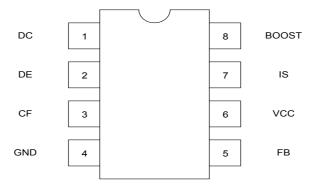

HIGH-EFFICIENCY DC/DC **CONVERTER**

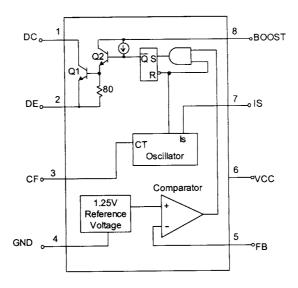
DESCRIPTION

The UTC 3563 is a monolithic control circuit containing the primary functions required for DC to DC converters and highside-sensed constant current source. The device consists of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current sense circuit, bootstrapped driver, and high current output switch. This device is specifically designed to construct a constant current source for battery chargers with a minimum number of external components. Bootstrapped driver can drive the NPN output switch to saturation for higher efficiency and less heat dissipation. The UTC 3563 can deliver 1.5A continuous current without requiring a heat sink.


FEATURES

- *3V to 30V input voltage operation.
- *Internal 2A peak current switch.
- *1.5A continuous output current.
- *Bootstrapped driver.
- *High side current sense capability.
- *High efficiency (up to 90%)
- *Internal ±2% reference.
- *Low quiescent current at 1.6mA.
- *Frequency operation from 100Hz to 100KHz.

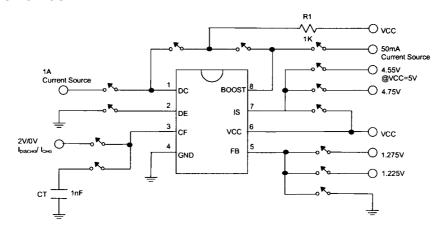
APPLICATIONS


- *Constant current source for battery chargers.
- *Saver for cellular phones.
- *Step-Down DC-DC converter module.

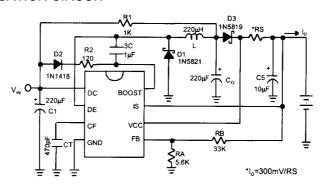
PIN CONFIGURATION

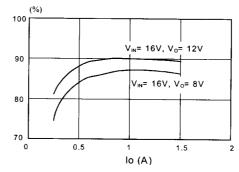
UTC UNISONIC TECHNOLOGIES CO., LTD.

BLOCK DIAGRAM


PIN	SYMBOL	DESCRIPTION	PIN	SYMBOL	DESCRIPTION	
1	DC	2A switch collector	5	FB	Feedback comparator inverting input	
2	DE	Darlington switch emitter	6	VCC	Power supply input	
3	CF	Oscillator timing capacitor	7	IS	Highside current sense input	
					(V _{CC} -Vis=300mV)	
4	GND	Power ground	8	BOOST	Bootstrapped driver collector	

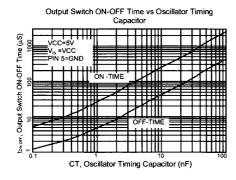
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

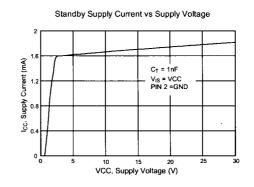

ABOOLOTE WIND WIND WITH THE	ABOOLOTE IVII VAINION TATTINGO (Ta-23 O)					
PARAMETER	SYMBOL	VALUE	UNIT			
Supply Voltage	VCC	30	V			
Comparator input voltage range	Vi	-0.3~+30	V			
Switch collector voltage	Vc(switch)	30	V			
Switch emitter Voltage	VE(switch)	30	V			
Switch collector to emitter voltage	Vce(switch)	30	V			
Driver collector Voltage	Vc(driver)	30	V			
Switch current	Isw	2	Α			
Power dissipation (Ta=25°C)						
DIP-8		1000	mW			
SOP-8		625	mW			
Thermal Resistance						
DIP-8		100	°C/W			
SOP-8		160	°C/W			
Operating junction temperature	Tj	125	°C			
Operating ambient temperature range	Та	0~+70	°C			
Storage temperature range	Tstg	-65~+150	°C			

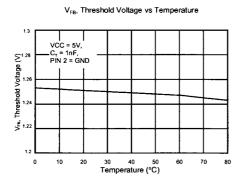

ELECTRICAL CHARACTERISTICS (VCC=5.0V, Ta=25°C, unless otherwise specified)

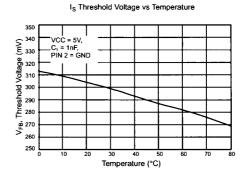
	(- /	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Oscillator						
Charging Current	ICHG	5V≤VCC≤30V	10	25	40	μΑ
Discharging Current	Idischg	5V≤VCC≤30V	100	150	200	μΑ
Voltage Swing	Vosc	PIN 3		0.6		V
Discharge to Charge Current Ratio	IDISCHG / ICHG	Vis=VCC		6.0		
Current limit Sense Voltage	VCC -VIS	ICHG=IDISCHG	250	300	350	mV
Output Switch						
Saturation Voltage,	VCE(SAT)	IDE=1.0A,		1.5	1.8	V
Emitter Follower Connection		VBOOST=VDC=VCC				
Saturation Voltage	VCE(SAT)	IDC=1.0A, IBOOST=50mA,		0.4	0.7	V
		(Forced β≈20)				
DC Current Gain	hFE	Isc=1.0A	35	120		
		Vce=5.0V				
Collector Off State Current	IC(OFF)	VCE=30V		10		nA
Comparator			_			
Threshold Voltage	VFB	Ta=25°C	1.225	1.250	1.275	V
-		0°C≤Ta≤70°C	1.210		1.290	V
Threshold voltage Line Regulation	REGLINE	3V≤VCC≤30V		0.1	0.3	mV/V
Input Bias Current	lв	VIN=0V		0.4	1.0	μΑ
Supply Current	ICC	VIS=VCC, PIN 5>VFB,		1.6	3.0	mA
		5.0V≤VCC≤30V, CT=1nF,				
		PIN 2=GND, Remaining				
		pins open				

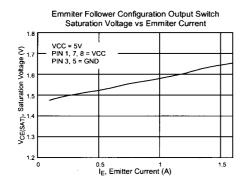
TYPICAL APPLICATION CIRCUIT

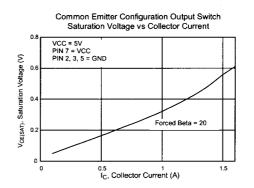





EFFICIENCY vs OUTPUT CURRENT


UTC UNISONIC TECHNOLOGIES CO., LTD.


TYPICAL PERFORMANCE CHARACTERISTICS



DESIGN FORMULA TABLE

APPLICATION INFORMATION

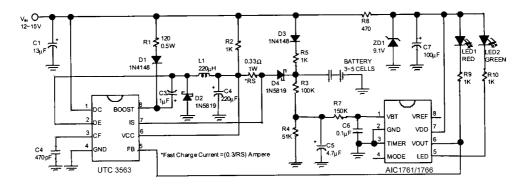
CALCULATION	STEP-DOWN	STEP-UP		
t _{ON} /t _{OFF}	V_{OUT} + V_{F}	$V_{OUT}+V_F-V_{IN(MIN)}$		
	V _{IN(MIN)} -V _{SAT} -V _{OUT}	V _{IN(MIN)} -V _{SAT}		
(t _{ON} +t _{OFF}) _{MAX}	1/F _{MIN}	1/F _{MIN}		
Ст	4x10 ⁻⁵ t _{ON}	4x10 ⁻⁵ t _{ON}		
Ic(switch)	2l _{OUT(MAX)}	$2I_{OUT(MAX)}(\frac{t_{ON}+t_{OFF}}{t_{OFF}})$		
RS	0.3/I _{C(SWITCH)}	0.3/I _{C(SWITCH)}		
L(MIN)	$ (\frac{V_{\text{IN(MIN)}}\text{-}V_{\text{SAT}}\text{-}V_{\text{OUT}}}{I_{\text{C(SWITCH)}}}) \ t_{\text{ON(MAX)}} $	$\left(\begin{array}{c} V_{\text{IN(MIN)}} - V_{\text{SAT}} \\ I_{\text{C(SWITCH)}} \end{array}\right) t_{\text{ON(MAX)}}$		
Со	I _{C(SWITCH)} (t _{ON} +t _{OFF}) 8V _{RIPPLE(P-P)}	lout ton VRIPPLE(P-P)		

 V_{SAT} : Saturation voltage of the output switch V_F : Forward voltage of the ringback rectifier

The following power supply characteristics must be chosen:

V_{IN}: Norminal input voltage

 V_{OUT} : Desired output voltage, V_{OUT} =1.25(1+RB/RA)


I_{OUT}: Desired output current

 F_{MIN} : Minimum desired switching frequency at selected values for V_{IN} AND I_{OUT}

V_{RIPPLE(P-P)}: Desired peak-to-peak output ripple voltage. In practice, the calculated value will need to be increased due to the capacitor equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

APPLICATION EXAMPLES

Fig. 1 Simplified Battery Charge Circuit for Ni-Cd/Ni-MH Battery

UTC

UNISONIC TECHNOLOGIES CO., LTD.

Fig.2 Battery Charge Circuit for Fluctuating Charging Current Applications

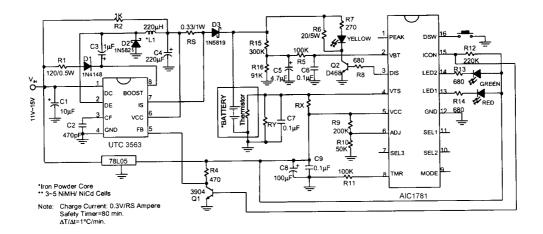
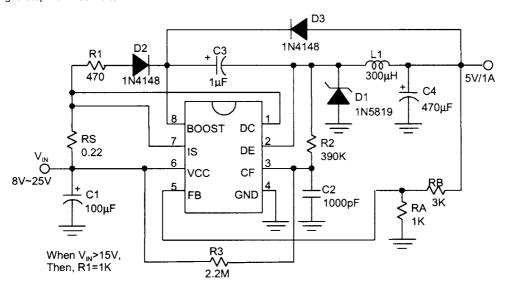



Fig. 3 Step-Down Converter

Line regulation: 40mV (V_{IN}=10V~20V, @I_O=1A) Load regulation: 20mV (V_{IN} =15V, $@I_O$ =100mA~1A) Short circuit current: 1.3A (V_{IN}=15V, @R_L=0.1Ω)

UTC UNISONIC TECHNOLOGIES CO., LTD.

Fig. 4 Step-Down Converter with External 5V Bootstrap

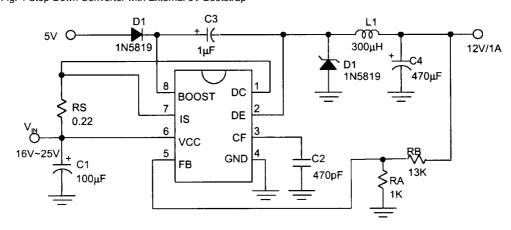
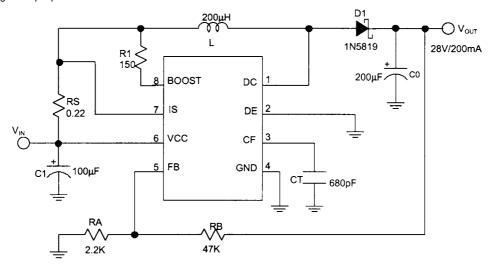



Fig. 5 Step-Up Converter

Line regulation: 100mV (V_{IN}=8V~16V, @Io=200mA) Load regulation: 40mV (V_{IN} =12V, $@I_{O}$ =80mA~200mA)

Fig. 6 Step-Up Converter with External NPN Switch

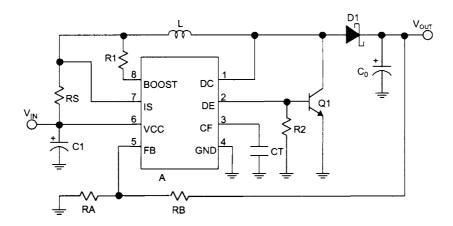
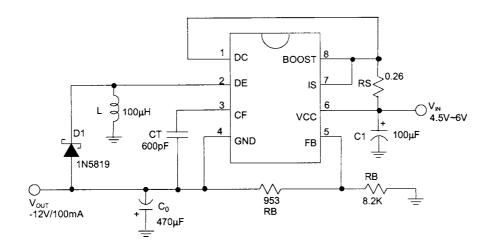



Fig. 7 Inverting Converter

Line regulation: 20mV (V_{IN}=4.5V~6V, @I_O=100mA) Load regulation: 100mV (V_{IN}=5V, @I_O=10mA~100mA)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC

UNISONIC TECHNOLOGIES CO., LTD.