. Product List

Table 1.33.2. Pro	As of Nov., 2001				
Type No		ROM capacity RAM capacity Package type		Remarks	
M30835FJGP	**			144P6Q-A	
M30833FJGP	**	512 Kbytes	31 Kbytes	100P6Q-A	
M30833FJFP	**		-	100P6S-A	

** : Under development

Figure 1.33.2. Type No., memory size, and package

Flash Memory

The M32C/83 (flash memory version) contains the flash memory that can be rewritten with a single voltage of 5 V. For this flash memory, three flash memory modes are available in which to read, program, and erase: parallel I/O and standard serial I/O modes in which the flash memory can be manipulated using a programmer and a CPU rewrite mode in which the flash memory can be manipulated by the Central Processing Unit (CPU). Each mode is detailed in the pages to follow.

The flash memory is divided into several blocks as shown in Figure 1.33.3, so that memory can be erased one block at a time. Each block has a lock bit to enable or disable execution of an erase or program operation, allowing for data in each block to be protected.

In addition to the ordinary user ROM area to store a microcomputer operation control program, the flash memory has a boot ROM area that is used to store a program to control rewriting in CPU rewrite and standard serial I/O modes. This boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. However, the user can write a rewrite control program in this area that suits the user's application system. This boot ROM area can be rewritten in only parallel I/O mode.

0F8000016	Block 10 : 64K bytes			
0F9000016	Block 9 : 64K bytes	_		
0FA000016	Block 8 : 64K bytes	_		
0FB000016	Block 7 : 64K bytes	_		
0FC000016	Block 6 : 64K bytes	_		
0FD000016	Block 5 : 64K bytes	_		
0FE000016	Block 4 : 64K bytes	Note 1: The boo	t ROM area can be rewritte	n in only parallel input/
0FF000016	Block 3 : 32K bytes	Note 2: To speci that is an	fy a block, use the maximut n even address.	areas is inhibited.) m address in the block
0FF800016	Block 2 : 8K bytes	-		
0FFA00016	Block 1 : 8K bytes	-		
0FFC00016 0FFFFFF16	Block 0 : 16K bytes	0FFE00016 0FFFFF16	8K bytes	
	User ROM area		Boot ROM area	

Figure 1.33.3. Block diagram of flash memory version

CPU Rewrite Mode

In CPU rewrite mode, the on-chip flash memory can be operated on (read, program, or erase) under control of the Central Processing Unit (CPU).

In CPU rewrite mode, only the user ROM area shown in Figure 1.33.3 can be rewritten; the boot ROM area cannot be rewritten. Make sure the program and block erase commands are issued for only the user ROM area and each block area.

The control program for CPU rewrite mode can be stored in either user ROM or boot ROM area. In the CPU rewrite mode, because the flash memory cannot be read from the CPU, the rewrite control program must be transferred to any area other than the internal flash memory before it can be executed.

Microcomputer Mode and Boot Mode

The control program for CPU rewrite mode must be written into the user ROM or boot ROM area in parallel I/O mode beforehand. (If the control program is written into the boot ROM area, the standard serial I/O mode becomes unusable.)

See Figure 1.33.3 for details about the boot ROM area.

Normal microcomputer mode is entered when the microcomputer is reset with pulling CNVss pin low. In this case, the CPU starts operating using the control program in the user ROM area.

When the microcomputer is reset by pulling the P55 pin low, the CNVss pin high, and the P50 pin high, the CPU starts operating using the control program in the boot ROM area. This mode is called the "boot" mode. The control program in the boot ROM area can also be used to rewrite the user ROM area.

Block Address

Block addresses refer to the maximum even address of each block. These addresses are used in the block erase command, lock bit program command, and read lock status command.

Outline Performance of CPU Rewrite Mode

In the CPU rewrite mode, the CPU erases, programs and reads the internal flash memory as instructed by software commands. Operations must be executed from a memory other than the internal flash memory, such as the internal RAM.

When the CPU rewrite mode select bit (bit 1 at address 037716) is set to "1", transition to CPU rewrite mode occurs and software commands can be accepted.

In the CPU rewrite mode, write to and read from software commands and data into even-numbered address ("0" for byte address A0) in 16-bit units. Always write 8-bit software commands into even-numbered address. Commands are ignored with odd-numbered addresses.

Use software commands to control program and erase operations. Whether a program or erase operation has terminated normally or in error can be verified by reading the status register.

Figure 1.34.1 shows the flash memory control register 0.

Under Rev.B2 for proof reading

Mitsubishi Microcomputers M32C/83 group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

CPU Rewrite Mode (Flash Memory Version)

	Sym FMI	bol Address R0 005716	When reset XX0000012	
	Bit symbol	Bit name	Function	RW
	FMR00	RY/BY signal status bit	0: Busy (being written or erased) 1: Ready	0 -
· · · · · · · · · · · · · · · · · · ·	FMR01	CPU rewrite mode select bit (Note 1)	0: Normal mode (Software commands invalid) 1: CPU rewrite mode (Software commands acceptable)	00
······	FMR02	Lock bit disable bit (Note 2)	0: Block lock by lock bit data is enabled1: Block lock by lock bit data is disabled	00
· · · · · · · · · · · · · · · · · · ·	FMR03	Flash memory reset bit (Note 3)	0: Normal operation 1: Reset	00
	Reserved	bit	Must always be set to "0"	00
	FMR05 User ROM area select bit (Note 4) (Effective in only boot mode)		0: Boot ROM area is accessed 1: User ROM area is accessed	00
L		Noting is assigned. Whe When read, their content	n write, set to "0". ts are indeterminate.	
Note 1: For this success ensure t	bit to be set ion. When it hat no interr program exc	to "1", the user needs to v is not this procedure, it is rupt or DMA transfer will b ept in the internal flash me	write a "0" and then a "1" to it in not enacted in "1". This is necessary e executed during the interval. Use th emory for write to this bit. Also write to	r to ne o this
control p bit when Note 2: For this when the enacted executed Note 3: Effective after set	NMI pin is bit to be set e CPU rewri in "1". This during the only when ting it to 1 (r	"H" level. to "1", the user needs to v te mode select bit = "1". V is necessary to ensure that interval. the CPU rewrite mode sel reset).	write a "0" and then a "1" to it in succe When it is not this procedure, it is not at no interrupt or DMA transfer will be lect bit = 1. Set this bit to 0 subseque	ession ntly
control p bit when Note 2: For this when the enacted executed Note 3: Effective after sett Note 4: Use the	NMI pin is bit to be set e CPU rewri in "1". This d during the only when ting it to 1 (r control prog	"H" level. to "1", the user needs to v te mode select bit = "1". V is necessary to ensure tha interval. the CPU rewrite mode sel eset). gram except in the internal	write a "0" and then a "1" to it in succe When it is not this procedure, it is not at no interrupt or DMA transfer will be lect bit = 1. Set this bit to 0 subseque flash memory for write to this bit.	ession ntly

Flash memory control register (address 0057₁₆)

Bit 0 of the flash memory control register 0 is the RY/BY signal status bit used exclusively to read the operating status of the flash memory. During programming and erase operations, it is "0". Otherwise, it is "1".

Bit 1 of the flash memory control register 0 is the CPU rewrite mode select bit. The CPU rewrite mode is entered by setting this bit to "1", so that software commands become acceptable. In CPU rewrite mode, the CPU becomes unable to access the internal flash memory directly. Therefore, write bit 1 in an area other than the internal flash memory. To set this bit to "1", it is necessary to write "0" and then write "1" in succession when NMI pin is "H" level. The bit can be set to "0" by only writing a "0".

Bit 2 of the flash memory control register 0 is a lock bit disable bit. By setting this bit to "1", it is possible to disable erase and write protect (block lock) effectuated by the lock bit data. The lock bit disable select bit only disables the lock bit function; it does not change the lock data bit value. However, if an erase operation is performed when this bit ="1", the lock bit data that is "0" (locked) is set to "1" (unlocked) after erasure. To set this bit to "1", it is necessary to write "0" and then write "1" in succession. This bit can be manipulated only when the CPU rewrite mode select bit = "1".

Bit 3 of the flash memory control register 0 is the flash memory reset bit used to reset the control circuit of the internal flash memory. This bit is used when exiting CPU rewrite mode and when flash memory access has failed. When the CPU rewrite mode select bit is "1", writing "1" for this bit resets the control circuit. To release the reset, it is necessary to set this bit to "0".

Bit 5 of the flash memory control register 0 is a user ROM area select bit which is effective in only boot mode. If this bit is set to "1" in boot mode, the area to be accessed is switched from the boot ROM area to the user ROM area. When the CPU rewrite mode needs to be used in boot mode, set this bit to "1". Note that if the microcomputer is booted from the user ROM area, it is always the user ROM area that can be accessed and this bit has no effect. When in boot mode, the function of this bit is effective regardless of whether the CPU rewrite mode is on or off. Use the control program except in the internal flash memory to rewrite this bit.

Figure 1.34.2 shows a flowchart for setting/releasing the CPU rewrite mode. Always perform operation as indicated in these flowcharts.

Under Development Rev.B2 for proof reading

CPU Rewrite Mode (Flash Memory Version)

Figure 1.34.2. CPU rewrite mode set/reset flowchart

Precautions on CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

(1) Operation speed

During CPU rewrite mode, set the main clock frequency as shown below using the main clock division register (address 000C16):

6.25 MHz or less when wait bit (bit 2 at address 000516) = 0 (without internal access wait state)

12.5 MHz or less when wait bit (bit 2 at address 000516) = 1 (with internal access wait state)

(2) Instructions inhibited against use

The instructions listed below cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory:

UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

(3) Interrupts inhibited against use

The address match interrupt cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory. If interrupts have their vector in the variable vector table, they can be used by transferring the vector into the RAM area. The $\overline{\text{NMI}}$ and watchdog timer interrupts each can be used to change the CPU rewrite mode select bit forcibly to normal mode (FMR01="0") upon occurrence of the interrupt. Since the rewrite operation is halted when the $\overline{\text{NMI}}$ and watchdog timer interrupts occur, set the CPU rewite mode select bit to "1" and the erase/program operation needs to be performed over again.

(4) Reset

Reset input is always accepted.

(5) Access disable

Write CPU rewrite mode select bit and user ROM area select bit in an area other than the internal flash memory.

(6) How to access

For CPU rewrite mode select bit and lock bit disable bit to be set to "1", the user needs to write a "0" and then a "1" to it in succession. When it is not this procedure, it is not enacted in "1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the interval. Write to the CPU rewrite mode select bit when NMI pin is "H" level.

(7)Writing in the user ROM area

If power is lost while rewriting blocks that contain the flash rewrite program with the CPU rewrite mode, those blocks may not be correctly rewritten and it is possible that the flash memory can no longer be rewritten after that. Therefore, it is recommended to use the standard serial I/O mode or parallel I/O mode to rewrite these blocks.

(8)Using the lock bit

To use the CPU rewrite mode, use a boot program that can set and cancel the lock command.

Software Commands

Table 1.34.1 lists the software commands available with the M16C/62A (flash memory version). After setting the CPU rewrite mode select bit to 1, write a software command to specify an erase or program operation. Note that when entering a software command, the upper byte (D8 to D15) is ignored. The content of each software command is explained below.

	First bus cycle		Second bus cycle			Third bus cycle			
Command	Mode	Address	Data (Do to D7)	Mode	Address	Data (Do to D7)	Mode	Address	Data (Do to D7)
Read array	Write	X (Note 6)	FF16						
Read status register	Write	x	7016	Read	X	SRD (Note 2)			
Clear status register	Write	x	5016						
Page program (Note 3)	Write	х	41 16	Write	WA0(Note 3)	WD0 (Note 3)	Write	WA1	WD1
Block erase	Write	Х	2016	Write	BA (Note 4)	D016			
Erase all unlock block	Write	x	A716	Write	Х	D016			
Lock bit program	Write	x	7716	Write	BA	D016			
Read lock bit status	Write	Х	7116	Read	BA	D6 (Note 5)			

Table 1.34.1. List of software commands	(CPU rewrite mode)
---	--------------------

Note 1: When a software command is input, the high-order byte of data (D8 to D15) is ignored.

Note 2: SRD = Status Register Data

Note 3: WA = Write Address, WD = Write Data

WA and WD must be set sequentially from 0016 to FE16 (byte address; however, an even address). The page size is 256 bytes.

Note 4: BA = Block Address (Enter the maximum address of each block that is an even address.)

Note 5: D₆ corresponds to the block lock status. Block not locked when $D_6 = 1$, block locked when $D_6 = 0$.

Note 6: X denotes a given address in the user ROM area (that is an even address).

Read Array Command (FF16)

The read array mode is entered by writing the command code "FF16" in the first bus cycle. When an even address to be read is input in one of the bus cycles that follow, the content of the specified

address is read out at the data bus (D0–D15), 16 bits at a time.

The read array mode is retained intact until another command is written.

Read Status Register Command (7016)

When the command code "7016" is written in the first bus cycle, the content of the status register is read out at the data bus (D0-D7) by a read in the second bus cycle.

The status register is explained in the next section.

Clear Status Register Command (5016)

This command is used to clear the bits SR3 to 5 of the status register after they have been set. These bits indicate that operation has ended in an error. To use this command, write the command code "5016" in the first bus cycle.

Page Program Command (4116)

Page program allows for high-speed programming in units of 256 bytes. Page program operation starts when the command code "4116" is written in the first bus cycle. In the second bus cycle through the 129th bus cycle, the write data is sequentially written 16 bits at a time. At this time, the addresses A0-A7 need to be incremented by 2 from "0016" to "FE16." When the system finishes loading the data, it starts an auto write operation (data program and verify operation).

Whether the auto write operation is completed can be confirmed by reading the status register or the flash memory control register 0. At the same time the auto write operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to 0 at the same time the auto write operation starts and is returned to 1 upon completion of the auto write operation. In this case, the read status register mode remains active until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its reset bit.

The RY/BY signal status bit of the flash memory control register 0 is 0 during auto write operation and 1 when the auto write operation is completed as is the status register bit 7.

After the auto write operation is completed, the status register can be read out to know the result of the auto write operation. For details, refer to the section where the status register is detailed.

Figure 1.34.3 shows an example of a page program flowchart.

Each block of the flash memory can be write protected by using a lock bit. For details, refer to the section where the data protect function is detailed.

Additional writes to the already programmed pages are prohibited.

Block Erase Command (2016/D016)

By writing the command code "2016" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system initiates an auto erase (erase and erase verify) operation.

Whether the auto erase operation is completed can be confirmed by reading the status register or the flash memory control register 0. At the same time the auto erase operation starts, the read status register mode is automatically entered, so the content of the status register can be read out. The status register bit 7 (SR7) is set to 0 at the same time the auto erase operation starts and is returned to 1 upon completion of the auto erase operation. In this case, the read status register mode remains active until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its reset bit.

The RY/\overline{BY} signal status bit of the flash memory control register 0 is 0 during auto erase operation and 1 when the auto erase operation is completed as is the status register bit 7.

After the auto erase operation is completed, the status register can be read out to know the result of the auto erase operation. For details, refer to the section where the status register is detailed.

Figure 1.34.4 shows an example of a block erase flowchart.

Each block of the flash memory can be protected against erasure by using a lock bit. For details, refer to the section where the data protect function is detailed.

Erase All Unlock Blocks Command (A716/D016)

By writing the command code "A716" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows, the system starts erasing blocks successively.

Whether the erase all unlock blocks command is terminated can be confirmed by reading the status register or the flash memory control register 0, in the same way as for block erase. Also, the status register can be read out to know the result of the auto erase operation.

When the lock bit disable bit of the flash memory control register 0 = 1, all blocks are erased no matter how the lock bit is set. On the other hand, when the lock bit disable bit = 0, the function of the lock bit is effective and only nonlocked blocks (where lock bit data = 1) are erased.

Lock Bit Program Command (7716/D016)

By writing the command code "7716" in the first bus cycle and the confirmation command code "D016" in the second bus cycle that follows to the block address of a flash memory block, the system sets the lock bit for the specified block to 0 (locked).

Figure 1.34.5 shows an example of a lock bit program flowchart. The status of the lock bit (lock bit data) can be read out by a read lock bit status command.

Whether the lock bit program command is terminated can be confirmed by reading the status register or the flash memory control register 0, in the same way as for page program.

For details about the function of the lock bit and how to reset the lock bit, refer to the section where the data protect function is detailed.

Read Lock Bit Status Command (7116)

By writing the command code "7116" in the first bus cycle and then the block address of a flash memory block in the second bus cycle that follows, the system reads out the status of the lock bit of the specified block on to the data (D6).

Figure 1.34.6 shows an example of a read lock bit program flowchart.

Figure 1.34.6. Read lock bit status flowchart

Data Protect Function (Block Lock)

Each block in Figure 1.33.3 has a nonvolatile lock bit to specify that the block be protected (locked) against erase/write. The lock bit program command is used to set the lock bit to 0 (locked). The lock bit of each block can be read out using the read lock bit status command.

Whether block lock is enabled or disabled is determined by the status of the lock bit and how the flash memory control register 0's lock bit disable bit is set.

- (1) When the lock bit disable bit = 0, a specified block can be locked or unlocked by the lock bit status (lock bit data). Blocks whose lock bit data = 0 are locked, so they are disabled against erase/write. On the other hand, the blocks whose lock bit data = 1 are not locked, so they are enabled for erase/write.
- (2) When the lock bit disable bit = 1, all blocks are nonlocked regardless of the lock bit data, so they are enabled for erase/write. In this case, the lock bit data that is 0 (locked) is set to 1 (nonlocked) after erasure, so that the lock bit-actuated lock is removed.

Status Register

The status register indicates the operating status of the flash memory and whether an erase or program operation has terminated normally or in an error. The content of this register can be read out by only writing the read status register command (7016). Table 1.34.2 details the status register.

The status register is cleared by writing the Clear Status Register command (5016).

After a reset, the status register is set to "8016."

Each bit in this register is explained below.

Write state machine (WSM) status (SR7)

After power-on, the write state machine (WSM) status is set to 1.

The write state machine (WSM) status indicates the operating status of the device, as for output on the RY/\overline{BY} pin. This status bit is set to 0 during auto write or auto erase operation and is set to 1 upon completion of these operations.

Erase status (SR5)

The erase status informs the operating status of auto erase operation to the CPU. When an erase error occurs, it is set to 1.

The erase status is reset to 0 when cleared.

Program status (SR4)

The program status informs the operating status of auto write operation to the CPU. When a write error occurs, it is set to 1.

The program status is reset to 0 when cleared.

When an erase command is in error (which occurs if the command entered after the block erase command (2016) is not the confirmation command (D016), both the program status and erase status (SR5) are set to 1.

When the program status or erase status = 1, the following commands entered by command write are not accepted.

Also, in one of the following cases, both SR4 and SR5 are set to 1 (command sequence error):

- (1) When the valid command is not entered correctly
- (2) When the data entered in the second bus cycle of lock bit program (7716/D016), block erase (2016/D016), or erase all unlock blocks (A716/D016) is not the D016 or FF16. However, if FF16 is entered, read array is assumed and the command that has been set up in the first bus cycle is canceled.

Block status after program (SR3)

If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in data not being read correctly), "1" is set for the program status after-program at the end of the page write operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is output; and when excessive data is written, "8816" is output.

Each bit of		Definition		
SRD	SRD Status name		"0"	
SR7 (bit7)	Write state machine (WSM) status	Ready	Busy	
SR6 (bit6)	Reserved	-	-	
SR5 (bit5)	Erase status	Terminated in error	Terminated normally	
SR4 (bit4)	Program status	Terminated in error	Terminated normally	
SR3 (bit3)	Block status after program	Terminated in error	Terminated normally	
SR2 (bit2)	Reserved	-	-	
SR1 (bit1)	Reserved	-	-	
SR0 (bit0)	Reserved	-	-	

Table 1.34.2. Definition	of each bit in	status register
--------------------------	----------------	-----------------

Full Status Check

By performing full status check, it is possible to know the execution results of erase and program operations. Figure 1.34.7 shows a full status check flowchart and the action to be taken when each error occurs.

Figure 1.34.7. Full status check flowchart and remedial procedure for errors

Functions To Inhibit Rewriting Flash Memory Version

To prevent the contents of the flash memory version from being read out or rewritten easily, the device incorporates a ROM code protect function for use in parallel I/O mode and an ID code check function for use in standard serial I/O mode.

ROM code protect function

The ROM code protect function reading out or modifying the contents of the flash memory version by using the ROM code protect control address (0FFFFF16) during parallel I/O mode. Figure 1.34.8 shows the ROM code protect control address (0FFFFF16). (This address exists in the user ROM area.) If one of the pair of ROM code protect bits is set to 0, ROM code protect is turned on, so that the contents of the flash memory version are protected against readout and modification. ROM code protect is implemented in two levels. If level 2 is selected, the flash memory is protected even against readout by a shipment inspection LSI tester, etc. When an attempt is made to select both level 1 and level 2, level 2 is selected by default.

If both of the two ROM code protect reset bits are set to "00," ROM code protect is turned off, so that the contents of the flash memory version can be read out or modified. Once ROM code protect is turned on, the contents of the ROM code protect reset bits cannot be modified in parallel I/O mode. Use the serial I/O or some other mode to rewrite the contents of the ROM code protect reset bits.

Figure 1.34.8. ROM code protect control address

ID Code Check Function

Use this function in standard serial I/O mode. When the contents of the flash memory are not blank, the ID code sent from the peripheral unit is compared with the ID code written in the flash memory to see if they match. If the ID codes do not match, the commands sent from the peripheral unit are not accepted. The ID code consists of 8-bit data, the areas of which, beginning with the first byte, are 0FFFDF16, 0FFFFE316, 0FFFFE316, 0FFFFF316, 0FFFFF716, and 0FFFFFB16. Write a program which has had the ID code preset at these addresses to the flash memory.

Figure 1.34.9. ID code store addresses

Parallel I/O Mode

In this mode, the M32C/83 (flash memory version) operates in a manner similar to the flash memory M5M29FB/T800 from Mitsubishi. Since there are some differences with regard to the functions not available with the microcomputer and matters related to memory capacity, the M32C/83 cannot be programed by a programer for the flash memory.

Use an exclusive programer supporting M32C/83 (flash memory version).

Refer to the instruction manual of each programer maker for the details of use.

User ROM and Boot ROM Areas

In parallel I/O mode, the user ROM and boot ROM areas shown in Figure 1.33.3 can be rewritten. Both areas of flash memory can be operated on in the same way.

Program and block erase operations can be performed in the user ROM area. The user ROM area and its blocks are shown in Figure 1.33.3.

The boot ROM area is 8 Kbytes in size. In parallel I/O mode, it is located at addresses 0FFE00016 through 0FFFFF16. Make sure program and block erase operations are always performed within this address range. (Access to any location outside this address range is prohibited.)

In the boot ROM area, an erase block operation is applied to only one 8 Kbyte block. The boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the Mitsubishi factory. Therefore, using the device in standard serial input/output mode, you do not need to write to the boot ROM area.

Standard serial I/O mode

The standard serial I/O mode inputs and outputs the software commands, addresses and data needed to operate (read, program, erase, etc.) the internal flash memory. This I/O is serial. There are actually two standard serial I/O modes: mode 1, which is clock synchronized, and mode 2, which is asynchronized. Both modes require a purpose-specific peripheral unit.

The standard serial I/O mode is different from the parallel I/O mode in that the CPU controls flash memory rewrite (uses the CPU's rewrite mode), rewrite data input and so forth. It is started when the reset is released, which is done when the P50 (\overline{CE}) pin is "H" level, the P55 (\overline{EPM}) pin "L" level and the CNVss pin "H" level. (In the ordinary command mode, set CNVss pin to "L" level.)

This control program is written in the boot ROM area when the product is shipped from Mitsubishi. Accordingly, make note of the fact that the standard serial I/O mode cannot be used if the boot ROM area is rewritten in the parallel I/O mode. Figures 1.35.1 to 1.35.3 show the pin connections for the standard serial I/O mode. Serial data I/O uses UART1 and transfers the data serially in 8-bit units. Standard serial I/O switches between mode 1 (clock synchronized) and mode 2 (clock asynchronized) according to the level of CLK1 pin when the reset is released.

To use standard serial I/O mode 1 (clock synchronized), set the CLK1 pin to "H" level and the TxD1 pin to "L" level, and release the reset. The CLK1 pin is connected to Vcc via pull-up resistance and the TxD1 is connected to Vss via pull-down resistance. The operation uses the four UART1 pins CLK1, RxD1, TxD1 and RTS1 (BUSY). The CLK1 pin is the transfer clock input pin through which an external transfer clock is input. The TxD1 pin is for CMOS output. The RTS1 (BUSY) pin outputs an "L" level when ready for reception and an "H" level when reception starts.

To use standard serial I/O mode 2 (clock asynchronized), set the CLK1 pin to "L" level and release the reset. The operation uses the two UART1 pins RxD1 and TxD1.

In the standard serial I/O mode, only the user ROM area indicated in Figure 1.35.20 can be rewritten. The boot ROM cannot.

In the standard serial I/O mode, a 7-byte ID code is used. When there is data in the flash memory, commands sent from the peripheral unit (programmer) are not accepted unless the ID code matches.

Pin functions (Flash memory standard serial I/O mode)

Pin	Name	I/O	Description
Vcc,Vss	Power input		Apply 4.2V to 5.5V to Vcc pin and 0 V to Vss pin.
CNVss	CNVss	Ι	Connect to Vcc pin.
RESET	Reset input	Ι	Reset input pin. While reset is "L" level, a 20 cycle or longer clock must be input to XIN pin.
XIN	Clock input	I	Connect a ceramic resonator or crystal oscillator between XIN
Хоит	Clock output	0	to XIN pin and open XOUT pin.
BYTE	BYTE	I	Connect this pin to Vcc or Vss.
AVcc, AVss	Analog power supply input	Ι	Connect AVSS to Vss and AVcc to Vcc, respectively.
Vref	Reference voltage input	Ι	Enter the reference voltage for A-D converter from this pin.
P00 to P07	Input port P0	Ι	Input "H" or "L" level signal or open.
P10 to P17	Input port P1	Ι	Input "H" or "L" level signal or open.
P20 to P27	Input port P2	Ι	Input "H" or "L" level signal or open.
P30 to P37	Input port P3	Ι	Input "H" or "L" level signal or open.
P40 to P47	Input port P4	Ι	Input "H" or "L" level signal or open.
P51 to P54, P56, P57	Input port P5	I	Input "H" or "L" level signal or open.
P50	CE input	Ι	Input "H" level signal.
P55	EPM input	I	Input "L" level signal.
P60 to P63	Input port P6	Ι	Input "H" or "L" level signal or open.
P64	BUSY output	ο	Standard serial mode 1: BUSY signal output pin Standard serial mode 2: Monitors the program operation check
P65	SCLK input	I	Standard serial mode 1: Serial clock input pin Standard serial mode 2: Input "L" level signal.
P66	RxD input	Ι	Serial data input pin
P67	TxD output	0	Serial data output pin. When using standar <u>d serial</u> mode 1, an "L" level must be input to TxD pin while the RESET pin is "L". For this reason, this pin should be pulled down. After being reset, this pin functions as a data output pin. Thus adjust pull-down resistance value with the system not to affect data transfer.
P70 to P77	Input port P7	I	Input "H" or "L" level signal or open.
P80 to P84, P86, P87	Input port P8	I	Input "H" or "L" level signal or open.
P85	NMI input	I	Connect this pin to Vcc.
P90 to P97	Input port P9	Ι	Input "H" or "L" level signal or open.
P100 to P107	Input port P10	Ι	Input "H" or "L" level signal or open.
P110 to P114	Input port P11	Ι	Input "H" or "L" level signal or open. (Note)
P120 to P127	Input port P12	I	Input "H" or "L" level signal or open. (Note)
P130 to P137	Input port P13	I	Input "H" or "L" level signal or open. (Note)
P140 to P146	Input port P14	Ι	Input "H" or "L" level signal or open. (Note)
P150 to P157	Input port P15	Ι	Input "H" or "L" level signal or open. (Note)

Note: Port P11 to P15 exist in 144-pin version.

Figure 1.35.2. Pin connections for standard serial I/O mode (2)

Figure 1.35.3. Pin connections for standard serial I/O mode (3)

Overview of standard serial I/O mode 1 (clock synchronized)

In standard serial I/O mode 1, software commands, addresses and data are input and output between the MCU and peripheral units (serial programer, etc.) using 4-wire clock-synchronized serial I/O (UART1). Standard serial I/O mode 1 is engaged by releasing the reset with the P65 (CLK1) pin "H" level.

In reception, software commands, addresses and program data are synchronized with the rise of the transfer clock that is input to the CLK1 pin, and are then input to the MCU via the RxD1 pin. In transmission, the read data and status are synchronized with the fall of the transfer clock, and output from the TxD1 pin. The TxD1 pin is for CMOS output. Transfer is in 8-bit units with LSB first.

When busy, such as during transmission, reception, erasing or program execution, the RTS1 (BUSY) pin is "H" level. Accordingly, always start the next transfer after the RST1 (BUSY) pin is "L" level.

Also, data and status registers in memory can be read after inputting software commands. Status, such as the operating state of the flash memory or whether a program or erase operation ended successfully or not, can be checked by reading the status register. Here following are explained software commands, status registers, etc.

Software Commands

Table 1.35.1 lists software commands. In the standard serial I/O mode 1, erase operations, programs and reading are controlled by transferring software commands via the RxD1 pin. Software commands are explained here below.

	Control command	1st byte transfer	2nd byte	3rd byte	4th byte	5th byte	6th byte		When ID is not verified
1	Page read	FF ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	Not acceptable
2	Page program	41 ₁₆	Address (middle)	Address (high)	Data input	Data input	Data input	Data input to 259th byte	Not acceptable
3	Block erase	2016	Address (middle)	Address (high)	D016				Not acceptable
4	Erase all unlocked blocks	A7 ₁₆	D0 ₁₆						Not acceptable
5	Read status register	7016	SRD output	SRD1 output					Acceptable
6	Clear status register	5016							Not acceptable
7	Read lock bit status	71 ₁₆	Address (middle)	Address (high)	Lock bit data output				Not acceptable
8	Lock bit program	77 ₁₆	Address (middle)	Address (high)	D016				Not acceptable
9	Lock bit enable	7A ₁₆							Not acceptable
10	Lock bit disable	7516							Not acceptable
11	Code processing function	F516	Address (low)	Address (middle)	Address (high)	ID size	ID1	To ID7	Acceptable
12	Download function	FA ₁₆	Size (low)	Size (high)	Check- sum	Data input	To required number of times		Not acceptable
13	Version data output function	FB ₁₆	Version data output	Version data output	Version data output	Version data output	Version data output	Version data output to 9th byte	Acceptable
14	Boot ROM area output function	FC ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	Not acceptable
15	Read check data	FD ₁₆	Check data (low)	Check data (high)					Not acceptable

Table 1.35.1. \$	Software commands	(Standard	serial I/O	mode 1)
------------------	-------------------	-----------	------------	--------	---

Note 1: Shading indicates transfer from flash memory microcomputer to peripheral unit. All other data is transferred from the peripheral unit to the flash memory microcomputer.

Note 2: SRD refers to status register data. SRD1 refers to status register data1 .

Note 3: All commands can be accepted when the flash memory is totally blank.

Page Read Command

This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page read command as explained here following.

- (1) Transfer the "FF16" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first in sync with the rise of the clock.

Figure 1.35.4. Timing for page read

Page Program Command

This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page program command as explained here following.

- (1) Transfer the "4116" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, as write data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 is input sequentially from the smallest address first, that page is automatically written.

When reception setup for the next 256 bytes ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. The result of the page program can be known by reading the status register. For more information, see the section on the status register.

Each block can be write-protected with the lock bit. For more information, see the section on the data protection function. Additional writing is not allowed with already programmed pages.

development **Rev.B2 for proof reading**

Appendix Standard Serial I/O Mode 1 (Flash Memory Version) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Figure 1.35.5. Timing for the page program

Block Erase Command

Under

This command erases the data in the specified block. Execute the block erase command as explained here following.

- (1) Transfer the "2016" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) Transfer the verify command code "D016" with the 4th byte. With the verify command code, the erase operation will start for the specified block in the flash memory. Write the highest address of the specified block for addresses A16 to A23.

When block erasing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. After block erase ends, the result of the block erase operation can be known by reading the status register. For more information, see the section on the status register.

Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.

Figure 1.35.6. Timing for block erasing

Erase All Unlocked Blocks Command

This command erases the content of all blocks. Execute the erase all unlocked blocks command as explained here following.

(1) Transfer the "A716" command code with the 1st byte.

(2) Transfer the verify command code "D016" with the 2nd byte. With the verify command code, the erase operation will start and continue for all blocks in the flash memory.

When block erasing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. The result of the erase operation can be known by reading the status register. Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.

Figure 1.35.7. Timing for erasing all unlocked blocks

Read Status Register Command

This command reads status information. When the "7016" command code is sent with the 1st byte, the contents of the status register (SRD) specified with the 2nd byte and the contents of status register 1 (SRD1) specified with the 3rd byte are read.

CLK1	
RxD1 (M32C reception data)	7016
TxD1 (M32C transmit data)	SRD SRD1 output output
RTS1(BUSY)	

Figure 1.35.8. Timing for reading the status register

Clear Status Register Command

This command clears the bits (SR3–SR5) which are set when the status register operation ends in error. When the "5016" command code is sent with the 1st byte, the aforementioned bits are cleared. When the clear status register operation ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level.

CLK1	
RxD1 (M32C reception data)	5016
TxD1 (M32C transmit data)	
RTS1(BUSY)	

Figure 1.35.9. Timing for clearing the status register

Read Lock Bit Status Command

This command reads the lock bit status of the specified block. Execute the read lock bit status command as explained here following.

- (1) Transfer the "7116" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) The lock bit data of the specified block is output with the 4th byte. The 6th bit (D6) of output data is the lock bit data. Write the highest address of the specified block for addresses A8 to A23.

Figure 1.35.10. Timing for reading lock bit status

Lock Bit Program Command

This command writes "0" (lock) for the lock bit of the specified block. Execute the lock bit program command as explained here following.

- (1) Transfer the "7716" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) Transfer the verify command code "D016" with the 4th byte. With the verify command code, "0" is written for the lock bit of the specified block. Write the highest address of the specified block for addresses A8 to A23.

When writing ends, the RTS1 (BUSY) signal changes from the "H" to the "L" level. Lock bit status can be read with the read lock bit status command. For information on the lock bit function, reset procedure and so on, see the section on the data protection function.

CLK1	
RxD1 (M32C reception data)	$\left(\begin{array}{c} 7716 \\ A15 \\ A15 \\ A23 \\ A23 \\ D016 \\ A23 \\ C016 $
TxD1 (M32C transmit data)	
RTS1(BUSY)	

Figure 1.35.11. Timing for the lock bit program

Lock Bit Enable Command

This command enables the lock bit in blocks whose bit was disabled with the lock bit disable command. The command code "7A16" is sent with the 1st byte of the serial transmission. This command only enables the lock bit function; it does not set the lock bit itself.

CLK1	
RxD1 (M32C reception data)	7A16
TxD1 (M32C transmit data)	
RTS1(BUSY)	

Figure 1.35.12. Timing for enabling the lock bit

Lock Bit Disable Command

This command disables the lock bit. The command code "7516" is sent with the 1st byte of the serial transmission. This command only disables the lock bit function; it does not set the lock bit itself. However, if an erase command is executed after executing the lock bit disable command, "0" (locked) lock bit data is set to "1" (unlocked) after the erase operation ends. In any case, after the reset is cancelled, the lock bit is enabled.

CLK1	
RxD1 (M32C reception data)	7516
TxD1 (M32C transmit data)	
RTS1(BUSY)	

Figure 1.35.13. Timing for disabling the lock bit

ID Check

This command checks the ID code. Execute the boot ID check command as explained here following.

- (1) Transfer the "F516" command code with the 1st byte.
- (2) Transfer addresses A0 to A7, A8 to A15 and A16 to A23 of the 1st byte of the ID code with the 2nd, 3rd and 4th bytes respectively.
- (3) Transfer the number of data sets of the ID code with the 5th byte.
- (4) The ID code is sent with the 6th byte onward, starting with the 1st byte of the code.

CLK1	
RxD1 (M32C reception data)	F516 DF16 FF16 OF16 ID size ID1 ID7
TxD1 (M32C transmit data)	
RTS1(BUSY) -	

Figure 1.35.14. Timing for the ID check

Download Command

This command downloads a program to the RAM for execution. Execute the download command as explained here following.

- (1) Transfer the "FA16" command code with the 1st byte.
- (2) Transfer the program size with the 2nd and 3rd bytes.
- (3) Transfer the check sum with the 4th byte. The check sum is added to all data sent with the 5th byte onward.
- (4) The program to execute is sent with the 5th byte onward.

When all data has been transmitted, if the check sum matches, the downloaded program is executed. The size of the program will vary according to the internal RAM.

Figure 1.35.15. Timing for download

Version Information Output Command

This command outputs the version information of the control program stored in the boot area. Execute the version information output command as explained here following.

- (1) Transfer the "FB16" command code with the 1st byte.
- (2) The version information will be output from the 2nd byte onward. This data is composed of 8 ASCII code characters.

Figure 1.35.16. Timing for version information output

Boot ROM Area Output Command

This command outputs the control program stored in the boot ROM area in one page blocks (256 bytes). Execute the boot ROM area output command as explained here following.

- (1) Transfer the "FC16" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first, in sync with the rise of the clock.

Figure 1.35.17. Timing for boot ROM area output

Read Check Data

This command reads the check data that confirms that the write data, which was sent with the page program command, was successfully received.

- (1) Transfer the "FD16" command code with the 1st byte.
- (2) The check data (low) is received with the 2nd byte and the check data (high) with the 3rd.

To use this read check data command, first execute the command and then initialize the check data. Next, execute the page program command the required number of times. After that, when the read check command is executed again, the check data for all of the read data that was sent with the page program command during this time is read. The check data is the result of CRC operation of write data.

Under Rev.B2 for proof reading Appendix Standard Serial I/O Mode 1 (Flash Memory Version) SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Figure 1.35.18. Timing for the read check data

ID Code

Under

When the flash memory is not blank, the ID code sent from the peripheral units and the ID code written in the flash memory are compared to see if they match. If the codes do not match, the command sent from the peripheral units is not accepted. An ID code contains 8 bits of data. Area is, from the 1st byte, addresses 0FFFFDF16, 0FFFFE316, 0FFFFEB16, 0FFFFEF16, 0FFFFF316, 0FFFFF716 and 0FFFFB16. Write a program into the flash memory, which already has the ID code set for these addresses.

Figure 1.35.19. ID code storage addresses

Data Protection (Block Lock)

Each of the blocks in Figure 1.35.20 have a nonvolatile lock bit that specifies protection (block lock) against erasing/writing. A block is locked (writing "0" for the lock bit) with the lock bit program command. Also, the lock bit of any block can be read with the read lock bit status command.

Block lock disable/enable is determined by the status of the lock bit itself and execution status of the lock bit disable and lock enable bit commands.

- (1) After the reset has been cancelled and the lock bit enable command executed, the specified block can be locked/unlocked using the lock bit (lock bit data). Blocks with a "0" lock bit data are locked and cannot be erased or written in. On the other hand, blocks with a "1" lock bit data are unlocked and can be erased or written in.
- (2) After the lock bit enable command has been executed, all blocks are unlocked regardless of lock bit data status and can be erased or written in. In this case, lock bit data that was "0" before the block was erased is set to "1" (unlocked) after erasing, therefore the block is actually unlocked with the lock bit.

0F8000016	Block 10 : 64K bytes	
0F9000016	Block 9 : 64K bytes	
0FA000016	Block 8 : 64K bytes	
0FB000016	Block 7 : 64K bytes	
0FC000016	Block 6 : 64K bytes	
0FD000016	Block 5 : 64K bytes	
0FE000016	Block 4 : 64K bytes	
0FF000016	Block 3 : 32K bytes	
0FF800016	Block 2 : 8K bytes	
0FFA00016	Block 1 : 8K bytes	
0FFC00016 0FFFFF16	Block 0 : 16K bytes	
	User ROM area	

Figure 1.35.20. Blocks in the user area

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase operation or a program ended successfully or in error. It can be read by writing the read status register command (7016). Also, the status register is cleared by writing the clear status register command (5016). Table 1.35.2 gives the definition of each status register bit. After clearing the reset, the status register outputs "8016".

		Definition		
SRD bits	Status name	"1"	"0"	
SR0 (bit0)	Reserved	-	-	
SR1 (bit1)	Reserved	-	-	
SR2 (bit2)	Reserved	-	-	
SR3 (bit3)	Block status after program	Terminated in error	Terminated normally	
SR4 (bit4)	Program status	Terminated in error	Terminated normally	
SR5 (bit5)	Erase status	Terminated in error	Terminated normally	
SR6 (bit6)	Reserved	-	Busy	
SR7 (bit7)	Write state machine (WSM) status	Ready	-	

Table 1.35.2. Status register (SRD)

Program Status After Program (SR3)

If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in data not being read correctly), "1" is set for the program status after-program at the end of the page write operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is output; and when excessive data is written, "8816" is output.

If "1" is written for any of the SR5, SR4 or SR3 bits, the page program, block erase, erase all unlocked blocks and lock bit program commands are not accepted. Before executing these commands, execute the clear status register command (5016) and clear the status register.

Program Status (SR4)

The program status reports the operating status of the auto write operation. If a write error occurs, it is set to "1". When the program status is cleared, it is set to "0".

Erase Status (SR5)

The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set to "1". When the erase status is cleared, it is set to "0".

Write State Machine (WSM) Status (SR7)

The write state machine (WSM) status indicates the operating status of the flash memory. When power is turned on, "1" (ready) is set for it. The bit is set to "0" (busy) during an auto write or auto erase operation, but it is set back to "1" when the operation ends.

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from check sum comparisons. It can be read after the SRD by writing the read status register command (7016). Also, status register 1 is cleared by writing the clear status register command (5016).

Table 1.35.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and the flag status is maintained even after the reset.

SPD1 hite		Definition	
SRUTDIIS	Status name	"1"	"0"
SR8 (bit0)	Reserved	-	-
SR9 (bit1)	Data receive time out	Time out	Normal operation
SR10 (bit2)	ID check completed bits	00 Not v	erified
SR11 (bit3)		01 Verification mismatch	
		10 Rese	rved
		11 Verifie	ed
SR12 (bit4)	Checksum match bit	Match	Mismatch
SR13 (bit5)	Reserved	-	-
SR14 (bit6)	Reserved	-	-
SR15 (bit7)	Boot update completed bit	Update completed	Not update

Table 1.35.3. Status register 1 (SRD1)

Data Reception Time Out (SR9)

This flag indicates when a time out error is generated during data reception. If this flag is attached during data reception, the received data is discarded and the microcomputer returns to the command wait state.

ID Check Completed Bits (SR11 and SR10)

These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Check Sum Consistency Bit (SR12)

This flag indicates whether the check sum matches or not when a program, is downloaded for execution using the download function.

Boot Update Completed Bit (SR15)

This flag indicates whether the control program was downloaded to the RAM or not, using the download function.

Full Status Check

Results from executed erase and program operations can be known by running a full status check. Figure 1.35.21 shows a flowchart of the full status check and explains how to remedy errors which occur.

Figure 1.35.21. Full status check flowchart and remedial procedure for errors

Example Circuit Application for The Standard Serial I/O Mode 1

The below figure shows a circuit application for the standard serial I/O mode 1. Control pins will vary according to peripheral unit (programmer), therefore see the peripheral unit (programmer) manual for more information.

Figure 1.35.22. Example circuit application for the standard serial I/O mode 1

Overview of standard serial I/O mode 2 (clock asynchronized)

In standard serial I/O mode 2, software commands, addresses and data are input and output between the MCU and peripheral units (serial programer, etc.) using 2-wire clock-asynchronized serial I/O (UART1). Standard serial I/O mode 2 is engaged by releasing the reset with the P65 (CLK1) pin "L" level.

The TxD1 pin is for CMOS output. Data transfer is in 8-bit units with LSB first, 1 stop bit and parity OFF. After the reset is released, connections can be established at 9,600 bps when initial communications (Figure 1.35.23) are made with a peripheral unit. However, this requires a main clock with a minimum 2 MHz input oscillation frequency. Baud rate can be changed from 9,600 bps to 19,200, 38,400, 57,600 or 115,200 bps by executing software commands. However, communication errors may occur because of the oscillation frequency of the main clock. If errors occur, change the main clock's oscillation frequency and the baud rate.

After executing commands from a peripheral unit that requires time to erase and write data, as with erase and program commands, allow a sufficient time interval or execute the read status command and check how processing ended, before executing the next command.

Data and status registers in memory can be read after transmitting software commands. Status, such as the operating state of the flash memory or whether a program or erase operation ended successfully or not, can be checked by reading the status register. Here following are explained initial communications with peripheral units, how frequency is identified and software commands.

Initial communications with peripheral units

After the reset is released, the bit rate generator is adjusted to 9,600 bps to match the oscillation frequency of the main clock, by sending the code as prescribed by the protocol for initial communications with peripheral units (Figure 1.35.23).

- (1) Transmit "0016" from a peripheral unit 16 times. (The MCU with internal flash memory sets the bit rate generator so that "0016" can be successfully received.)
- (2) The MCU with internal flash memory outputs the "B016" check code and initial communications end successfully *¹. Initial communications must be transmitted at a speed of 9,600 bps and a transfer interval of a minimum 15 ms. Also, the baud rate at the end of initial communications is 9,600 bps.
- *1. If the peripheral unit cannot receive "B016" successfully, change the oscillation frequency of the main clock.

How frequency is identified

When "0016" data is received 16 times from a peripheral unit at a baud rate of 9,600 bps, the value of the bit rate generator is set to match the operating frequency (2 - 30 MHz). The highest speed is taken from the first 8 transmissions and the lowest from the last 8. These values are then used to calculate the bit rate generator value for a baud rate of 9,600 bps.

Baud rate cannot be attained with some operating frequencies. Table 1.35.4 gives the operation frequency and the baud rate that can be attained for.

Operation frequency (MHz)	Baud rate 9,600bps	Baud rate 19,200bps	Baud rate 38,400bps	Baud rate 57,600bps	Baud rate 115,200bps
30MHz		\checkmark			_
20MHz		\checkmark			\checkmark
16MHz					_
12MHz		\checkmark		\checkmark	_
11MHz		\checkmark		\checkmark	_
10MHz		\checkmark		\checkmark	_
8MHz		\checkmark		\checkmark	_
7.3728MHz		\checkmark		\checkmark	_
6MHz		\checkmark		_	_
5MHz		\checkmark		_	_
4.5MHz		\checkmark			_
4.194304MHz		\checkmark		_	_
4MHz		\checkmark	_	_	_
3.58MHz					-
3MHz				_	_
2MHz		-	_	_	-

Table 1 35 4	Operation free	nuency and th	he baud rate
	operation net	fucincy and in	

 $\sqrt{}$: Communications possible

- : Communications not possible

Software Commands

Table 1.35.5 lists software commands. In the standard serial I/O mode 2, erase operations, programs and reading are controlled by transferring software commands via the RxD1 pin. Standard serial I/O mode 2 adds five transmission speed commands - 9,600, 19,200, 38,400, 57,600 and 115,200 bps - to the software commands of standard serial I/O mode 1. Software commands are explained here below.

When ID is

T	Table 1.35.5. Software commands (Standard serial I/O mode 2)							
	Control command	1st byte transfer	2nd byte	3rd byte	4th byte	5th byte	6th byte	
1	Page read	FF16	Address	Address	Data	Data	Data	

	Control command	transfer	2110 Dyte	Sid byte	411 Dyte	Sin byte	ourbyte		not verified
1	Page read	FF ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	Not acceptable
2	Page program	41 ₁₆	Address (middle)	Address (high)	Data input	Data input	Data input	Data input to 259th byte	Not acceptable
3	Block erase	20 ₁₆	Address (middle)	Address (high)	D016				Not acceptable
4	Erase all unlocked blocks	A7 ₁₆	D0 ₁₆						Not acceptable
5	Read status register	7016	SRD output	SRD1 output					Acceptable
6	Clear status register	50 ₁₆							Not acceptable
7	Read lock bit status	71 ₁₆	Address (middle)	Address (high)	Lock bit data output				Not acceptable
8	Lock bit program	77 ₁₆	Address (middle)	Address (high)	D0 ₁₆				Not acceptable
9	Lock bit enable	7A ₁₆							Not acceptable
10	Lock bit disable	75 ₁₆							Not acceptable
11	Code processing function	F516	Address (low)	Address (middle)	Address (high)	ID size	ID1	To ID7	Acceptable
12	Download function	FA ₁₆	Size (low)	Size (high)	Check- sum	Data input	To required number of times		Not acceptable
13	Version data output function	FB ₁₆	Version data output	Version data output	Version data output	Version data output	Version data output	Version data output to 9th byte	Acceptable
14	Boot ROM area output function	FC ₁₆	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	Not acceptable
15	Read check data	FD ₁₆	Check data (low)	Check data (high)					Not acceptable
16	Baud rate 9600	B0 ₁₆	B0 ₁₆						Acceptable
17	Baud rate 19200	B1 ₁₆	B1 ₁₆						Acceptable
18	Baud rate 38400	B2 ₁₆	B2 ₁₆						Acceptable
19	Baud rate 57600	B3 ₁₆	B3 ₁₆						Acceptable
20	Baud rate 115200	B4 ₁₆	B4 ₁₆						Acceptable

Note 1: Shading indicates transfer from flash memory microcomputer to peripheral unit. All other data is transferred from the peripheral unit to the flash memory microcomputer.

Note 2: SRD refers to status register data. SRD1 refers to status register data 1.

Note 3: All commands can be accepted when the flash memory is totally blank.

Page Read Command

This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page read command as explained here following.

- (1) Transfer the "FF16" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first in sync with the rise of the clock.

Figure 1.35.24. Timing for page read

Page Program Command

This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page program command as explained here following.

- (1) Transfer the "4116" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, as write data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 is input sequentially from the smallest address first, that page is automatically written.

The result of the page program can be known by reading the status register. For more information, see the section on the status register.

Each block can be write-protected with the lock bit. For more information, see the section on the data protection function. Additional writing is not allowed with already programmed pages.

Figure 1.35.25. Timing for the page program

Appendix Standard Serial I/O Mode 2 (Flash Memory Version)

Block Erase Command

This command erases the data in the specified block. Execute the block erase command as explained here following.

- (1) Transfer the "2016" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) Transfer the verify command code "D016" with the 4th byte. With the verify command code, the erase operation will start for the specified block in the flash memory. Write the highest address of the specified block for addresses A16 to A23.

After block erase ends, the result of the block erase operation can be known by reading the status register. For more information, see the section on the status register.

Each block can be erase-protected with the lock bit. For more information, see the section on the data protection function.

Figure 1.35.26. Timing for block erasing

Erase All Unlocked Blocks Command

This command erases the content of all blocks. Execute the erase all unlocked blocks command as explained here following.

- (1) Transfer the "A716" command code with the 1st byte.
- (2) Transfer the verify command code "D016" with the 2nd byte. With the verify command code, the erase operation will start and continue for all blocks in the flash memory.

The result of the erase operation can be known by reading the status register. Each block can be eraseprotected with the lock bit. For more information, see the section on the data protection function.

RxD1 (M32C reception data)	A716 D016	
TxD1 (M32C transmit data)		

Figure 1.35.27. Timing for erasing all unlocked blocks

Read Status Register Command

This command reads status information. When the "7016" command code is sent with the 1st byte, the contents of the status register (SRD) specified with the 2nd byte and the contents of status register 1 (SRD1) specified with the 3rd byte are read.

RxD1 (M32C reception data)	7016
TxD1 (M32C transmit data)	SRD SRD1 output output

Figure 1.35.28. Timing for reading the status register

Clear Status Register Command

This command clears the bits (SR3–SR5) which are set when the status register operation ends in error. When the "5016" command code is sent with the 1st byte, the aforementioned bits are cleared.

Figure 1.35.29. Timing for clearing the status register

Read Lock Bit Status Command

This command reads the lock bit status of the specified block. Execute the read lock bit status command as explained here following.

- (1) Transfer the "7116" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) The lock bit data of the specified block is output with the 4th byte. The 6th bit (D6) of output data is the lock bit data. Write the highest address of the specified block for addresses A8 to A23.

RxD1 (M32C reception data)	$\left(\begin{array}{c} 7116 \\ A15 \\ A15 \\ A23 \end{array}\right) A16 to$
TxD1 (M32C transmit data)	DQ6

Figure 1.35.30. Timing for reading lock bit status

Lock Bit Program Command

This command writes "0" (lock) for the lock bit of the specified block. Execute the lock bit program command as explained here following.

- (1) Transfer the "7716" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) Transfer the verify command code "D016" with the 4th byte. With the verify command code, "0" is written for the lock bit of the specified block. Write the highest address of the specified block for addresses A8 to A23.

Lock bit status can be read with the read lock bit status command. For information on the lock bit function, reset procedure and so on, see the section on the data protection function.

Figure 1.35.31. Timing for the lock bit program

Lock Bit Enable Command

This command enables the lock bit in blocks whose bit was disabled with the lock bit disable command. The command code "7A16" is sent with the 1st byte of the serial transmission. This command only enables the lock bit function; it does not set the lock bit itself.

RxD1 (M32C reception data)	7A16	 _
TxD1 (M32C transmit data)		 _

Figure 1.35.32. Timing for enabling the lock bit

Lock Bit Disable Command

This command disables the lock bit. The command code "7516" is sent with the 1st byte of the serial transmission. This command only disables the lock bit function; it does not set the lock bit itself. However, if an erase command is executed after executing the lock bit disable command, "0" (locked) lock bit data is set to "1" (unlocked) after the erase operation ends. In any case, after the reset is cancelled, the lock bit is enabled.

RxD1 (M32C reception data)	7516
TxD1 (M32C transmit data)	

Figure 1.35.33. Timing for disabling the lock bit

ID Check

This command checks the ID code. Execute the boot ID check command as explained here following.

- (1) Transfer the "F516" command code with the 1st byte.
- (2) Transfer addresses A0 to A7, A8 to A15 and A16 to A23 of the 1st byte of the ID code with the 2nd, 3rd and 4th bytes respectively.
- (3) Transfer the number of data sets of the ID code with the 5th byte.
- (4) The ID code is sent with the 6th byte onward, starting with the 1st byte of the code.

RxD1 (M32C reception data)	F516 DF16 FF16 OF16 ID size ID1 ID7
TxD1	
(M32C transmit data)	

Figure 1.35.34. Timing for the ID check

Download Command

This command downloads a program to the RAM for execution. Execute the download command as explained here following.

- (1) Transfer the "FA16" command code with the 1st byte.
- (2) Transfer the program size with the 2nd and 3rd bytes.
- (3) Transfer the check sum with the 4th byte. The check sum is added to all data sent with the 5th byte onward.
- (4) The program to execute is sent with the 5th byte onward.

When all data has been transmitted, if the check sum matches, the downloaded program is executed. The size of the program will vary according to the internal RAM.

Figure 1.35.35. Timing for download

Version Information Output Command

This command outputs the version information of the control program stored in the boot area. Execute the version information output command as explained here following.

- (1) Transfer the "FB16" command code with the 1st byte.
- (2) The version information will be output from the 2nd byte onward. This data is composed of 8 ASCII code characters.

Boot ROM Area Output Command

This command outputs the control program stored in the boot ROM area in one page blocks (256 bytes). Execute the boot ROM area output command as explained here following.

- (1) Transfer the "FC16" command code with the 1st byte.
- (2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
- (3) From the 4th byte onward, data (D0–D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first, in sync with the rise of the clock.

Figure 1.35.37. Timing for boot ROM area output

Read Check Data

This command reads the check data that confirms that the write data, which was sent with the page program command, was successfully received.

- (1) Transfer the "FD16" command code with the 1st byte.
- (2) The check data (low) is received with the 2nd byte and the check data (high) with the 3rd.

To use this read check data command, first execute the command and then initialize the check data. Next, execute the page program command the required number of times. After that, when the read check command is executed again, the check data for all of the read data that was sent with the page program command during this time is read. The check data is the result of CRC operation of write data.

Figure 1.35.38. Timing for the read check data

Baud Rate 9600

This command changes baud rate to 9,600 bps. Execute it as follows.

- (1) Transfer the "B016" command code with the 1st byte.
- (2) After the "B016" check code is output with the 2nd byte, change the baud rate to 9,600 bps.

RxD1 (M32C reception data)	(B016)
TxD1 (M32C transmit data)	(B016)

Figure 1.35.39. Timing of baud rate 9600

Baud Rate 19200

This command changes baud rate to 19,200 bps. Execute it as follows.

- (1) Transfer the "B116" command code with the 1st byte.
- (2) After the "B116" check code is output with the 2nd byte, change the baud rate to 19,200 bps.

RxD1 (M32C reception data)	(B116)
TxD1 (M32C transmit data)	B116

Baud Rate 38400

This command changes baud rate to 38,400 bps. Execute it as follows.

- (1) Transfer the "B216" command code with the 1st byte.
- (2) After the "B216" check code is output with the 2nd byte, change the baud rate to 38,400 bps.

RxD1 (M32C reception data)	(B216)
TxD1 (M32C transmit data)	B216

Figure 1.35.41. Timing of baud rate 38400

Baud Rate 57600

This command changes baud rate to 57,600 bps. Execute it as follows.

- (1) Transfer the "B316" command code with the 1st byte.
- (2) After the "B316" check code is output with the 2nd byte, change the baud rate to 57,600 bps.

RxD1 (M32C reception data)	(B316)
TxD1 (M32C transmit data)	B316

Figure 1.35.42. Timing of baud rate 57600

Baud Rate 115200

This command changes baud rate to 115,200 bps. Execute it as follows.

- (1) Transfer the "B416" command code with the 1st byte.
- (2) After the "B416" check code is output with the 2nd byte, change the baud rate to 19,200 bps.

RxD1 (M32C reception data)	(B416)
TxD1 (M32C transmit data)	B416

Figure 1.35.43. Timing of baud rate 115200

ID Code

When the flash memory is not blank, the ID code sent from the peripheral units and the ID code written in the flash memory are compared to see if they match. If the codes do not match, the command sent from the peripheral units is not accepted. An ID code contains 8 bits of data. Area is, from the 1st byte, addresses 0FFFFDF16, 0FFFFE316, 0FFFFEB16, 0FFFFEF16, 0FFFFF316, 0FFFFF716 and 0FFFFFB16. Write a program into the flash memory, which already has the ID code set for these addresses.

Under Rev.B2 for proof reading

Appendix Standard Serial I/O Mode 2 (Flash Memory Version)

Example Circuit Application for The Standard Serial I/O Mode 2

The below figure shows a circuit application for the standard serial I/O mode 2.

Figure 1.35.45. Example circuit application for the standard serial I/O mode 2

Rev.		Description		
Date	Page		Errror	Correct
B1				100-pin version is added.
1/8/2001		l		Flash memory version is added.
				Others
B1	2,3	Tables 1.1.1 :	and 1.1.2	
30/8/		Interrupt: 12 i	nternal/external sources	
2001		(intelligent I/C) and CAN module)	Delate
		Supply voltag	je	3.0 to 3.6V (f(XIN)=20MHz without wait) add
	3	A-D converter	r	
		10 bits (8 cha	nnels) x 2 circuits, max 26 inputs	10 bits x 2 circuits, standard 10 inputs, max 26 inputs
	7	Table 1.1.3	Pin 26	CANIN addition
	10-12	Figures 1.1.4	, 1.1.5, Table 1.1.7	CANIN is added to Pin 17(GP) and pin 19(FP)
	11	Figure 1.1.5	Pin 97 AN00	ANo
	12	Pin 32 (FP)	Vcc	Delate
		Pin 34 (FP)	Vss	Delate
	13	Vcc position t	.o pin 64(FP)	Pin 62
		Vss position t	.o pin 66(FP)	Pin 64
i		RxD4/SCL4/S	3TxD4 position to pin 98 (FP)	Pin 100
	14	Table 1.1.5	AN20 to AN27	AN00 to AN07
		I	AN30 to AN37	AN20 to AN27
	17	Table1.1.12	P120 to P127 ISCLK description	Delate
l		ļ	AN10 to AN17	AN150 to AN157
	18	Figure 1.1.6	System clock oscillation circuit	PLL oscillation stop detect addition
	28, 29	Figure 1.4.3	(122), (167)	Group0 receive buffer register, Group1 receive buffer
		l		register
		l	(123), (168)	Group0 transmit buffer/receive data register, Group1
				transmit buffer/receive data register
	46	Note 1: Addre	esses 03C916, 03CB16 to 03D316	Addresses 03A016, 03A116, 03B916, 03BC16, 03BD16,
				03C916, 03CB16 to 03D316
	48	Figure 1.6.1	Note 2	Addition. Displase after the former Note 2
	70	Figure 1.8.6	When reset of PLL control register 0	
			0X11 0100	0011 0100
	72	Figure 1.8.8	Count value set bit	Division rate select bit
		l	Count start bit	Operation enable bit
		l	Count stop/start	Divider stops/starts
		ļ	Note 2	Delate
	76	Line 10	Addition	Stop mode is canceled before setting this bit to "1".
	77	Line 8	1:Sub clock is selected	1: Clock from ring oscillator is selected
	135	Figure 1.14.2	Values that can be set Pulse width	
		· /	modulation mode (8-bit PWM)	
		0016 to FF16(I	High-order and low-order address)	0016 to FE16(High-order address) 0016 to FF16(Low-
				order address)
	230	Line 5, Bit 1	TrmActive	TrmData
	266	Table1.23.11	Waveform generate control register	
		l	1when clock synchronous serial I/U	
			-	N
	280	Table1.23.17	Note 1:	When the transfer clock and transfer data are trans-
		l		mission, transfer clock is set to at least 6 divisions of

Rev.		Description			
Date	Page	Errror	Correct		
		Note 2	the base timer clock. Except this, transfer clock is set to at least 20 divisions of the base timer clock. Addition		
	285	Figure 1 23 37	Delay timing of base timer		
	284	Table 1.24.1 A-D conversion start condition			
		• Timer B2 interrupt	Timer B2 interrupt occurrences frequency counter overflow		
B2	2, 3, 4	Table 1.1.1, 1.1.2			
Feb/1/ 2002		Clock generating circuit 4 built-incircuit PLL freq. synthe	3 built-in clock generation circuits Delete		
		Power consumption 29mA	26mA		
		44mA	38mA		
	6,10,	Fig 1.1.3-1.1.5	Note: P70 and P71 are N-channeloutput> Add		
	11				
	18	Fig 1.1.6 System clock generator	Delete		
		Concillation stop detection	Delete Bing oscillator		
	24	7th line	Since the value due to the interruption -> Add		
	27	Fig 1 4 3 (1)			
	21	(2) Processor mode register 1	XX00 X000 -> X000 00XX		
		(3) System clock control register 0	80 -> 0000 X000		
		(10) Oscillation stop detect register	XXXX 0000 -> 00		
		(17) VDC control register 1	Add		
		(21) DRAM refresh interval set register	XXXX ?000 -> ??		
		(46) CAN interrupt 1 control register	Add		
		(47) CAN interrupt 2 control register	Add		
	28	Fig 1.4.3 (2)			
		(70) CAN interrupt 0 control register	Add		
	28-31	Fig 1.4.3(2) (97)-(104), Fig 1.4.3(3) (142)-(149),		
		Fig 1.4.3(4) (187)-(194), Fig 1.4.3(5) (222)-(22	9)		
		Group 0 -3 time measurement/			
		waveform generation register 0-7	00 -> ??		
	29, 30	Fig 1.4.3(3) (124), Fig 1.4.3(4) (169)			
		Group 0,1 SI/O communication buffer register	Group 0,1 SI/O receive buffer register		
		Fig 1.4.3(3) (125), Fig 1.4.3(4) (170)			
		Group 0,1 receive data register	Group 0,1 transmit buffer/receive data register		
		(129) Group 0 SI/O comm cont register	X000 XXX -> 000 X011		
	24	(186) Group 1 SI/O expansion trans cont regis			
	31	Fig 1.4.3(5) (236)-(241) Group 3 wayoform gaparate mask register 4 7	00 > 22		
	32	Fig 1 4 3(6) (270)-(308)	Note added		
	52	(270)-(302)	Reset value changed		
	33	$(270)^{-}(302)$	Note added		
		(314)-(318),(321),(323),(329),(331),(336)	Reset values changed		
		(337) CAN0 clock control register	CANO sleep control register		
	36	Fig 1.4.3(10) (461) A-D control register 2	X000 XXX0 -> X000 0000		

Rev.		Description		
Date	Page	Errror	Correct	
	38	Address 007F16	CAN interrupt 1 control register added	
		Address 008116	CAN interrupt 2 control register added	
		Address 009D16	CAN interrupt 0 control register added	
	61	(10) Software wait, 11th line	· · · · · ·	
		SFR area is accessedwith "2 waits".	Add	
	67	Fig 1.8.2 System clock control register 0		
		When reset: 0816	0000 X0002	
		Note 3: When selecting fc,as input port.	Delete	
	79	Fig 1.8.9		
		Note 7: When using PLLcannot be used.	Delete	
	90	Fig 1.9.3, Symbol CAN0ICi	CANIIC	
	110	Table 1.11.1, DMA request factors	Intelligent I/O interrupt -> add	
	128	Fig 1.12.4, the number of cycles	Change	
	133	Fig 1.14.3, Timer Ai mode register, MR0		
		Port outputregisters A and B.	Port outputregisters A, B and C.	
	137,	Table 1.14.1, 1.14.2, 1.14,4, 1.14,5		
	138,	TAiout pin function	Function select register C -> add	
	142,			
	144			
	137	Fig 1.14.7 Timer Ai mode register		
		bit 2 (MR0)	Function select register C -> add	
	400	Location of Note 3 (b7, b6): 11	10	
	139	Fig 1.14.8 Timer AI mode register	Function colort register C add	
	142	Dil 2 (MRU)	Function select register C -> add	
	143,	Fig 1.14.11, 1.14.12 Timer Armode register	Eurotion poloct register C > odd	
	145	bit 2 (MRO)		
	159	Fig 1 16 5 Timer Ai mode register		
	100	hit 2 (MR0)	Function select register C -> add	
	161	Fig 1.16.6 Reload register	Reload register	
		n = 1 to 255		
	172	Fig 1.17.4 UARTi transmit/receive control register	0	
		Note 2	Function select register C -> add	
	173	Fig 1.17.5 UARTi transmit/receive control register	1	
		Function of bit 7: Error signal output enable bit	Set to "0"	
	199	Fig 1.22.1 Clock control register	Sleep control register	
		Time stamp count register	Time stamp register	
	200	Fig 1.22.3 Bit 4 0: Forced reset	0: Reset requested	
		Bit 10 Time stamp count reset bit	Time stamp counter reset bit	
	201	5th line: In no case will the CAN module be	In no case will the CAN be	
		Bit 3: BasicCAN mode bit	Bit 3: BasicCAN mode select bit	
	202	Bit 8,9: Timestamp prescaler bits	Bit 8, 9: Timestamp prescaler select bits	
		Bit 11, 1st line: Receive Error Counter	Receive Error Counter Register	
	000	I ransmit Error Counter	I ransmit Error Counter Register	
	209	Fig 1.22.8 bit 4: Reserved bit	Sampling number	
	210	o. CANU configuration register	Explanation of bit 4 -> a00	

Rev.		Description		
Date	Page	Errror	Correct	
	211	Note:1 Setting the C0CTLR0 register's Reset0 bit to 1 resets the CAN protocol control unit, with the C0TSR register thereby initialized to 000016. Also, setting the TSReset (timestamp <u>count</u> reset) bit to 1 initializes the C0TSR register to 000016 on-the- fly (while the CAN protocol control unit remains operating).	Note 1: Setting the COCTLR0 register's Reset0 <u>and</u> <u>Reset1</u> bits to 1 resets <u>the CAN, and</u> the COTSR register is thereby initialized to 000016. Also, setting the TSReset (timestamp <u>counter</u> reset) bit to 1 ini- tializes the COTSR register to 000016 on-the-fly (<u>while</u> <u>the CAN remains operating: CAN0 status register's</u> <u>State_Reset bit is "0"</u>).	
	212	Tg period = (C0BRP+1)	Ta period = (C0BRP+1)/CPU clock	
	220	Fig 1.22.19 b0	b2	
		b2	b1	
	226	Fig 1.22.25 bit 0 bit 1, When transmit, TrmData bit 3 bit 6, 7, Transmit request flag	Note 2 -> add When transmit, TrmActive Note 2 -> add Transmit request bit	
	229	Fig 1.22.26, explanation of function	Change	
	230, 231, 232	Fig 1.22.27, 1.22.28, 1.22.29 Explanation of function	Message slot j (j=0 to 15) -> change	
	233	Fig 1.22.30, CAN0 message slot butter i data m Symbol C0SLOT0_m (m=0 to 3) C0SLOT0_m (m=4 to 7) C0SLOT1_m (m=0 to 3) C0SLOT1_m (m=4 to 7)	C0SLOT0_n (n=m+6, m=0 to 3) C0SLOT0_n (n=m+6, m=4 to 7) C0SLOT1_n (n=m+6, m=0 to 3) C0SLOT1_n (n=m+6, m=4 to 7)	
	235	Table 1.23.1 Group 2, WG register	> 8chs	
		Group 3 Comm shift register	16bits x 2chs -> -	
	240	Fig 1.23.5, Group i base timer cont reg 0		
		Bit 2 to bit 6, explanations on fPLL	Delete	
	245	Table 1.23.2, Count reset condition, Group 2, 3(3) Reset request circuit	(3) Reset request circuit (group 2 only)	
	245	Fig 1.23.10 fPLL	Delete	
	246	Fig 1.23.11	Newly added	
	248	Fig 1.23.13, the values when reset: 0016	000016	
	249	Table 1.23.3, select function, digital filter function Strips off pulses less than 3 cycles long from f1 and the base timerclock.	Pulses will pass when they match either f1 or the base timerclock 3 times.	
	250	Fig 1.23.14, (c)	Change	
	252	Fig 1.23.16, reset values for both registers	000016 -> XXXX16	
	256	Fig 1.23.20, When WG register is "xxxb16"	When WG register is "xxxa16"	
	270	 Transmission start condition Write data to transmit buffer register Interrupt request generation timing When transmitting 	Write data to transmit buffer	
		 When SI/O transmit buffer register is When receiving Whento SI/O communication buffer register 	- When transmit buffer is Whento SI/O receive buffer register	

Rev.		Description		
Date	Page	Errror	Correct	
	270	Select function		
		ThisTxD pin output and RxD pin input.	ThisISTxD pin output and ISRxD pin input.	
Ì	271	Table 1.23.13, Transfer clock input		
		•Selects I/O with function	Select I/O port with function	
l	271	Fig 1.23.31		
Ì		Write to communication buffer	Write to receive buffer	
		(Input to INPC2/ISRxD0 pin)	(Input to INPCi2/ISRxDi pin (i=0, 1))	
	272	Table 1.23.14		
		Transmission start condition		
Ì		• Write data to transmit butter register	Write data to transmit butter	
Ì		Interrupt request generation timing		
Ì		•When transmitting		
		- When SI/O transmit butter register is	- When transmit butter is	
l		•When receiving	When to SI/O receive buffer register	
		Error detection	Whento Si/O receive builer register	
		before contents of receive buffer register	before contents a SI/O receive buffer register	
	273	Fin 1.23.32		
Ì		Write to communication buffer	Write to receive buffer	
İ	273	Fia 1.23.33		
Ì		(Input to INPC2/ISRxD0 pin)	(Input to INPCi2/ISRxDi pin (i=0, 1))	
1	279	Table 1.23.17		
		Transmission start condition		
Ì		Write data to transmit buffer register	Write data to SI/O transmit buffer register	
Ì		Reception start condition		
Ì		 Write data to transmit buffer register 	Write data to SI/O transmit buffer register	
		Interrupt request generation timing		
l		•When receiving		
Ì		Whento SI/O communication buffer register	Whento SI/O receive buffer register	
		Select function		
		ThisTxD pin output and RxD pin input.	ThisISTxD pin output and ISRxD pin input.	
	286	Fig 1.24.4, A-D control register 2		
		When reset: X000 XXX02	X000 00002	
l	287,	Fig 1.24.5, Note 4 and Fig 1.24.6, Note 3		
	288	by A-D sweep pin select bits	by analog input port select bits	
	292	(e) Replace function of input pin		
	202	2nd line:or A-DU and A-D2.	of A-DU and A-D1.	
l	293	(f), at the end of zhu line	as Alloumirespectively> adu	
	201	(g) 3rd lifte, liput via Alvou to Alvor is	, Input via Anu to Any is	
Ì	234	P01 analog input	Pas analog input	
1	312	Fig 1 29 1 P00 to P07 P20 to P27 -		
Ì				
Ì				
	ĺ			

Rev.		Description		
Date	Page	Errror	Correct	
	313	Fig 1.29.2	Delete	
		Pull-up selection	Pull-up selection	
		Circuit (C)	Delete	
		P15 to P17, Circuit (B): -	0	
	314	Fig 1.29.3	Add	
		Output from each peripheral function P121. P122. Circuit (B): -	Pul-up selection	
	326	Fig 1.29.16, Pull-up register 2, Note 1	Delete	
	331	Table 1.29.5		
		Bit 0, 1: Three-phase PWM output $\overline{(U)}$	1: Three-phase PWM output (U)	
		Bit 1, 0: Three-phase PWM output (U)	0: Three-phase PWM output $\overline{(U)}$	
	331	Table 1.29.6, PS4	PS3	
		PSL4	PSL3	
		Bit 1, UARTO	UART3	
		Bit 2, UART4	UART3	
		Bit 3, UART1	UART3	
		Bit 4, 5 UAR I 1	UART4	
		A4	A3	
	224	B4	B3	
	334 227	VDC	Add	
	331			
		2nd line:and to bit 0 of A-D control register 2	and to each bit of A-D i control register 2	
	340	(3) External interrupt		
		 Level sense, 2nd line: (When XIN=20MHz and) 	(When XIN=30MHz and)	
		3rd line: (, at least 250 ns)	(, at least 233 ns)	
		When the polarity of INT0 to INT5 pins is	• When the polarity of INTo and INT5 pins is	
	341	Reducing power consumption, (2)		
		1st line, last line: AN04, AN07	AN4, AN7	
	343	Table 1.30.3 GOCR 00EF16	GORI 00EC16	
		G1RI 012F16	G1RI 012C16	
		U0BRG 036116	U0BRG 036916	
		U0TB 036316, 036216	U0TB 036B16, 036A16	
		U1BRG 036916	U1BRG 02E916	
	0.40	U1TB 036B16, 036A16	U1TB 02EB16, 02EA16	
	343	Notes on CNVss pin reset at "H" level	Add	

Rev.		Description		
Date	Page	Errror	Correct	
	344- 380	Electric characteristics	Add	
	385	Fig 1.34.1, Address 037716	Address 005716	
		Bit 0: RY/BY status bit	RY/ BY signal status bit	
	385	Flash memory control register (address 005716)		
		1st line:the RY/BY status flag	the RY/BY signal status bit	
	390	13th line of Page Program Command (4116) and		
		Fig 1.34.3: RY/BY status flag	RY/BY signal status bit	
	391	11th line of Block Erase Command (2016/D016)		
		and Fig 1.34.4: RY/BY status flag	RY/BY signal status bit	
	392	Fig 1.34.5: RY/BY status flag	RY/BY signal status bit	
	400	3rd paragraph, 1st line		
		, set the CLK1 pin to "H" level and	, set the CLK1 pin to "H" level and the TxD1 pin to	
			"L" level, and	
	400	3rd paragraph, 2nd line		
		The CLK1 pin is connected to Vccresistance.	Add	
	401	P67 When using standardtransfer.	Add	
	419	Fig 1.35.22, Data output	Pulled down	
	421	How frequency is identified, 2nd line: (2 - 20MHz)	(2 - 30MHz)	

-Keep safety first in your circuit designs!-

 Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

-Notes regarding these materials-

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon ductor product distributor for further details on these materials or the products con tained therein.

MITSUBISHI SEMICONDUCTORS M32C/83 Group DATA SHEET REV. B2

February First Edition 2002

Editioned by Committee of editing of Mitsubishi Semiconductor DATA SHEET

Published by Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation. ©2002 MITSUBISHI ELECTRIC CORPORATION