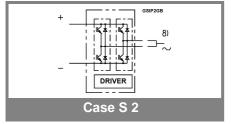

SKiiP 592GB170-2D

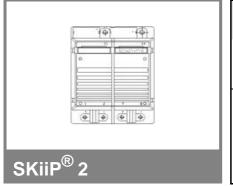
2-pack - integrated intelligent Power System

Power section


SKiiP 592GB170-2D

Features

- · SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- 1) with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by user, copper busbars available on request


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1700	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	1200	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	500 (375)	Α			
Inverse diode						
I _F = - I _C	T _s = 25 (70) °C	500 (375)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	4320	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	93	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	4000	V			

Characteristics T _s = 25 °C unless otherwise specified								snecified	
				Ŭ					
	Conditions			min.	typ.	max.	Units		
IGBT									
V _{CEsat}	$I_C = 400 \text{ A}, T_j = 25 (125) °C$					3,3 (4,3)		V	
V_{CEO}	$T_j = 25 (12)$ $T_j = 25 (12)$	25) °C					2 (2,3)	V	
r _{CE}							4,8 (6,6)	mΩ	
I _{CES}		$V_{CE} = V_{CE}$	S'			(30)	2	mA	
	$T_j = 25 (12)$								
E _{on} + E _{off}	I _C = 400 A, V _{CC} = 900 V					345	mJ		
	T _j = 125 °C, V _{CC} = 1200 V						509	mJ	
R _{CC' + EE'}	terminal chip, T _i = 125 °C					0,25		mΩ	
L _{CE}	top, bottor	m ´				7,5		nΗ	
C _{CHC}	per phase	, AC-side				1,6		nF	
Inverse o	diode								
$V_F = V_{EC}$			25) °C			2,3 (2,1)	2,9	V	
V_{TO}	$T_j = 25 (12)$					1,3 (1)	1,6 (1,3)	V	
r_T	$T_{j}^{'} = 25 (12)$	25) °C				2,5 (2,8)		mΩ	
E _{rr}		$V_{CC} = 900$					42	mJ	
	T _j = 125 °	C, V _{CC} = 12	200 V				50	mJ	
Mechani									
M_{dc}	DC terminals, SI Units				6		8	Nm	
M_{ac}	AC terminals, SI Units				13		15	Nm	
W	SKiiP® 2 System w/o heat sink					1,9		kg	
W	heat sink					4,7		kg	
Thermal			P16 hea	t sink; 3	10 m ³ /h);	; " _r " refer	ence to		
temperat	•	sor			i	•		i	
$R_{th(j-s)l}$	per IGBT						0,04	K/W	
$R_{th(j-s)D}$	per diode						0,133	K/W	
R _{th(s-a)}	per modul	е					0,043	K/W	
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)				
	1	2	3	4	1	2	3	4	
Z _{th(j-r)I}	4	31	5	0	1	0,13	0,001	1	
$Z_{th(j-r)D}$	15	103	16	0	1	0,13	0,001	1	
$Z_{th(r-a)}$	13,9	18,9	6,6	3,6	262	50	5	0,02	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

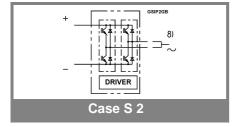
SKiiP 592GB170-2D

Absolute Maximum Ratings		T _a = 25 °C unless otherwise specified			
Symbol	Conditions	Values	Units		
V_{S1}	stabilized 15 V power supply	18	V		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, r.m.s., 2s)	4000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f_{sw}	switching frequency	10	kHz		
f _{out}	output frequency for I=I _C ;sin.	1	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 592GB170-2D


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characteristics (T					= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	210+440	210+440*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	160+310*f/f _{max} +0,85*(I _{AC} /A)			mA
V_{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
t _{pERRRESET}	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		500		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{OI}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		625		Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	1200			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

