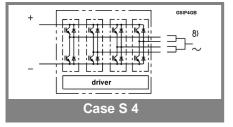

SKiiP 1092GB170-4D

SKiiP[®] 2

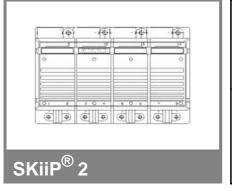
2-pack - integrated intelligent Power System

Power section


SKiiP 1092GB170-4D

Features

- SKiiP technology inside
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by user, copper busbars available on request


Absolute	Maximum Ratings	Γ _s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1700	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	1200	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	1000 (750)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	1000 (750)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	8640	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	373	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	4000	V			

Characteristics T _s = 25 °C unless otherwise specifi							specified		
Symbol Conditions				min.	typ.	max.	Units		
IGBT	Jonaide	7110				ry Pi	maxi	Omio	
V _{CEsat}	I _C = 800 A,	T. = 25 (1	25) °C		Ī	3,3 (4,3)	3,9	V	
V _{CEO}	$T_i = 25 (12)$		_0, 0			,	2 (2,3)	V	
r _{CE}	$T_i = 25 (12)$						2,4 (3,3)	mΩ	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$					(60)	4	mA	
CES	T _i = 25 (125) °C					` ,			
E _{on} + E _{off}	I _C = 800 A, V _{CC} = 900 V					690	mJ		
0	T _i = 125 °C, V _{CC} = 1200 V					1017	mJ		
R _{CC' + EE'}	terminal ch	ip, T _i = 12	5 °C			0,13		mΩ	
L _{CE}	top, bottom	ı ,				3,8		nH	
C _{CHC}	per phase,	AC-side				3,2		nF	
Inverse o	diode								
$V_F = V_{EC}$	I _F = 800 A,	$T_i = 25 (1$	25) °C			2,3 (2,1)	2,9	V	
V _{TO}	$T_i = 25 (12)$	5) °C				1,3 (1)	1,6 (1,3)	V	
r _T	$T_{j} = 25 (12)$					1,3 (1,4)	1,6 (1,7)	mΩ	
E _{rr}	$I_{\rm C} = 800 \text{A},$	$V_{CC} = 90$	0 V				85	mJ	
	$T_j = 125 ^{\circ}\text{C}$	$V_{CC} = 12$	200 V				101	mJ	
Mechani	cal data								
M _{dc}	DC termina	als, SI Unit	s		6		8	Nm	
M _{ac}	AC termina				13		15	Nm	
w	SKiiP® 2 System w/o heat sink					3,5		kg	
w	heat sink	heat sink				8,5		kg	
Thermal	characte	ristics (P16 hea	t sink; 2	75m ³ /h);	", " refer	ence to		
temperat	ture sens	or				•			
$R_{th(j-s)l}$	per IGBT						0,02	K/W	
$R_{th(j-s)D}$	per diode						0,067	K/W	
R _{th(s-a)}	per module)					0,033	K/W	
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)				
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	2	15	2	0	1	0,13	0,001	1	
$Z_{th(j-r)D}$	7	51	8	0	1	0,13	0,001	1	
$Z_{\text{th(r-a)}}$	1,6	22	7	2,4	494	165	20	0,03	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

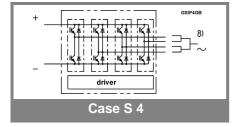
SKiiP 1092GB170-4D

Absolute Maximum Ratings		_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	4000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	7	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 1092GB170-4D


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characte	eristics	$(T_a = 25 °C)$			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	290+590	290+590*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	220+430	220+430*f/f _{max} +0,85*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance	10			kΩ
$t_{d(on)IO}$	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
tpERRRESET	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		1000		
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1250		Α
I _{TRIPLG}	ground fault protection				Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	1200			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

