

1048576-BIT(65536-WORD BY 16-BIT)CMOS STATIC RAM

DESCRIPTION

The M5M51R16AWG is a 1048576-bit CMOS static RAM organized as 65536 words by 16-bits, which are fabricated using high-performance CMOS technology. The use of CMOS cells and periphery results in a high density and low power static RAM.

The M5M51R16AWG can achieve low stand-by current and low operation current and ideal for the battery back-up application.

The M5M51R16AWG is packaged in a 48-pin chip scale package which is a high reliability and high density surface mount device (SMD). Using this type of devices, it becomes very easy to design a small system.

The M5M51R16AWG is fully compatible with the M5M51R16WG.

FEATURE

	A tim	Power supply current			
Type name	Access time (max)	Active (max)	Stand-by (max)		
M5M51R16AWG- 10L M5M51R16AWG- 12L M5M51R16AWG- 15L	100ns 120ns 150ns	10mA	4µA		
M5M51R16AWG- 10H M5M51R16AWG- 12H M5M51R16AWG- 15H	100ns 120ns 150ns	(1MHz)	2µA		

- Single +1.8V~2.7V power supply
- Low power down current 0.05µA(typ.)
- Directly TTL compatible : All inputs and outputs
- Easy memory expansion and power down by S,BC1 and BC2
- Data hold on +1.0V power supply
- Three-state outputs : OR-tie capability
- OE prevents data contention in the I/O bus
- Common data I/O
- Separate control of lower and upper bytes by BC1 and BC2
- Package

48-pin chip scale package(CSP)

Ball pitch : 0.75mm

Package size: 7.0mm x 8.5mm

APPLICATION

Small capacity memory units.

PIN CONFIGURATION (TOP VIEW)

	_1	2	3	4	5	6	
A	BC1	OE	\bigcap_{A_6}	O A ₃	\bigcap_{A_0}	O	
В	O DQ16	O BC2	O A7	O_{A_2}	O s	O DQ1	
С	O DQ14	DQ ₁₅	O A5	O A1	O DQ ₂	O DQ3	
D	GND	DQ ₁₃	O NC	O A4	DQ ₄	Vcc	
E	Vcc	DQ ₁₂	GND	O NC	DQ ₅	GND	
F	DQ ₁₁	DQ ₁₀	O A9	A14	DQ ₇	DQ ₆	
G	DQ ₉	NC O	A ₁₀	A13	O W	DQ8	
Н	NC	A ₈	A ₁₁	A12	A15	NC	

PIN CONFIGURATION (BOTTOM VIEW)

	6	5	4	3	2	1	
Α	O	O Ao	O A ₃	\bigcap_{A_6}	OE	O BC1	
В	O DQ1	O S	O	O A7	O BC2	DQ ₁₆	
С	O DQ₃	O	O A1	O A5	O DQ ₁₅	O DQ14	
D	Vcc	ODQ4	\bigcap_{A^4}	O NC	O DQ13	GND	
Е	GND	O DQ5	O NC	GND	O DQ12	Vcc	
F	DQ ₆	DQ ₇	O A14	O A9	DQ ₁₀	DQ ₁₁	
G	DQ8	O W	A13	A ₁₀	O NC	DQ9	
Н	NC	A ₁₅	A ₁₂	A ₁₁	O A8	NC	

Outline 48FJA

NC: NO CONNECTION

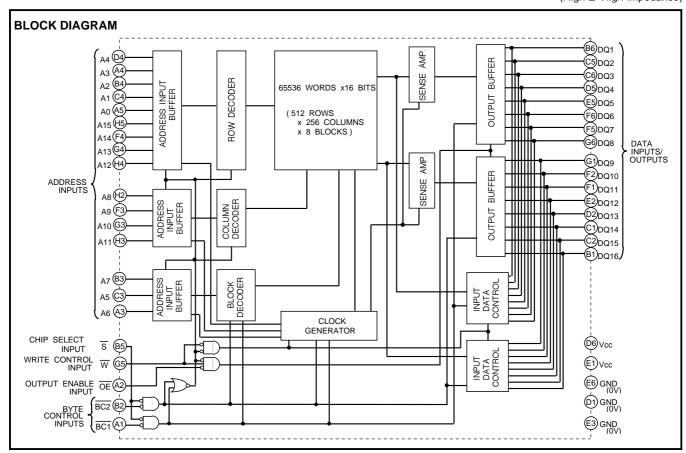
1048576-BIT(65536-WORD BY 16-BIT)CMOS STATIC RAM

FUNCTION

The operation mode of the M5M51R16A series are determined by a combination of the device control inputs S, W, OE, BC1 and BC2. Each mode is summarized in the function table.

A write cycle is executed whenever the low level \overline{W} overlaps with the low level $\overline{BC1}$ and/or $\overline{BC2}$ and the low level \overline{S} . The address must be set up before the write cycle and must be stable during the entire cycle. The data is latched into a cell on the trailing edge of \overline{W} , $\overline{BC1}$, $\overline{BC2}$ or \overline{S} , whichever occurs first, requiring the set-up and hold time relative to these edge to be maintained. The output enable input \overline{OE} directly controls the output stage. Setting the \overline{OE} at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated.

A read cycle is executed by setting \overline{W} at a high leveland \overline{OE} at a low level while $\overline{BC1}$ and/or $\overline{BC2}$ and \overline{S} are in an active state. ($\overline{BC1}$ and/or $\overline{BC2}$ =L, \overline{S} =L)


When setting BC1 at a high level and the other pins are in an active state, upper-Byte are in a selectable mode in which both reading and writing are enabled, and lower -Byte are in a non-selectable mode. And when setting BC2 at a high level and the other pins are in an active state, lower-Byte are in a selectable mode in which both reading and writing are enabled, and upper -Byte are in a non-selectable mode.

When setting $\overline{BC}1$ and $\overline{BC}2$ at a high level or \overline{S} at a high level, the chips are in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing \overline{OR} -tie with other chips and memory expansion by $\overline{BC}1$, $\overline{BC}2$ and \overline{S} . \overline{S} , $\overline{BC}1$ and $\overline{BC}2$ control the power down feature. When \overline{S} , $\overline{BC}1$ and $\overline{BC}2$ go high, the power supply current is reduced as low as the stand-by current which is specified as Icc3 or Icc4, and the memory data can be held at +1.0V power supply, enabling battery back-up operation during power-failure or power-down operation in the non-selected mode.

FUNCTION TABLE

s	\overline{W}	ŌE	BC1	BC2	Mode	DQ1~8	DQ9~16	Icc
L	Η	L	L	L	Word Read	Dout	Dout	Active
L	Н	L	Η	L	Upper-Byte Read (Lower-Byte Non selection)	High-Z	Dout	Active
L	Η	┙	L	Ι	Lower-Byte Read (Upper-Byte Non selection)	Dout	High-Z	Active
L	L	Χ	L	L	Word Write	Din	Din	Active
L	┙	Х	H	ш	Upper-Byte Write (Lower-Byte Non selection)	High-Z	Din	Active
L	L	Х	L	Η	Lower-Byte Write (Upper-Byte Non selection)	Din	High-Z	Active
L	Η	Ι	Х	Χ	Output disable	High-Z	High-Z	Active
Χ	Х	Χ	Н	Η	Non selection	High-Z	High-Z	Stand-by
Н	Х	Х	Х	Χ	Non selection	High-Z	High-Z	Stand-by

(High-Z=High-impedance)

1048576-BIT(65536-WORD BY 16-BIT)CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.2 ~ 4.6	V
Vı	Input voltage	With respect to GND	-0.2* ~ Vcc+0.2(max.4.6V)	V
Vo	Output voltage		0 ~ Vcc	V
Pd	Power dissipation	Ta=25°C	1	W
Topr	Operating temperature		0 ~ 70	°C
Tstg	Storage temperature		-65 ~150	°C

^{* -1.0}V in case of AC (Pulse width 30ns)

DC ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70°C, Vcc = 1.8V~2.7V, unless otherwise noted)

Curah al	Davamatar	Conditions		I		1 1 14	
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Vih	High-level input voltage			0.7 x Vcc		Vcc+0.2V	٧
VIL	Low-level input voltage			-0.2*		0.4	V
Vон	High-level output voltage	Iон = -0.1mA		1.6			٧
Vol	Low-level output voltage	IoL = 0.1mA				0.2	٧
lı .	Input current	V _I =0 ~Vcc				±1	μΑ
lo	Output current in off-state	$\overline{BC1}$ and $\overline{BC2}$ = ViH or \overline{S} = ViH or \overline{OE} = ViH, Vi/O = 0~ Vcc				±1	μΑ
Icc1w	Word operation(16bit)	BC1 and BC2 = VIL, S = VIL other inputs = VIH or VIL	Min cycle		15	25	mA
Icc2w	Active supply current (AC,TTL level)		1MHz		7	10	mΑ
Ісс1в	Byte operation(8bit)	$(\overline{BC}1 = V_{IH} \text{ and } \overline{BC}2 = V_{IL}) \text{ or } (\overline{BC}1 = V_{IL} \text{ and } \overline{BC}1 = V_{IL})$	Min cycle		10	15	mΑ
Ісс2в	Active supply current (AC,TTL level)	$\overline{BC2} = V_{IH}$), $\overline{S} = V_{IL}$, other inputs = V_{IH} or V_{IL} Output-open(duty 100%)	1MHz		5	8	mA
Іссз	Stand-by current	1) \overline{S} Vcc-0.2V, other inputs = 0~Vcc	-L			4	μΑ
1003	Stand-by current	2) BC1 and BC2 Vcc-0.2V,S 0.2V, other inputs = 0~Vcc				2	μΑ
Icc4	Stand-by current	BC1 and BC2 = VIH or S = VIH, other inputs = 0~Vcc	-			0.3	mΑ

^{* -1.0}V in case of AC (Pulse width 30ns)

CAPACITANCE (Ta = $0 \sim 70^{\circ}$ C, Vcc = $1.8V\sim2.7V$, unless otherwise noted)

Symbol	Parameter	Conditions		Unit		
	i didiffetei	Conditions	Min	Тур	Max	Offic
Сі	Input capacitance	Vı=GND, Vi=25mVrms, f=1MHz			6	pF
Со	Output capacitance	Vo=GND, V₀=25mVrms, f=1MHz			10	pF

Note 1: Direction for current flowing into an IC is positive (no mark).

Note 2: Typical value is Vcc = 2.0V, Ta = 25°C

Note 3: C₁,C₀ are periodically sampled and are not 100% tested.

1048576-BIT(65536-WORD BY 16-BIT)CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $Vcc = 1.8V\sim2.7V$, unless otherwise noted) (1) MEASUREMENT CONDITIONS

Input pulse level • • • • • VIH = $0.7 \times Vcc + 0.2V$, VIL = 0.2V

Input rise and fall time • • • 5ns

Reference level • • • • • • VoH = 0.9V, VoL = 0.9V

Output loads • • • • • • • Fig.1, $C_L = 30pF$

 $C_L = 5pF$ (for ten, tdis)

Transition is measured ±200mV from steady state voltage. (for ten, tdis)

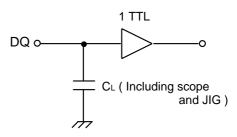
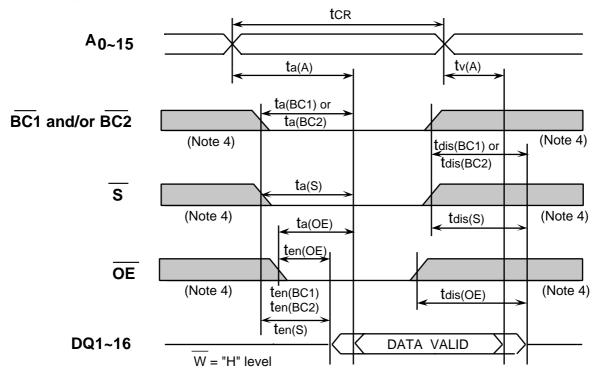


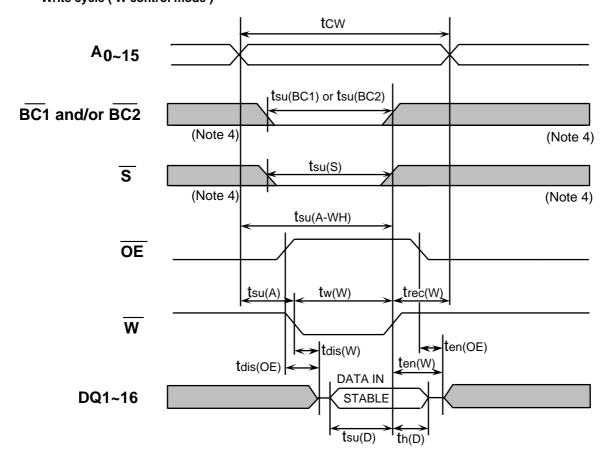
Fig.1 Output load

(2) READ CYCLE

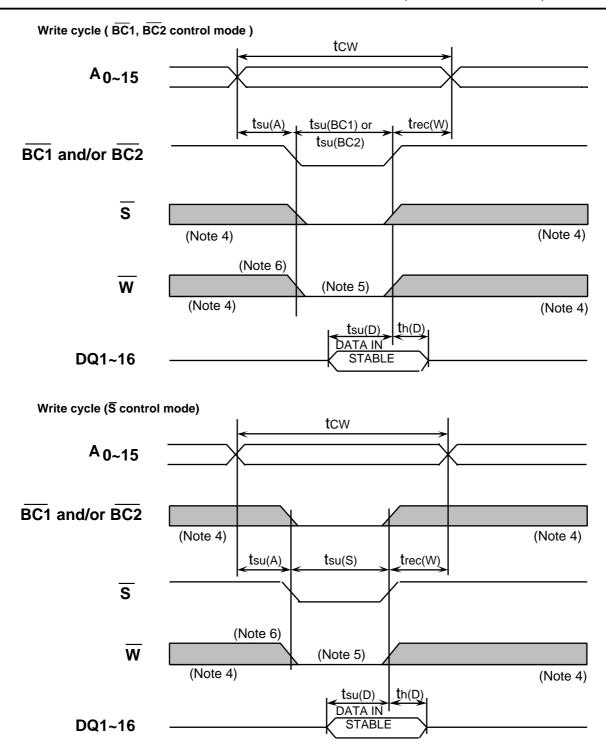
		Limits						
Symbol	Parameter	-10L,-10H		-12L,-12H		-15L,-15H		Unit
		Min	Max	Min	Max	Min	Max	
tcr	Read cycle time	100		120		150		ns
ta(A)	Address access time		100		120		150	ns
ta(S)	Chip select access time		100		120		150	ns
ta(BC1)	BC1 access time		100		120		150	ns
ta(BC2)	BC2 access time		100		120		150	ns
ta(OE)	Output enable access time		50		60		75	ns
tdis(S)	Output disable time after S high		35		40		50	ns
tdis(BC1)	Output disable time after BC1 high		35		40		50	ns
tdis(BC2)	Output disable time after BC2 high		35		40		50	ns
tdis(OE)	Output disable time after OE high		35		40		50	ns
ten(S)	Output enable time after \overline{S} low	10		10		10		ns
ten(BC1)	Output enable time after BC1 low	10		10		10		ns
ten(BC2)	Output enable time after BC2 low	10		10		10		ns
ten(OE)	Output enable time after OE low	5		5		5		ns
t∨(A)	Data valid time after address change	10		10		10		ns


(3)WRITE CYCLE

			Limits					
Symbol	Parameter	-10L	,-10H	-12L,	-12H	-15L	,-15H	Unit
		Min	Max	Min	Max	Min	Max]
tcw	Write cycle time	100		120		150		ns
tw(W)	Write pulse width	75		85		100		ns
tsu(A)	Address set up time	0		0		0		ns
tsu(A-WH)	Address set up time with respect to $\overline{\mathbb{W}}$	85		100		120		ns
tsu(BC1)	BC1 setup time	85		100		120		ns
tsu(BC2)	BC2 setup time	85		100		120		ns
tsu(S)	Chip select set up time	85		100		120		ns
tsu(D)	Data set up time	50		55		60		ns
th(D)	Data hold time	0		0		0		ns
trec(W)	Write recovery time	0		0		0		ns
tdis(W)	Output disable time after $\overline{\overline{W}}$ low		35		40		50	ns
tdis(OE)	Output disable time after OE high		35		40		50	ns
ten(W)	Output enable time after W high	5		5		5		ns
ten(OE)	Output enable time after OE low	5		5		5		ns
ten(BC1)	Output enable time after BC1 low	10		10		10		ns
ten(BC2)	Output enable time after BC2 low	10		10		10		ns


1048576-BIT(65536-WORD BY 16-BIT)CMOS STATIC RAM

(4) TIMING DIAGRAMS


Read cycle

Write cycle (W control mode)

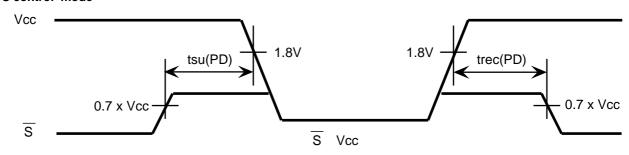
1048576-BIT(65536-WORD BY 16-BIT)CMOS STATIC RAM

- Note 4: Hatching indicates the state is "don't care".
- Note 5: Writing is executed while \overline{S} low overlaps $\overline{BC1}$ and/or $\overline{BC2}$ low and \overline{W} low.
- Note 6: When the falling edge of \overline{W} is simultaneously or prior to the falling edge of $\overline{BC1}$ and/or $\overline{BC2}$ or falling edge of \overline{S} , the outputs are maintained in the high impedance state.
- Note 7:Don't apply inverted phase signal externally when DQ pin is output mode.
- Note 8:ten,tdis are periodically sampled and are not 100% tested.
- Note 9:tCR(Read cycle time) is defined as whole time from reading address set up to this address change under read mode set condition by $\overline{S}, \overline{W}, \overline{OE}, \overline{BC1}$ and/or $\overline{BC2}$.
- Note 10:tCW(Write cycle time) is defined as whole time from writing address set up to this address change under write mode set condition by $\overline{S}, \overline{W}, \overline{BC}1$ and/or $\overline{BC}2$.

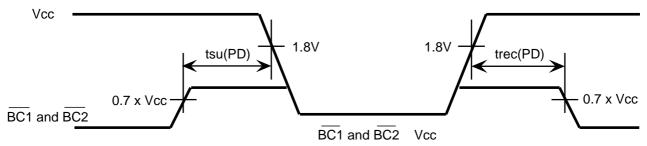
1048576-BIT(65536-WORD BY 16-BIT)CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)


	5	-		Limits			
Symbol	Parameter	Test conditions		Min	Тур	Max	Unit
Vcc(PD)	Power down supply voltage			1.0			V
Vivo	Ohio a alaat isaast 🔽	1.8V Vcc(PD)		0.7 x Vcc			
VI(S)	V _I (S) Chip select input S	1.0V Vcc(PD) 1.8V			Vcc(PD)		
VI(BC)	Byte control inputs BC1 and	1.8V Vcc(PD)		0.7 x Vcc			\ \
VI(BC)	BC2	1.0V Vcc(PD) 1.8V		Vcc(PD)		V	
Icc(PD) Power down s	Power down supply current	$V_{\underline{C}C} = 2.0V$ 1) \overline{S} $V_{\underline{C}C} = 0.2V$ other inputs = 0~V_{\underline{C}C}	-L			2	
		2) BC1 and BC2 Vcc - 0.2V S 0.2V,other inputs = 0~Vcc	-H		0.05	1	μA

(2) TIMING REQUIREMENTS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)


Symbol	Parameter	Test conditions		Unit		
		rest conditions	Min	Тур	Max	Offic
tsu(PD)	Power down set up time		0			ns
trec(PD)	Power down recovery time		5			ms

(3) POWER DOWN CHARACTERISTICS

S control mode

BC1 and BC2 control mode

