TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III)

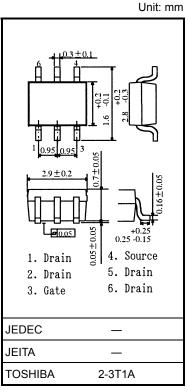
# **TPC6105**

# Notebook PC Applications Portable Equipment Applications

- Low drain-source ON resistance: RDS (ON) =  $72 \text{ m}\Omega$  (typ.)
- High forward transfer admittance:  $|Y_{fs}| = 4.7 \text{ S (typ.)}$
- Low leakage current:  $IDSS = -10 \mu A (max) (VDS = -20 V)$
- Enhancement mode:  $V_{th} = -0.5 \text{ to } -1.2 \text{ V}$

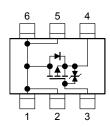
 $(V_{DS} = -10 \text{ V}, I_{D} = -200 \text{ }\mu\text{A})$ 

#### **Maximum Ratings (Ta = 25°C)**


| Characteristics                                      |       |                        | Symbol           | Rating  | Unit |  |
|------------------------------------------------------|-------|------------------------|------------------|---------|------|--|
| Drain-source voltage                                 |       |                        | $V_{DSS}$        | -20     | V    |  |
| Drain-gate voltage ( $R_{GS} = 20 \text{ k}\Omega$ ) |       |                        | $V_{DGR}$        | -20     | V    |  |
| Gate-source voltage                                  |       |                        | V <sub>GSS</sub> | ±8      | V    |  |
| Drain current                                        | DC    | (Note 1)               | I <sub>D</sub>   | -2.7    | А    |  |
| Diamicunent                                          | Pulse | (Note 1)               | $I_{DP}$         | -10.8   |      |  |
|                                                      |       | (t = 5 s)<br>(Note 2a) | $P_{D}$          | 2.2     | W    |  |
|                                                      |       | (t = 5 s)<br>(Note 2b) | $P_{D}$          | 0.7     | W    |  |
| Single pulse avalanche energy (Note 3)               |       |                        | E <sub>AS</sub>  | 1.2     | mJ   |  |
| Avalanche current                                    |       |                        | I <sub>AR</sub>  | -1.35   | Α    |  |
| Repetitive avalanche energy (Note 4)                 |       |                        | E <sub>AR</sub>  | 0.22    | mJ   |  |
| Channel temperature                                  |       |                        | T <sub>ch</sub>  | 150     | °C   |  |
| Storage temperature range                            |       |                        | T <sub>stg</sub> | -55~150 | °C   |  |

#### **Thermal Characteristics**

| Characteristics                                            | Symbol                 | Max   | Unit |
|------------------------------------------------------------|------------------------|-------|------|
| Thermal resistance, channel to ambient (t = 5 s) (Note 2a) | R <sub>th (ch-a)</sub> | 56.8  | °C/W |
| Thermal resistance, channel to ambient (t = 5 s) (Note 2b) | R <sub>th (ch-a)</sub> | 178.5 | °C/W |


Note 1, Note 2, Note 3, Note 4 and Note 5: See the next page.

This transistor is an electrostatic-sensitive device. Please handle with caution.

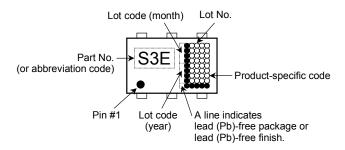


Weight: 0.011 g (typ.)

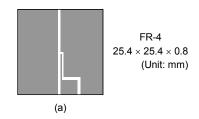
#### **Circuit Configuration**

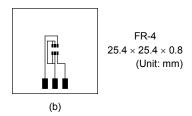


## Electrical Characteristics (Ta = 25°C)

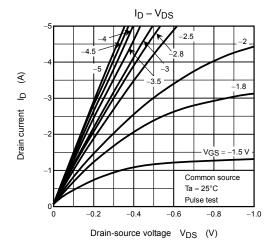

| Characteristics                                 |                           | Symbol               | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Min                | Тур. | Max  | Unit |
|-------------------------------------------------|---------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|------|------|
| Gate leakage cui                                | rrent                     | I <sub>GSS</sub>     | $V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                  | _    | ±10  | μА   |
| Drain cut-off curr                              | ent                       | I <sub>DSS</sub>     | $V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                  | _    | -10  | μА   |
| Drain-source breakdown voltage                  |                           | V (BR) DSS           | $I_D = -10 \text{ mA}, V_{GS} = 0 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -20                | _    | _    | V    |
| Diaiii-souice bie                               | ardown voltage            | V (BR) DSX           | $I_D = -10 \text{ mA}, V_{GS} = 8 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -12 — —<br>0.5 1.2 |      |      |      |
| Gate threshold v                                | oltage                    | V <sub>th</sub>      | $V_{DS} = -10 \ V, \ I_D = -200 \ \mu A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.5               | _    | -1.2 | V    |
|                                                 |                           | R <sub>DS (ON)</sub> | $V_{GS} = -1.8 \text{ V}, I_D = -0.7 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                  | 215  | 300  | mΩ   |
| Drain-source ON                                 | resistance                | R <sub>DS (ON)</sub> | $V_{GS} = -2.5 \text{ V}, I_D = -1.4 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                  | 110  | 160  |      |
|                                                 |                           | R <sub>DS (ON)</sub> | $V_{GS} = -4.5 \text{ V}, I_D = -1.4 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                  | 72   | 110  |      |
| Forward transfer                                | rward transfer admittance |                      | $V_{DS} = -10 \text{ V}, I_D = -1.4 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4                | 4.7  | _    | S    |
| Input capacitance                               |                           | C <sub>iss</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                  | 470  | _    | pF   |
| Reverse transfer capacitance                    |                           | C <sub>rss</sub>     | $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                  | 70   | _    |      |
| Output capacitance                              |                           | Coss                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                  | 80   | _    |      |
| Switching time                                  | Rise time                 | t <sub>r</sub>       | , 0 V ¬ Γ I <sub>D</sub> = −1.4 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                  | 5    | _    |      |
|                                                 | Turn-on time              | t <sub>on</sub>      | ACS -2 A ID = -1.4 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                  | 9    | _    | ns   |
|                                                 | Fall time                 | t <sub>f</sub>       | 4.7 \\ \frac{\text{4.7 \Omega}}{\text{3.7 \Omega}} \\ \frac{\text{9.7 \Omega}}{\text{9.7 \Omega}} \\ \text{8.1 \Delta 7.2 \Omega} \\ \text{8.2 \Delta 7.2 \Omega} \\ \text{8.2 \Delta 7.2 \Omega} \\ 8.2 \Delta 7.2 \Ome | _                  | 8    | _    |      |
|                                                 | Turn-off time             | t <sub>off</sub>     | $V_{DD} \simeq -10 \text{ V}$ Duty $\leqq$ 1%, $t_W = 10 \mu\text{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                  | 26   | _    |      |
| Total gate charge (gate-source plus gate-drain) |                           | Qg                   | $V_{DD} \simeq -16 \text{ V}, V_{GS} = -5 \text{ V},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    | 6    | _    |      |
| Gate-source charge                              |                           | Q <sub>gs</sub>      | $I_D = -2.7 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                  | 4    | _    | nC   |
| Gate-drain ("miller") charge                    |                           | Q <sub>gd</sub>      | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                  | 2    | _    |      |

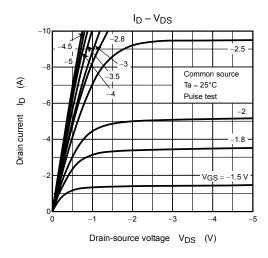
### Source-Drain Ratings and Characteristics (Ta = 25°C)

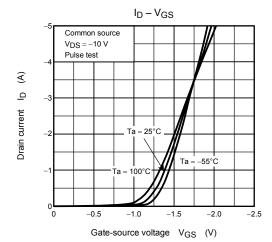

| Charact               | eristics       | Symbol           | Test Condition                                  | Min | Тур. | Max   | Unit |
|-----------------------|----------------|------------------|-------------------------------------------------|-----|------|-------|------|
| Drain reverse current | Pulse (Note 1) | I <sub>DRP</sub> | -                                               | -   | _    | -10.8 | Α    |
| Forward voltage       | (diode)        | V <sub>DSF</sub> | $I_{DR} = -2.7 \text{ A}, V_{GS} = 0 \text{ V}$ | _   | _    | 1.2   | V    |

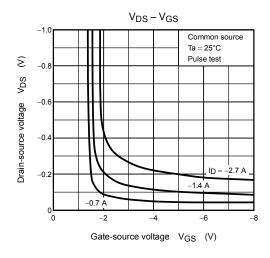

2 2004-07-01

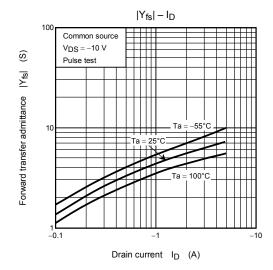
#### Marking (Note 5)

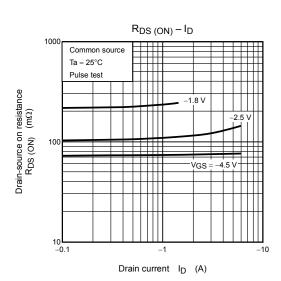


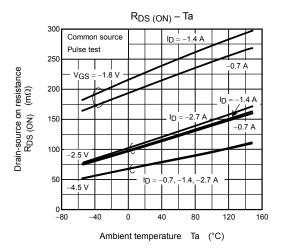


- Note 1: Ensure that the channel temperature does not exceed 150°C.
- Note 2: (a) Device mounted on a glass-epoxy board (a) (t = 5 s)
  - (b) Device mounted on a glass-epoxy board (b) (t = 5 s)

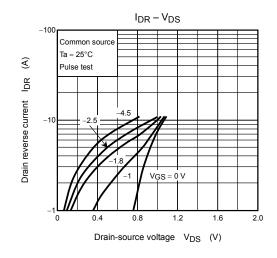


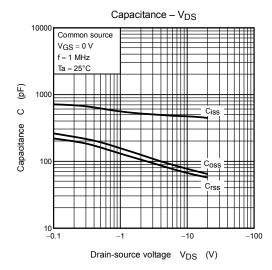



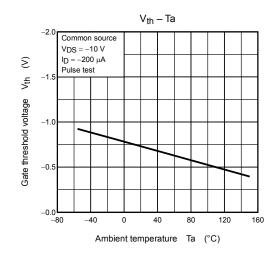


- Note 3:  $V_{DD} = -16 \text{ V}$ ,  $T_{ch} = 25^{\circ}\text{C}$  (initial), L = 0.5 mH,  $R_G = 25 \Omega$ ,  $I_{AR} = -1.35 A$
- Note 4: Repetitive rating: pulse width limited by maximum channel temperature
- Note 5: on the lower left of the marking indicates Pin 1.

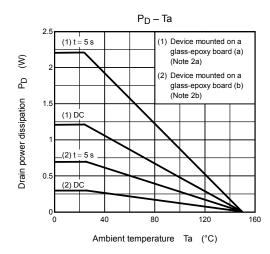


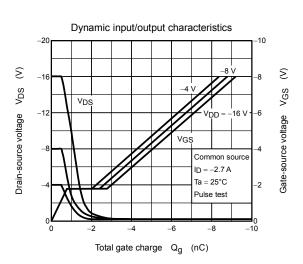



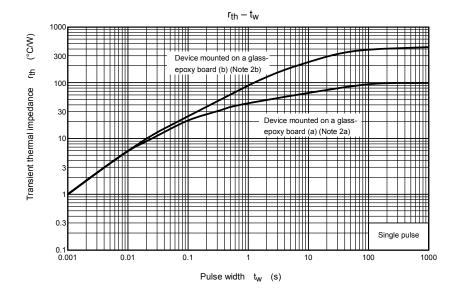



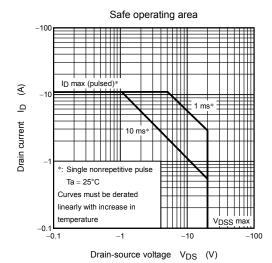










5 2004-07-01





6 2004-07-01

#### **RESTRICTIONS ON PRODUCT USE**

030619EAA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.