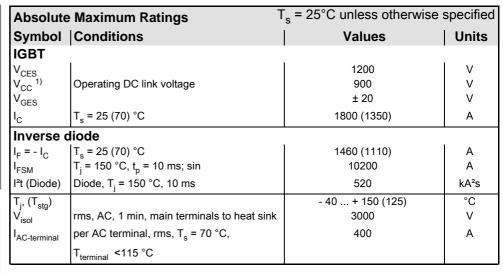
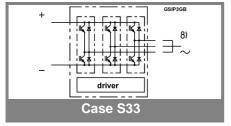

SKiiP 1803GB122-3DW

SKiiP® 3

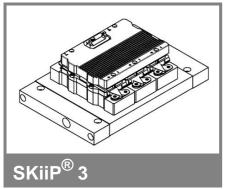

2-pack-integrated intelligent Power System

Power section SKiiP 1803GB122-3DW


Preliminary Data

Features

- · SKiiP technology inside
- SPT (Soft Punch Through) IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- AC connection busbars must be connected by the user; copper busbars available on request



Characte	Characteristics			$T_s = 25$ °C unless otherwise specified				
Symbol		ions			min.	typ.	max.	Units
IGBT						-71-		
V _{CEsat}	I _C = 900 a	A, T _j = 25 (1 t terminal	125) °C;			2,3 (2,5)	2,6	V
V _{CEO} r _{CE} I _{CES}	$T_j = 25 (1)$ $V_{GE} = 0 $	25) °C; at to 25) °C; at to /, V _{CE} = V _C	erminal			1,1 (1) 1,3 (1,7) 3,6 (108)	1,3 (1,2) 1,5 (1,9)	V mΩ mA
E _{on} + E _{off}	$T_j = 25 (125) ^{\circ}C$ $I_C = 900 A, V_{CC} = 600 V$ $T_i = 125 ^{\circ}C, V_{CC} = 900 V$			270 476			mJ mJ	
R _{CC+EE} , L _{CE}	terminal o	chip, T _j = 25 om				0,17 4		mΩ nH
C _{CHC}	1	e, AC-side				3		nF
Inverse of V _F = V _{EC}		A, T _j = 25 (1 t terminal	25) °C			1,95 (1,7)	2,1	V
V _{TO} r _T E _{rr}	_	25) °C 25) °C A, V _{CC} = 60 °C, V _{CC} = 9				1,1 (0,8) 0,9 (1) 72 92	1,2 (0,9) 1 (1,2)	V mΩ mJ mJ
Mechani	ical data							l.
M _{dc} M _{ac} w	AC termin	nals, SI Uni nals, SI Uni System w/o	ts		6 13	2,4	8 15	Nm Nm kg
w	heat sink					5,2		kg
						c.); "s" ref (acc.IEC		
$R_{th(j-s)l}$	per IGBT						0,017	K/W
$R_{th(j-s)D}$	per diode)					0,033	K/W
Z _{th}	R _i (mK/W	/) (max. valu				tau _i		
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$ $Z_{th(j-r)D}$	1,4 2,6	6,8 4	7,8 17,7	0 17,7	69 50	0,35 5	0,02 0,25	1 0,04
Z _{th(r-a)}	4,6	4,7	1,1	0,6	48	15	2,8	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

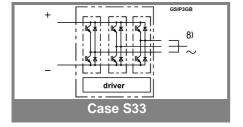
SKiiP 1803GB122-3DW

2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 1803GB122-3DW

Preliminary Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	T _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	3000	V	
V _{isolPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	10	kHz	
f _{out}	output frequency for I=I _C ; sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	$(T_a = 25^{\circ}C)$			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	278+29*f/kHz+0,00015*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	12,3		12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
tpERRRESET	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1500		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	(I _{analog} OUT = 10 V)		1875		Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not mplemente	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

