RHR1K160D

1A, 600V Hyperfast Dual Diode

The RHR1K160D is a hyperfast dual diode with soft recovery characteristics ($\mathrm{t}_{\mathrm{rr}}<25 \mathrm{~ns}$). It has about half the recovery time of ultrafast diodes and is silicon nitride passivated ionimplanted epitaxial planar construction.

This device is intended for use as freewheeling/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Its low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Formerly developmental type TA49185.

Ordering Information

PART NUMBER	PACKAGE	BRAND
RHR1K160D	MS-012AA	RHR1K160D

NOTE: When ordering, use the entire part number. For ordering in tape and reel, add the suffix 96 to the part number, i.e., RHR1K160D96.

Packaging

BRANDING DASH

Features

- Hyperfast with Soft Recovery $<25 n s$
- Operating Temperature. $150^{\circ} \mathrm{C}$
- Reverse Voltage . 600 V
- Thermal Impedance SPICE® Model
- Thermal Impedance SABER© Model
- Avalanche Energy Rated
- Planar Construction
- Related Literature
- TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"

Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose

Symbol

Absolute Maximum Ratings (Per Leg) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified		
	RHR1K160D	UNITS
Peak Repetitive Reverse Voltage . $\mathrm{V}_{\text {RRM }}$	600	V
Working Peak Reverse Voltage . $\mathrm{V}_{\text {RWM }}$	600	V
DC Blocking Voltage . V_{R}	600	V
	1	A
	2	A
Nonrepetitive Peak Surge Current . I FSM Halfwave, 1 phase, 60 Hz	10	A
Maximum Power Dissipation (Note 1) . P_{D}	2.5	W
Avalanche Energy (See Figures 11 and 12) . $\mathrm{E}_{\text {AVL }}$	5	mJ
Operating and Storage Temperature . T $_{\text {STG }}, \mathrm{T}_{J}$	-55 to 150	${ }^{\circ} \mathrm{C}$
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s . $\mathrm{T}_{\text {L }}$	300	${ }^{\circ} \mathrm{C}$
	260	${ }^{\circ} \mathrm{C}$

Electrical Specifications (Per Leg) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V_{F}	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$	-	-	2.1	V
	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-	-	1.7	V
I_{R}	$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}$	-	-	100	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	-	-	500	$\mu \mathrm{A}$
$\mathrm{trrr}^{\text {r }}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	-	25	ns
t_{a}	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	10.5	-	ns
t_{b}	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	5	-	ns
Q_{RR}	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	20	-	nC
C_{J}	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~A}$	-	10	-	pf
$\mathrm{R}_{\theta \mathrm{JA}}$	Pad Area $=0.483$ in $^{2}($ Note 1)	-	-	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Pad Area $=0.027$ in 2 (Note 2) (Figure 13)	-	-	201	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Pad Area $=0.006$ in 2 (Note 2) (Figure 13)	-	-	239	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEFINITIONS

$V_{F}=$ Instantaneous forward voltage ($\mathrm{pw}=300 \mu \mathrm{~s}, \mathrm{D}=2 \%$).
$\mathrm{I}_{\mathrm{R}}=$ Instantaneous reverse current.
$t_{r r}=$ Reverse recovery time (See Figure 10), summation of $t_{a}+t_{b}$.
$t_{a}=$ Time to reach peak reverse current (See Figure 10).
$t_{b}=$ Time from peak $I_{R M}$ to projected zero crossing of $I_{R M}$ based on a straight line from peak $I_{R M}$ through 25% of $I_{R M}$ (See Figure 10).
$\mathrm{Q}_{\mathrm{rr}}=$ Reverse recovery charge.
$\mathrm{C}_{\mathrm{J}}=$ Junction Capacitance.
$R_{\theta J A}=$ Thermal resistance junction to ambient.
$\mathrm{pw}=$ Pulse width.
D = Duty cycle.
NOTES:

1. Measured using FR-4 copper board at 0.8 seconds.
2. 2. Measured using FR-4 copper board at 1000 seconds.

Typical Performance Curve

FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

Typical Performance Curve (Continued)

FIGURE 3. $t_{r r}, t_{a}$ AND t_{b} CURVES vs FORWARD CURRENT

FIGURE 5. $t_{r r}, t_{a}$ AND t_{b} CURVES vs FORWARD CURRENT

FIGURE 4. $t_{r r}, t_{a}$ AND t_{b} CURVES vs FORWARD CURRENT

FIGURE 6. CURRENT DERATING CURVE

FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

Typical Performance Curve (Continued)

FIGURE 8. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

Test Circuits and Waveforms

FIGURE 9. t_{rr} TEST CIRCUIT

$$
\begin{aligned}
& \mathrm{L}=20 \mathrm{mH} \\
& \mathrm{R}<0.1 \Omega \\
& \mathrm{E}_{\mathrm{AVL}}=1 / 2 \mathrm{LI}^{2}\left[\mathrm{~V}_{\mathrm{R}(\mathrm{AVL})} /\left(\mathrm{V}_{\mathrm{R}(\mathrm{AVL})}-\mathrm{V}_{\mathrm{DD}}\right)\right] \\
& \mathrm{Q}_{1}=\operatorname{IGBT}\left(B V_{C E S}>\operatorname{DUT} \mathrm{V}_{\mathrm{R}(\mathrm{AVL})}\right)
\end{aligned}
$$

FIGURE 11. AVALANCHE ENERGY TEST CIRCUIT

FIGURE 10. $t_{r r}$ WAVEFORMS AND DEFINITIONS

FIGURE 12. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

Thermal Resistance vs Mounting Pad Area

The maximum rated junction temperature, T_{JM}, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM}, in an application. Therefore the application's ambient temperature, $\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$, and thermal resistance $\mathrm{R}_{\theta \mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ must be reviewed to ensure that $T_{J M}$ is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$
\begin{equation*}
P_{D M}=\frac{\left(T_{J M}-T_{A}\right)}{Z_{\theta J A}} \tag{EQ.1}
\end{equation*}
$$

In using surface mount devices such as the SOP-8 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
2. The number of copper layers and the thickness of the board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.
Intersil provides thermal information to assist the designer's preliminary application evaluation. Figure 13 defines the $R_{\theta J A}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 2 oz. copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Intersil device SPICE thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

FIGURE 13. THERMAL RESISTANCE vs MOUNTING PAD AREA

Displayed on the curve are $R_{\theta J A}$ values listed in the Electrical Specifications table. These points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, P_{DM}. Thermal resistances corresponding to other component side copper areas can be obtained from Figure 13 or by calculation using Equation 2. The area, in square inches is the top copper board area, the thermal resistance and ultimately the power dissipation, P_{DM}.
$R_{\theta J A}=110.18-25.24 \times \ln ($ Area $)$
While Equation 2 describes the thermal resistance of a single die, the dual die SOP-8 package introduces an additional thermal component, thermal coupling resistance, $\mathrm{R}_{\theta \beta}$. Equation 3 describes $\mathrm{R}_{\theta \beta}$ as a function of the top copper mounting pad area.
$R_{\theta \beta}=43.81-22.66 \times \ln ($ Area $)$
The thermal coupling resistance vs. copper area is also graphically depicted in Figure 13. It is important to note the thermal resistance ($R_{\theta J A}$) and thermal coupling resistance $\left(\mathrm{R}_{\theta \beta}\right)$ are equivalent for both die. For example at 0.1 square inches of copper:
$R_{\theta J A 1}=R_{\theta J A 2}=168^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\theta \beta 1}=R_{\theta \beta 2}=96^{\circ} \mathrm{C} / \mathrm{W}$
$T_{J 1}$ and $T_{J 2}$ define the junction temperature of the respective die. Similarly, P_{1} and P_{2} define the power dissipated in each die. The steady state junction temperature can be calculated using Equation 4 for die 1 and Equation 5 for die 2.

Example: Use Equation 4 to calculate $T_{J 1}$ and Equation 5 to calculate $T_{J 2}$ with the following conditions. Die 2 is dissipating 0.5 W ; die 1 is dissipating 0 W ; the ambient temperature is $60^{\circ} \mathrm{C}$; the package is mounted to a top copper area of 0.1 square inches per die.
$T_{J 1}=P_{1} R_{\theta J A}+P_{2} R_{\theta \beta}+T_{A}$
$\mathrm{T}_{\mathrm{J} 1}=(0 \mathrm{~W})\left(168^{\circ} \mathrm{C} / \mathrm{W}\right)+(0.5 \mathrm{~W})\left(96^{\circ} \mathrm{C} / \mathrm{W}\right)+60^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J} 1}=108^{\circ} \mathrm{C}$
$T_{J 2}=P_{2} R_{\theta J A}+P_{1} R_{\theta \beta}+T_{A}$
$\mathrm{T}_{\mathrm{J} 2}=(0.5 \mathrm{~W})\left(168^{\circ} \mathrm{C} / \mathrm{W}\right)+(0 \mathrm{~W})\left(96^{\circ} \mathrm{C} / \mathrm{W}\right)+60^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J} 2}=144^{\circ} \mathrm{C}$
The transient thermal impedance $\left(Z_{\theta J A}\right)$ is also effected by varied top copper board area. Figure 14 shows the effect of
copper pad area on single pulse transient thermal impedance. Each trace represents a copper pad area in square inches corresponding to the descending list in the graph. SPICE and SABER thermal models are provided for each of the listed pad areas.

Copper pad area has no perceivable effect on transient thermal impedance for pulse widths less than 100 ms . For pulse widths less than 100 ms the transient thermal impedance is determined by the die and package. Therefore, CTHERM1 through CTHERM6 and RTHERM1 through RTHERM5 remain constant for each of the thermal models. A listing of the model component values is available in Table 1.

FIGURE 14. TRANSIENT THERMAL IMPEDANCE vs MOUNTING PAD AREA

SPICE Thermal Model

REV October 1998
RHR1K160D
Copper Area $=0.483 \mathrm{in}^{2}$
CTHERM1 th 8 6e-6
CTHERM2 $874 \mathrm{e}-5$
CTHERM3 76 1.5e-4
CTHERM4 $657.5 \mathrm{e}-4$
CTHERM5 54 7e-3
CTHERM6 43 2e-2
CTHERM7 32 8e-2
CTHERM8 2 tl 2.5
RTHERM1 th $85 \mathrm{e}-2$
RTHERM2 87 2.5e-1
RTHERM3 761.5
RTHERM4 652.5
RTHERM5 547.5
RTHERM6 4322
RTHERM7 3238
RTHERM8 2 tl 38

SABER Thermal Model

Copper Area $=0.483 \mathrm{in}^{2}$
template thermal_model th tl
thermal_c th, tl
\{
ctherm.ctherm1 th $8=6 \mathrm{e}-6$
ctherm.ctherm2 $87=4 \mathrm{e}-5$
ctherm.ctherm3 $76=1.5 \mathrm{e}-4$
ctherm.ctherm4 $65=7.5 \mathrm{e}-4$
ctherm.ctherm5 $54=7 \mathrm{e}-3$
ctherm.ctherm6 $43=2 \mathrm{e}-2$
ctherm.ctherm7 $32=8 \mathrm{e}-2$
ctherm.ctherm8 $2 \mathrm{tl}=2.5$
rtherm.rtherm1 th $8=5 \mathrm{e}-2$
rtherm.rtherm2 $87=2.5 \mathrm{e}-1$
rtherm. $\mathrm{rtherm3} 76=1.5$
rtherm.rtherm4 $65=2.5$
rtherm.rtherm5 $54=7.5$
rtherm.rtherm6 $43=22$
rtherm.rtherm7 $32=38$
rtherm. $\mathrm{rtherm8} 2 \mathrm{tl}=38$
\}
TABLE 1. THERMAL MODELS

COMPONENT	$\mathbf{0 . 0 2} \mathbf{~ i n}^{\mathbf{2}}$	$\mathbf{0 . 1 4} \mathbf{i n}^{\mathbf{2}}$	$\mathbf{0 . 2 5 7} \mathbf{~ i n}^{\mathbf{2}}$	$\mathbf{0 . 3 8} \mathbf{~ i n}^{\mathbf{2}}$	$\mathbf{0 . 4 8 3 ~ i n ~}^{\mathbf{2}}$
CTHERM7	$7.5 \mathrm{e}-2$	$8 \mathrm{e}-2$	$8 \mathrm{e}-2$	$8 \mathrm{e}-2$	$8 \mathrm{e}-2$
CTHERM8	1	1.5	2	2	2.5
RTHERM6	25	22	22	22	22
RTHERM7	65	45	40	38	38
RTHERM8	70	55	48	43	38

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	
A	0.0532	0.0688	1.35	1.75	-
A_{1}	0.004	0.0098	0.10	0.25	-
b	0.013	0.020	0.33	0.51	-
c	0.0075	0.0098	0.19	0.25	-
D	0.189	0.1968	4.80	5.00	2
E	0.2284	0.244	5.80	6.20	-
E_{1}	0.1497	0.1574	3.80	4.00	3
e	0.050 BSC		1.27		BSC
H	0.0099	0.0196	0.25	0.50	-
L	0.016	0.050	0.40	1.27	4

NOTES:

1. All dimensions are within allowable dimensions of Rev. C of JEDEC MS-012AA outline dated 5-90.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.006 inches $(0.15 \mathrm{~mm})$ per side.
3. Dimension " E_{1} " does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 0.010 inches (0.25 mm) per side.
4. "L" is the length of terminal for soldering.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. Controlling dimension: Millimeter.
7. Revision 8 dated 5-99.

MS-012AA

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724 .2111
FAX: (32) 2.724 .22 .05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

