

April 1983 Revised October 2000

74F564

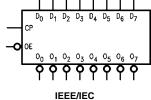
Octal D-Type Flip-Flop with 3-STATE Outputs

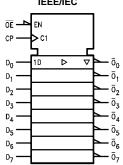
General Description

The 74F564 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable $\overline{(\text{OE})}$. The information presented to the D inputs is sorted in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

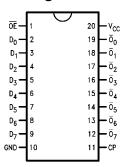
This device is functionally identical to the 74F574, but has inverted outputs.

Features


- Inputs and outputs on opposite sides of package allow easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 74F574
- 3-STATE outputs for bus-oriented applications


Ordering Code:

Order Number	Package Number	Package Description				
74F564SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74F564PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

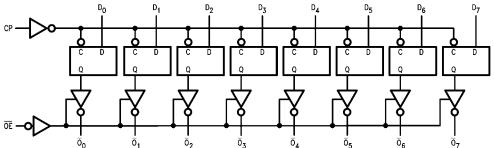
Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
D ₀ -D ₇	Data Inputs	1.0/1.0	20 μA/–0.6 mA	
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 μA/–0.6 mA	
OE	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA	
$\overline{O}_0 - \overline{O}_7$	3-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)	

Functional Description

The 74F564 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable $(\overline{\text{OE}})$ LOW, the contents of the eight flip-flops are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops.

Function Table


Inputs			Internal	Outputs	Function		
OE	СР	D	Q	0	Function		
Н	Н	L	NC	Z	Hold		
Н	Н	Н	NC	Z	Hold		
Н	~	L	Н	Z	Load		
Н	~	Н	L	Z	Load		
L	~	L	Н	Н	Data Available		
L	~	Н	L	L	Data Available		
L	Н	L	NC	NC	No Change in Data		
L	Н	Н	NC	NC	No Change in Data		

- H = HIGH Voltage Level L = LOW Voltage Level
- Z = High Impedance

 = LOW-to-HIGH Transition

 NC = No Change
- X = Immaterial NC = No Chang

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias $-55^{\circ}C$ to $+150^{\circ}C$ V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V-0.5V to +7.0V

Input Voltage (Note 2) Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC}

3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

Recommended Operating Conditions

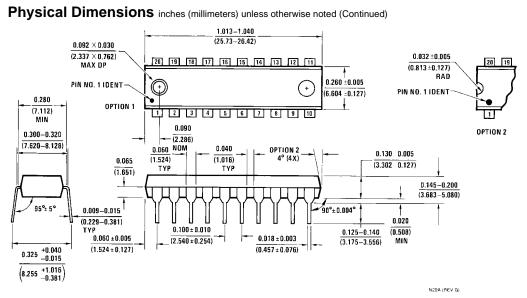
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Parameter M		Min Typ		Max	Units	v _{cc}	Conditions		
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal				
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal				
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA				
V _{OH}	Output HIGH 10% V _{CC}		2.5				I _{OH} = -1 mA					
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$				
		$5\% V_{CC}$	2.7			V	IVIIII	$I_{OH} = -1 \text{ mA}$				
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$				
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA				
I _{IH}	Input HIGH Current				5.0	μА	Max	V _{IN} = 2.7V				
I _{BVI}	Input HIGH Current Breakdown Test				7.0	μА	Max	V _{IN} = 7.0V				
I _{CEX}	Output HIGH Leakage Current				50	μА	Max	V _{OUT} = V _{CC}				
V _{ID}	Input Leakage Test		4.75			٧	0.0	I _{ID} = 1.9 μA All Other Pins Grounded				
I _{OD}	Output Leakage Circuit Current				3.75	μА	0.0	V _{IOD} = 150 mV All Other Pins Grounded				
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$				
I _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V				
l _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V				
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V				
I _{ZZ}	Bus Drainage Test				500	μА	0.0V	V _{OUT} = 5.25V				
I _{CCZ}	Power Supply Current			55	86	mA	Max	V _O = HIGH Z				


AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			T _A = 0°C V _{CC} = C _L =	Units	
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100			70		MHz
t _{PLH}	Propagation Delay	2.5	5.2	8.5	2.5	8.5	
t _{PHL}	CP to \overline{O}_n	2.5	5.9	8.5	2.5	8.5	ns
t _{PZH}	Output Enable Time	3.0	5.6	9.0	2.5	10.0	
t _{PZL}		3.0	6.2	9.0	2.5	10.0	ns
t _{PHZ}	Output Disable Time	1.5	3.4	5.5	1.5	6.5	115
t_{PLZ}		1.5	2.7	5.5	1.5	6.5	

AC Operating Requirements

Symbol	Parameter		+25°C +5.0V	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$		Units
- Cymbei	, a.a		Max	Min	Max	O.I.I.S
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0		
t _S (L)	D _n to CP	2.5		2.5		ns
t _H (H)	Hold Time, HIGH or LOW	2.0		2.0		115
t _H (L)	D _n to CP	2.0		2.0		
t _W (H)	CP Pulse Width	5.0		5.0		ns
t _W (L)	HIGH or LOW	5.0		5.0		115

Physical Dimensions inches (millimeters) unless otherwise noted 12.6±0.10 -A-5.01 TYP 5.3±0.10 9.27 TYP 7.8 -B-0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-0.6 TYP 1.27 TYP LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 2.1 MAX. 1.8±0.1 0.15-0.25 0.15±0.05 1.27 TYP DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES: A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15 SEATING PLANE 1.25 -M20DRevB1 DETAIL A 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.