White LED Step-Up Regulator

élantec.

The EL7513 is a constant current boost regulator specially designed for driving white LEDs. It can drive 4 LEDs in series or up to 12 LEDs in parallel/series configuration and achieves efficiency up to 91%.

The brightness of the LEDs is adjusted through a voltage level on the CNTL pin. When the level falls below 0.1 V , the chip goes into shut-down mode and consumes less than $1 \mu \mathrm{~A}$ of supply current for V_{IN} less than 5.5 V .

The EL7513 is available in the 8-pin TSOT and 8-pin MSOP packages. The TSOT package is just 1 mm high, compared to 1.45 mm for the standard SOT23 package.

Ordering Information

PART NUMBER	PACKAGE	 REEL	PKG. DWG. \#
EL7513IWT	8-Pin TSOT	-	MDP0049
EL7513IWT-T7	8-Pin TSOT	$7 "$	MDP0049
EL7513IWT-T13	8-Pin TSOT	$13 "$	MDP0049
EL7513IY	8-Pin MSOP	-	MDP0043
EL7513IY-T7	8-Pin MSOP	$7 "$	MDP0043
EL7513IY-T13	8-Pin MSOP	$13 "$	MDP0043

Pinouts

EL7513
(8-PIN TSOT)
TOP VIEW

EL7513 (8-PIN MSOP) TOP VIEW

Features

- 2.6 V to 13.2 V input voltage
- 18 V maximum output voltage
- Drives up to 12 LEDs
- 1 MHz switching frequency
- Up to 91% efficiency
- $1 \mu \mathrm{~A}$ maximum shut-down current
- Dimming control
- 8-pin TSOT and 8-pin MSOP packages

Applications

- PDAs
- Cellular phones
- Digital cameras
- White LED backlighting

Typical Connection

Absolute Maximum R	
COMP, CNTL, CS to SGND.	-0.3V to +6V
$\mathrm{V}_{\text {IN }}$ to SGND	+14V
$V_{\text {Out }}$ to SGND	+19V
LX to PGND.	.+20V

SGND to PGND . -0.3 V to +0.3 V
Storage Temperature . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. This part is ESD sensitive. Handle with care.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad V_{I N}=3 V, V_{O}=12 V, C_{1}=4.7 \mu F, L=33 \mu H, C_{2}=1 \mu F, C_{3}=0.1 \mu F, R_{1}=5 \Omega, T_{A}=25^{\circ} C$,
Unless Otherwise Specified

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IN }}$	Input Voltage		2.6		13.2	V
$\mathrm{l}_{\text {Q1 }}$	Total Input Current at Shut-down	$\mathrm{V}_{\text {CNTL }}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{l}_{\text {Q1 }}$	Quiescent Supply Current at V_{O} Pin	$\mathrm{V}_{\text {CNTL }}=1 \mathrm{~V}$, load disconnected		1	1.5	mA
ICOMP	COMP Pin Pull-up Current	COMP connected to SGND		11	20	$\mu \mathrm{A}$
$\mathrm{V}_{\text {COMP }}$	COMP Voltage Swing		0.5	1.5	2.5	V
$\mathrm{I}_{\text {CNTL }}$	CNTL Shut-down Current	CNTL $=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CNTL1 }}$	Chip Enable Voltage		240			mV
$\mathrm{V}_{\text {CNTL2 }}$	Chip Disable Voltage				100	mV
IOUT_ACCURACY	$\mathrm{V}_{\text {CNTL }}=1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CNTL}}=1 \mathrm{~V}$	14	15	16	mA
VOUT1	Over-voltage Threshold	$\mathrm{V}_{\text {OUT }}$ rising	17	18	19	V
V ${ }_{\text {OUT2 }}$	Over-voltage Threshold	V ${ }_{\text {OUT }}$ falling, with resistive load	15	16	17.5	V
ILX	MOSFET Current Limit		500			mA
$\mathrm{R}_{\text {DS_ON }}$	MOSFET On-resistance			0.7		Ω
ILEAK	MOSFET Leakage Current	$\mathrm{V}_{\mathrm{CNTL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LX}}=12 \mathrm{~V}$			1	$\mu \mathrm{A}$
F_{S}	Switching Frequency		800	1000	1200	kHz
$\mathrm{D}_{\text {MAX }}$	Maximum Duty Ratio	$\mathrm{V}_{\mathrm{CNTL}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0$	85	90		\%
ICS	CS Input Bias Current				1	$\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{O}} / \Delta \mathrm{V}_{\text {IN }}$	Line Regulation	$\mathrm{V}_{\mathrm{IN}}=2.6 \mathrm{~V}-5.5 \mathrm{~V}$		0.03		\%/V

Pin Descriptions

8-PIN TSOT	8-PIN MSOP	PIN NAME	DESCRIPTION
1	7	COMP	Compensation pin. A compensation cap $(4700 \mathrm{pF}$ to $1 \mu \mathrm{~F})$ is normally connected between this pin and SGND.
2	8	CNTL	Control pin for dimming and shut-down. A voltage between 250mV and 5.5V controls the brightness, and less than 100 mV shuts down the converter.
3	5	VOUT	Output voltage sense. Use for over voltage protection.
4	6	LX	Inductor connection pin. The drain of internal MOSFET.
5	3	PGND	Power Ground pin. The source of internal MOSFET.
6	4	SGND	Signal Ground. Ground pin for internal control circuitry. Needs to connect to PGND at only one point.
7	1	CS	Current sense pin. Connect to sensing resistor to set the LED bias current.
8	2	VIN	Power supply for internal control circuitry.

Block Diagram

Typical Performance Curves

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega$, 4 LEDs in a series; unless otherwise specified.

FIGURE 1. SWITCHING FREQUENCY vs V_{IN}

FIGURE 2. QUIESCENT CURRENT

Typical Performance Curves (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega, 4 \mathrm{LEDs}$ in a series; unless otherwise specified.

FIGURE 3. ILED vs $\mathrm{V}_{\mathrm{CNTL}}$

FIGURE 5A. 2 LEDs IN A SERIES

FIGURE 6A. 3 LEDs IN A SERIES

FIGURE 4. ILED vs $\mathrm{V}_{\text {IN }}$

FIGURE 5B. EFFICIENCY vs Io
FIGURE 5.

FIGURE 6.

FIGURE 6B. EFFICIENCY vs lo

Typical Performance Curves (Continued)

All performance curves and waveforms are taken with $C_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega, 4 \mathrm{LEDs}$ in a series; unless otherwise specified.

FIGURE 7A. 4 LEDs IN A SERIES

FIGURE 8A. 2 LEGS OF 2 LEDs IN A SERIES

FIGURE 9A. 2 LEGS OF 3 LEDs IN A SERIES

FIGURE 9.

FIGURE 7B. EFFICIENCY vs lo
FIGURE 7.

FIGURE 8B. EFFICIENCY vs Io
FIGURE 8.

FIGURE 9B. EFFICIENCY vs Io

Typical Performance Curves (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega, 4 \mathrm{LEDs}$ in a series; unless otherwise specified.

FIGURE 10A. 2 LEGS OF 4 LEDs IN A SERIES
FIGURE 10.

FIGURE 10B. EFFICIENCY vs Io

FIGURE 11B. EFFICIENCY vs Io
FIGURE 11.

FIGURE 12A. 3 LEGS OF 3 LEDs IN A SERIES

FIGURE 12B. EFFICIENCY vs Io

Typical Performance Curves (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega$, 4 LEDs in a series; unless otherwise specified.

FIGURE 13A. 3 LEGS of 4 LEDs in a SERIES

FIGURE 13B. EFFICIENCY vs lo

FIGURE 13.

Waveforms

All performance curves and waveforms are taken with $C_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega, 4 \mathrm{LEDs}$ in a series; unless otherwise specified.

FIGURE 14. START-UP

FIGURE 16. TRANSIENT RESPONSE

$0.1 \mathrm{~ms} / \mathrm{DIV}$
FIGURE 15. SHUT-DOWN

FIGURE 17. CONTINUOUS CONDUCTION MODE

Waveforms (Continued)

All performance curves and waveforms are taken with $\mathrm{C}_{1}=4.7 \mu \mathrm{~F}, \mathrm{C}_{2}=1 \mu \mathrm{~F}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}, \mathrm{~L}=33 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CNTL}}=1 \mathrm{~V}, \mathrm{R}_{1}=5 \Omega$, 4 LEDs in a series; unless otherwise specified.

FIGURE 18. DISCONTINUOUS CONDUCTION MODE

Detailed Description

The EL7513 is a constant current boost regulator specially designed for driving white LEDs. It can drive up to 4 LEDs in series or 12 LEDs in parallel/series configuration and achieves efficiency up to 91%.
The brightness of the LEDs is adjusted through a voltage level on the CNTL pin. When the level falls below 0.1 V , the chip goes into shut-down mode and consumes less than $1 \mu \mathrm{~A}$ of current for V_{IN} less than 5.5 V .

Steady-State Operation

EL7513 is operated in constant frequency PWM. The switching is around 1 MHz . Depending on the input voltage, the inductance, the type of LEDs driven, and the LED's current, the converter operates at either continuous conduction mode or discontinuous conduction mode (see waveforms). Both are normal.

Brightness Control

LED's current is controlled by the voltage level on CNTL pin ($\mathrm{V}_{\mathrm{CNTL}}$). This voltage can be either a DC or a PWM signal with frequency less than 200 Hz (for $\mathrm{C}_{3}=4700 \mathrm{pF}$). When a higher frequency PWM is used, an RC filter is recommended before the CNTL pin (see Figure 20).

FIGURE 20. PWM BRIGHTNESS CONTROL

FIGURE 19. OVER VOLTAGE PROTECTION (LED DISCONNECTED)

The relationship between the LED current and CNTL voltage level is as follows:
$\mathrm{I}_{\mathrm{LED}}=\frac{\mathrm{V}_{\mathrm{CNTL}}}{13.33 \times \mathrm{R}_{1}}$

When R_{1} is $5 \Omega, 1 \mathrm{~V}$ of $\mathrm{V}_{\mathrm{CNTL}}$ conveniently sets $\mathrm{I}_{\mathrm{LED}}$ to 15 mA . The range of $\mathrm{V}_{\mathrm{CNTL}}$ is 250 mV to 5.5 V .

Shut-Down

When $\mathrm{V}_{\mathrm{CNTL}}$ is less than 100 mV , the converter is in shutdown mode. The max current consumed by the chip is less than $1 \mu \mathrm{~A}$ for $\mathrm{V}_{\text {IN }}$ less than 5.5 V .

Over-Voltage Protection

When an LED string is disconnected from the output, V_{O} will continue to rise because of no current feedback. When V_{O} reaches 18 V (nominal), the chip will shut down. The output voltage will drop. When V_{O} drops below 16 V (nominal), the chip will boost output voltage again until it reaches 18 V . This hiccough continues until LED is applied or converter is shut down.

When designing the converter, caution should be taken to ensure the highest operating LED voltage does not exceed 17 V , the minimum shut-down voltage. There is no external component required for this function.

Component Selection

The input and output capacitors are not very important for the converter to operate normally. The input capacitance is normally $0.22 \mu \mathrm{~F}-4.7 \mu \mathrm{~F}$ and output capacitance $0.22 \mu \mathrm{~F}-1 \mu \mathrm{~F}$. Higher capacitance is allowed to reduce the voltage/current ripple, but at added cost. Use X5R or X7R type (for its good temperature characteristics) of ceramic capacitors with correct voltage rating and maximum height.

When choosing an inductor, make sure the inductor can handle the average and peak currents giving by following formulas (80\% efficiency assumed):
$\mathrm{I}_{\mathrm{LAVG}}=\frac{\mathrm{I}_{\mathrm{O}} \times \mathrm{V}_{\mathrm{O}}}{0.8 \times \mathrm{V}_{\mathrm{IN}}}$
$I_{\text {LPK }}=I_{\text {LAVG }}+\frac{1}{2} \times \Delta I_{L}$
$\Delta \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{IN}} \times\left(\mathrm{V}_{\mathrm{O}}-\mathrm{V}_{\mathrm{IN}}\right)}{\mathrm{L} \times \mathrm{V}_{\mathrm{O}} \times \mathrm{F}_{\mathrm{S}}}$
where:

- $\Delta \mathrm{I}_{\mathrm{L}}$ is the peak-to-peak inductor current ripple in Ampere
- Linductance in $\mu \mathrm{H}$
- FS switching frequency, typical 1 MHz

A wide range of inductance $(6.8 \mu \mathrm{H}-68 \mu \mathrm{H})$ can be used for the converter to function correctly. For the same series of inductors, the lower inductance has lower DC resistance (DCR), which has less conducting loss. But the ripple current is bigger, which generates more RMS current loss. Figure 11 shows the efficiency of the demo board under different inductance for a specific series of inductor. For optimal efficiency in an application, it is a good exercise to check several adjacent inductance values of your preferred series of inductors.

For the same inductance, higher overall efficiency can be obtained by using lower DCR inductor.

FIGURE 21. EFFICIENCY OF DIFFERENT INDUCTANCE (4 LEDs IN A SERIES)

The diode should be Schottky type with minimum reverse voltage of 20 V . The diode's peak current is the same as inductor's peak current, the average current is I_{O}, and RMS current is:
$I_{\text {DRMS }}=\sqrt{I_{\text {LAVG }} \times I_{O}}$
Ensure the diode's ratings exceed these current requirements.

White LED Connections

One leg of LEDs connected in series will ensure the uniformity of the brightness. 18 V maximum voltage enables 4 LEDs can be placed in series.

However, placing LEDs into series/parallel connection can give higher efficiency as shown in the efficiency curves. One of the ways to ensure the brightness uniformity is to prescreen the LEDs.

PCB Layout Considerations

The layout is very important for the converter to function properly. Power Ground ($\frac{1}{\square}$) and Signal Ground ($\stackrel{\perp}{=}$) should be separated to ensure the high pulse current in the power ground does not interference with the sensitive signals connected to Signal Ground. Both grounds should only be connected at one point right at the chip. The heavy current paths ($\mathrm{V}_{I N}-\mathrm{L}-\mathrm{L}_{\mathrm{X}}$ pin-PGND, and $\mathrm{V}_{I N}-\mathrm{L}-\mathrm{D}-\mathrm{C}_{2}-\mathrm{PGND}$) should be as short as possible.

The trace connected to the CS pin is most important. The current sense resister R_{1} should be very close to the pin When the trace is long, use a small filter capacitor close to the CS pin.

The heat of the IC is mainly dissipated through the PGND pin. Maximizing the copper area around the plane is preferable. In addition, a solid ground plane is always helpful for the EMI performance.

The demo board is a good example of layout based on the principle. Please refer to the EL7513 Application Brief for the layout.

Package Outline Drawing

NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please refer to the Intersil website at http://www.intersil.com/design/packages/index.asp

Package Outline Drawing

NOTE: The package drawing shown here may not be the latest version. To check the latest revision, please reter to the Intersil website at http://www.intersil.com/design/packages/index.asp

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

