FAIRCHILD

SEMICONDUCTOR TM

74LCX540 Low Voltage Octal Buffer/Line Driver with 5V Tolerant Inputs and Outputs

General Description

The LCX540 is an octal buffer/line driver designed to be employed as a memory and address driver, clock driver and bus oriented transmitter/receiver.

This device is similar in function to the LCX240 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes this device especially useful as an output port for microprocessors, allowing ease of layout and greater PC board density.

The LCX540 is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The LCX540 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

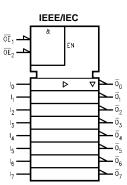
- 5V tolerant inputs and outputs
- \blacksquare 2.3V–3.6V V_{CC} specifications provided
- \blacksquare 6.5 ns t_{PD} max (V_{CC} = 3.3V), 10 μA I_{CC} max
- Power down high impedance inputs and outputs

March 1995

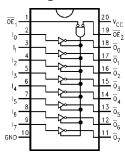
Revised March 2001

- Supports live insertion/withdrawal (Note 1)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mAESD performance:
- Human body model > 2000V

Machine model > 200V


Note 1: To ensure the high-impedance state during power up or down, \overline{OE} should be tied to V_{CC} through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:


Order Number	Package Number	Package Description
74LCX540WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX540SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX540MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LCX540MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

© 2001 Fairchild Semiconductor Corporation DS012403

www.fairchildsemi.com

Pin Descriptions

74LCX540

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I ₀ —I ₇	Inputs
$\overline{O}_0 - \overline{O}_7$	Outputs

Truth Table

	Inputs		Outputs
OE ₁	OE 2	I	\overline{O}_n
L	L	Н	L
н	х	х	Z
Х	н	Х	Z
L	L	L	н

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 3)	v	
lıк	DC Input Diode Current	-50	V _I < GND	mA	
l _{ок}	DC Output Diode Current	-50	V _O < GND	mA	
		+50	$V_{O} > V_{CC}$	MA	
lo	DC Output Source/Sink Current	±50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions (Note 4)

Symbol	Parameter			Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	N	
		Data Retention	1.5	3.6	V	
/	Input Voltage		0	5.5	V	
V _o	Output Voltage	HIGH or LOW State	0	V _{CC}	V	
		3-STATE	0	5.5	v	
_{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$		±24		
		$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$ $V_{CC} = 2.3V - 2.7V$		±12	mA	
		$V_{CC}=2.3V-2.7V$		±8		
Γ _A	Free-Air Operating Temperature		-40	85	°C	
Δt/ΔV	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$		0	10	ns/V	

Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: I_{O} Absolute Maximum Rating must be observed.

Note 4: Unused (inputs or I/O's) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	T _A = -40°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Farameter	Conditions	(V)	Min Max		Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v
			2.7 – 3.6	2.0		v
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	v
			2.7 – 3.6		0.8	v
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	2.3 - 3.6	V _{CC} - 0.2		
		I _{OH} = -8 mA	2.3	1.8		-
		$I_{OH} = -12 \text{ mA}$	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		I _{OL} = 8 mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_1 \le 5.5V$	2.3 - 3.6		±5.0	μΑ
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	
		$V_I = V_{IH}$ or V_{IL}	2.3 - 3.0		± 3 .0	μA
IOFF	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0	1	10	μA

74LCX540

74LCX540

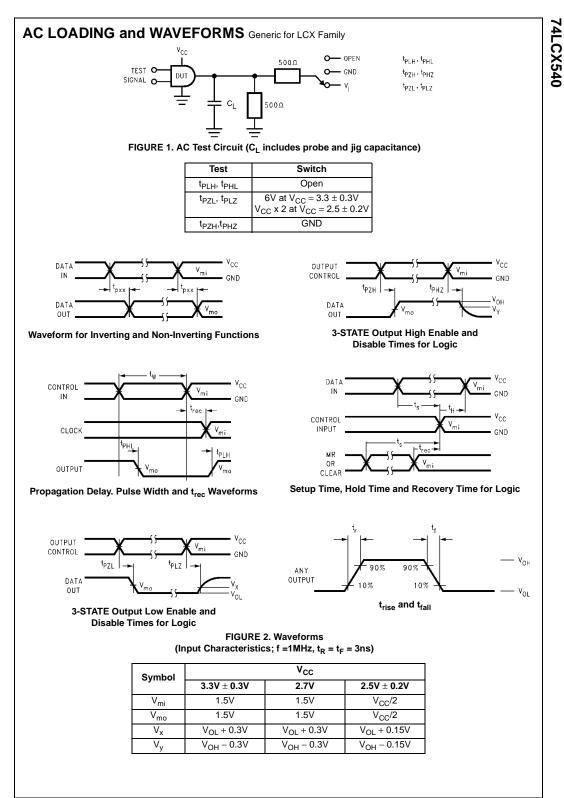
DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
Gymbol	i arameter	Conditions	(V)	Min	Max	Unita
I _{CC}	Quiescent Supply Current	$V_I = V_{CC} \text{ or } GND$	2.3 - 3.6		10	μA
		$3.6V \le V_I, V_O \le 5.5V$ (Note 5)	2.3 - 3.6		±10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μΑ

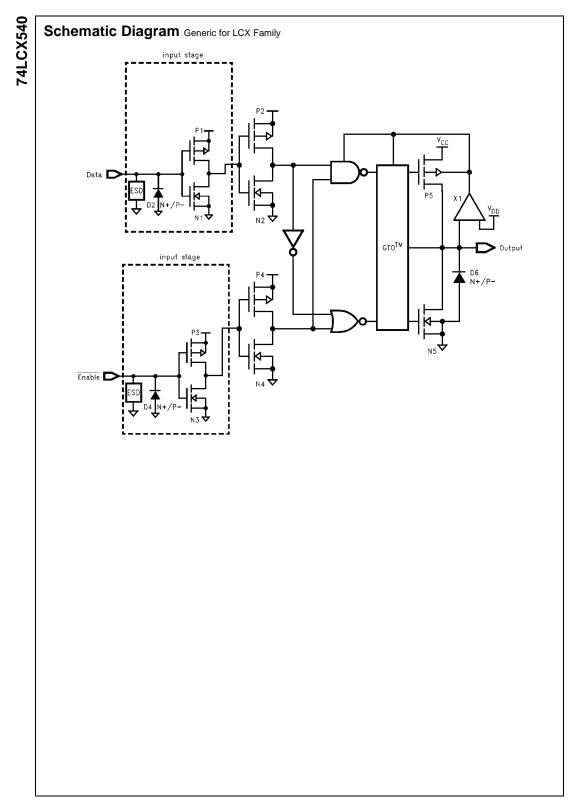
Note 5: Outputs disabled or 3-STATE only.

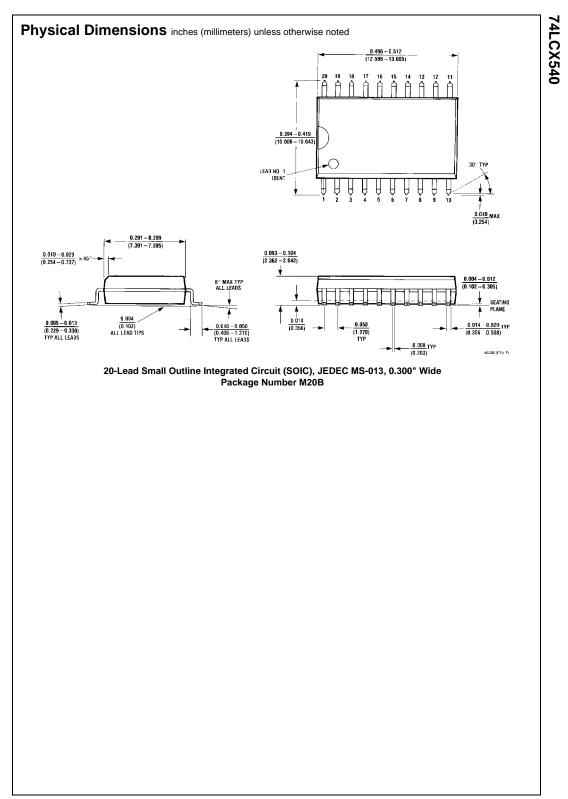
AC Electrical Characteristics

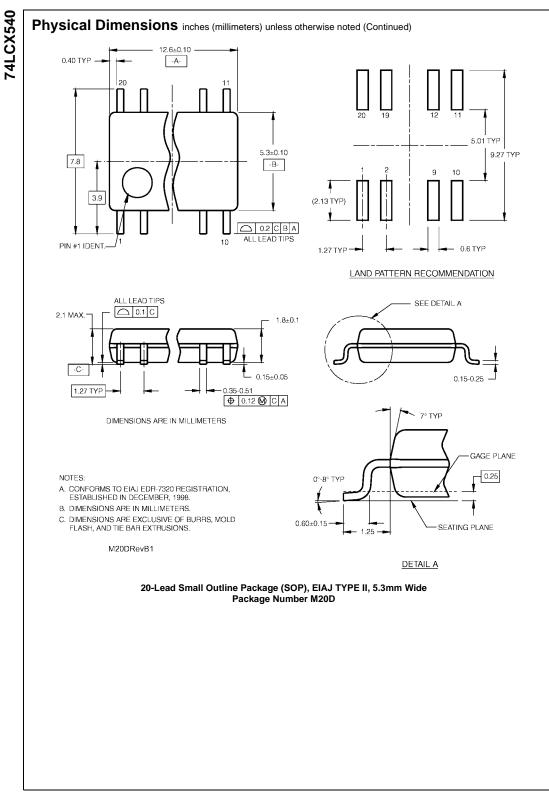
			$\mathbf{T}_{\mathbf{A}} = -40^{\circ}\mathbf{C} \text{ to } +85^{\circ}\mathbf{C}, \ \mathbf{R}_{\mathbf{L}} = 500\Omega$					
Symbol	Parameter	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC}	= 2.7V	V _{CC} = 2	$2.5V \pm 0.2V$	Units
	Falameter	C _L =	C _L = 50pF		$C_L = 50 pF$		C _L = 30 pF	
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	6.5	1.5	7.5	1.5	7.8	-
t _{PLH}		1.5	6.5	1.5	7.5	1.5	7.8	ns
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	
t _{PZH}		1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{PHZ}		1.5	7.5	1.5	8.5	1.5	9.0	115
t _{OSHL}	Output to Output Skew (Note 6)		1.0					-
t _{OSLH}			1.0					ns

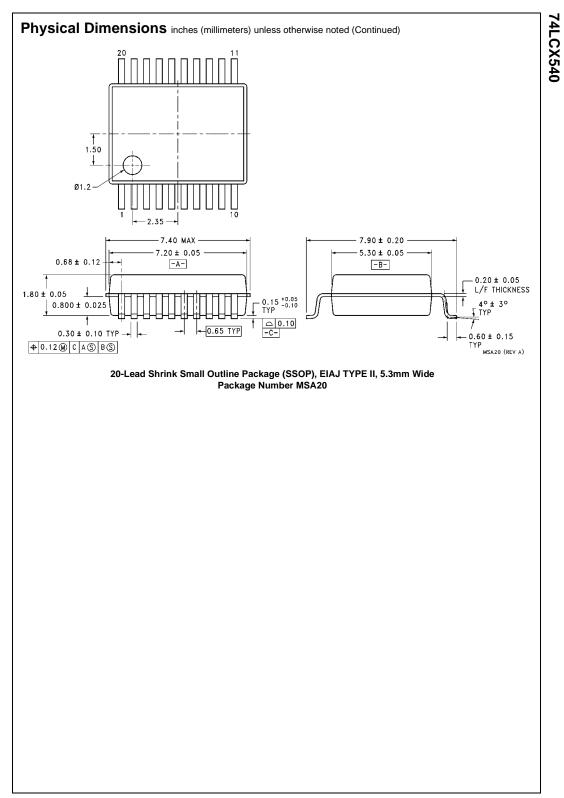

Note 6: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

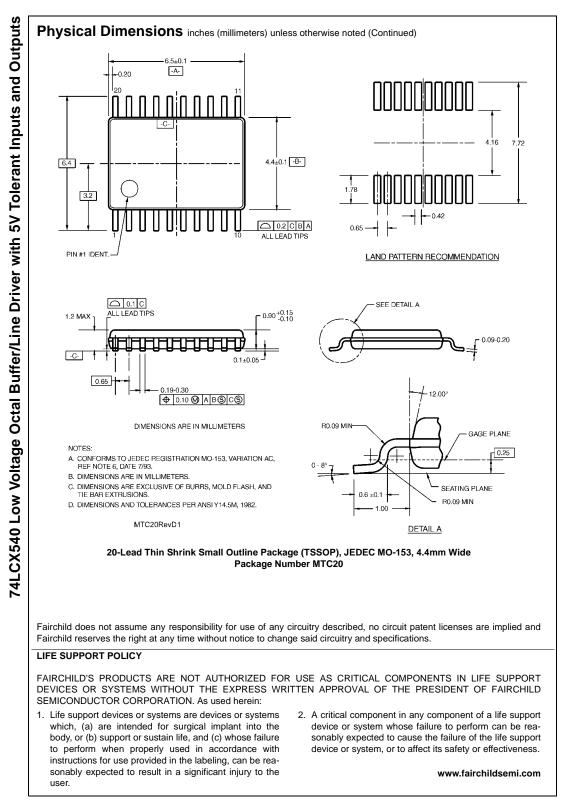
Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{cc}	$T_A = 25^{\circ}C$	Units
Gymbol	Falameter	Conditions	(V)	Typical	onita
VOLP	Quiet Output Dynamic Peak VOL	$C_L = 50 \text{ pF}, \text{ V}_{IH} = 3.3 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, \text{ V}_{IH} = 3.3 \text{V}, \text{ V}_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V _{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_{I} = 0V$ or V_{CC} , f = 10 MHz	25	pF




www.fairchildsemi.com

www.fairchildsemi.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.