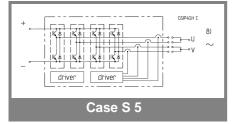
## SKiiP 432GH120-4D



## SKiiP® 2

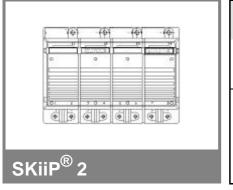
### 4-pack - integrated intelligent Power System

**Power section** 


SKiiP 432GH120-4D

#### **Features**

- · SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- 1) with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request


| Absolute                                                   | Maximum Ratings                                                   | s = 25 °C unless otherwise specified |       |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------|-------|--|--|--|
| Symbol                                                     | Conditions                                                        | Values                               | Units |  |  |  |
| IGBT                                                       |                                                                   |                                      |       |  |  |  |
| $V_{CES}$                                                  |                                                                   | 1200                                 | V     |  |  |  |
| V <sub>CC</sub> 1)                                         | Operating DC link voltage                                         | 900                                  | V     |  |  |  |
| V <sub>CES</sub><br>V <sub>CC</sub> 1)<br>V <sub>GES</sub> |                                                                   | ± 20                                 | V     |  |  |  |
| I <sub>C</sub>                                             | T <sub>s</sub> = 25 (70) °C                                       | 400 (300)                            | Α     |  |  |  |
| Inverse diode                                              |                                                                   |                                      |       |  |  |  |
| $I_F = -I_C$                                               | T <sub>s</sub> = 25 (70) °C                                       | 400 (300)                            | Α     |  |  |  |
| I <sub>FSM</sub>                                           | $T_i = 150  ^{\circ}\text{C},  t_p = 10  \text{ms};  \text{sin}.$ | 2880                                 | Α     |  |  |  |
| I²t (Diode)                                                | Diode, T <sub>j</sub> = 150 °C, 10 ms                             | 41                                   | kA²s  |  |  |  |
| T <sub>j</sub> , (T <sub>stg</sub> )                       |                                                                   | - 40 (- 25) <b>+</b> 150 (125)       | °C    |  |  |  |
| $V_{isol}$                                                 | AC, 1 min. (mainterminals to heat sink)                           | 3000                                 | V     |  |  |  |

| <b>Characteristics</b> $T_s = 25$ °C unless otherwise specified |                                     |                        |         |           |                       |            |           |       |
|-----------------------------------------------------------------|-------------------------------------|------------------------|---------|-----------|-----------------------|------------|-----------|-------|
|                                                                 | Conditions                          |                        |         |           | min.                  | typ.       | max.      | Units |
| IGBT                                                            |                                     |                        |         |           |                       | 71         |           |       |
| V <sub>CEsat</sub>                                              | I <sub>C</sub> = 350 A,             | $T_i = 25 (1$          | 25) °C  |           |                       | 2,6 (3,1)  | 3,1       | V     |
| V <sub>CEO</sub>                                                | $T_i = 25 (125)$                    | 5) <sup>°</sup> C      |         |           |                       | 1,2 (1,3)  | 1,5 (1,6) | V     |
| r <sub>CE</sub>                                                 | $T_{j} = 25 (125) ^{\circ}C$        |                        |         |           |                       | 3,8 (5)    | 4,5 (5,8) | mΩ    |
| I <sub>CES</sub>                                                | $V_{GE} = 0 \text{ V}, $            |                        | ES,     |           |                       | (20)       | 0,8       | mA    |
|                                                                 | $T_i = 25 (125)$                    |                        |         |           |                       |            |           |       |
| E <sub>on</sub> + E <sub>off</sub>                              | I <sub>C</sub> = 350 A,             |                        | 0 V     |           |                       |            | 105       | mJ    |
| 0                                                               | T <sub>i</sub> = 125 °C             | , V <sub>CC</sub> = 90 | 00 V    |           |                       |            | 185       | mJ    |
| R <sub>CC' + EE'</sub>                                          | terminal chi                        |                        |         |           |                       | 0,25       |           | mΩ    |
| L <sub>CE</sub>                                                 | top, bottom                         | ,                      |         |           |                       | 7,5        |           | nΗ    |
| $C_{CHC}$                                                       | per phase,                          | AC-side                |         |           |                       | 2,8        |           | nF    |
| Inverse o                                                       | diode                               |                        |         |           |                       |            |           |       |
| $V_F = V_{EC}$                                                  | I <sub>F</sub> = 300 A,             | T <sub>i</sub> = 25 (1 | 25) °C  |           |                       | 2,1 (1,9)  | 2,6       | V     |
| V <sub>TO</sub>                                                 | $T_i = 25 (125)$                    |                        |         |           |                       | 1,3 (1)    | 1,4 (1,1) | V     |
| r <sub>T</sub>                                                  | $T_i = 25 (125)$                    |                        |         |           |                       | 2,5 (3)    | 3,4 (3,9) | mΩ    |
| E <sub>rr</sub>                                                 | $I_{\rm C} = 350  \text{A},$        | $V_{CC} = 60$          | 0 V     |           |                       |            | 12        | mJ    |
|                                                                 | T <sub>j</sub> = 125 °C             | $V_{CC} = 90$          | 00 V    |           |                       |            | 15        | mJ    |
| Mechani                                                         | cal data                            |                        |         |           |                       |            |           |       |
| $M_{dc}$                                                        | DC termina                          | ls, SI Unit            | ts      |           | 6                     |            | 8         | Nm    |
| $M_{ac}$                                                        | AC terminals, SI Units              |                        |         | 13        |                       | 15         | Nm        |       |
| W                                                               | SKiiP® 2 System w/o heat sink       |                        |         |           |                       | 3,5        |           | kg    |
| W                                                               | heat sink                           |                        |         |           |                       | 8,5        |           | kg    |
| Thermal                                                         | character                           | istics (               | P16 hea | t sink; 2 | 75m <sup>3</sup> /h); | ", " refer | ence to   |       |
| temperat                                                        | ture sense                          | or                     |         |           |                       | •          |           |       |
| $R_{th(j-s)l}$                                                  | per IGBT                            |                        |         |           |                       |            | 0,064     | K/W   |
| $R_{th(j-s)D}$                                                  | per diode                           |                        |         |           |                       |            | 0,188     | K/W   |
| $R_{th(s-a)}$                                                   | per module                          |                        |         |           |                       |            | 0,033     | K/W   |
| Z <sub>th</sub>                                                 | R <sub>i</sub> (mK/W) (max. values) |                        |         |           | tau <sub>i</sub> (s)  |            |           |       |
|                                                                 | 1                                   | 2                      | 3       | 4         | 1                     | 2          | 3         | 4     |
| $Z_{th(j-r)l}$                                                  | 7                                   | 50                     | 8       | 0         | 1                     | 0,13       | 0,001     | 1     |
| $Z_{th(j-r)D}$                                                  | 21                                  | 144                    | 23      | 0         | 1                     | 0,13       | 0,001     | 1     |
| $Z_{th(r-a)}$                                                   | 1,6                                 | 22                     | 7       | 2,4       | 494                   | 165        | 20        | 0,03  |



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

## SKiiP 432GH120-4D

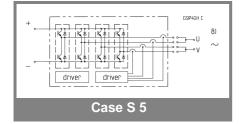


| Absolute Maximum Ratings |                                             | a = 25 °C unless otherwise specified |       |  |
|--------------------------|---------------------------------------------|--------------------------------------|-------|--|
| Symbol                   | Conditions                                  | Values                               | Units |  |
| $V_{S1}$                 | stabilized 15 V power supply                | 18                                   | V     |  |
| $V_{S2}$                 | unstabilized 24 V power supply              | 30                                   | V     |  |
| $V_{iH}$                 | input signal voltage (high)                 | 15 + 0,3                             | V     |  |
| dv/dt                    | secondary to primary side                   | 75                                   | kV/μs |  |
| $V_{isoIIO}$             | input / output (AC, r.m.s., 2s)             | 3000                                 | Vac   |  |
| V <sub>isol12</sub>      | output 1 / output 2 (AC, r.m.s., 2s)        | 1500                                 | Vac   |  |
| f <sub>sw</sub>          | switching frequency                         | 20                                   | kHz   |  |
| f <sub>out</sub>         | output frequency for I=I <sub>C</sub> ;sin. | 1                                    | kHz   |  |
| $T_{op} (T_{stg})$       | operating / storage temperature             | - 40 <b>+</b> 85                     | °C    |  |

# 4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 432GH120-4D


#### **Gate driver features**

- Two seperate and independent "GB"-type driver
- CMOS compatible inputs
- · Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- U-option is integrated on left driver, (DC terminals at bottom; refer to case drawing)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformer
- Fibre optic interface (option)
- IEC 60068-1 (climate) 25/85/56

| Characteristics (T <sub>a</sub> |                                                          |                                                      |                                                      |      | = 25 °C) |
|---------------------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------|----------|
| Symbol                          | Conditions                                               | min.                                                 | typ.                                                 | max. | Units    |
| V <sub>S1</sub>                 | supply voltage stabilized                                | 14,4                                                 | 15                                                   | 15,6 | V        |
| $V_{S2}$                        | supply voltage non stabilized                            | 20                                                   | 24                                                   | 30   | V        |
| I <sub>S1</sub>                 | V <sub>S1</sub> = 15 V                                   | 210+32                                               | 210+320*f/f <sub>max</sub> +1,3*(I <sub>AC</sub> /A) |      |          |
| I <sub>S2</sub>                 | V <sub>S2</sub> = 24 V                                   | 160+220*f/f <sub>max</sub> +1,0*(I <sub>AC</sub> /A) |                                                      |      | mA       |
| V <sub>iT+</sub>                | input threshold voltage (High)                           |                                                      |                                                      | 12,3 | V        |
| $V_{iT-}$                       | input threshold voltage (Low)                            | 4,6                                                  |                                                      |      | V        |
| R <sub>IN</sub>                 | input resistance                                         | 10                                                   |                                                      |      | kΩ       |
| t <sub>d(on)IO</sub>            | input-output turn-on propagation time                    |                                                      |                                                      | 1,5  | μs       |
| t <sub>d(off)IO</sub>           | input-output turn-off propagation time                   |                                                      |                                                      | 1,4  | μs       |
| $t_{pERRRESET}$                 | error memory reset time                                  | 9                                                    |                                                      |      | μs       |
| $t_{TD}$                        | top / bottom switch : interlock time                     |                                                      | 3,3                                                  |      | μs       |
| l<br>analogOUT                  | 8 V corresponds to max. current of 15 V supply voltage   |                                                      | 400                                                  |      | Α        |
| I <sub>Vs1outmax</sub>          | (available when supplied with 24 V)                      |                                                      |                                                      | 50   | mA       |
| I <sub>A0max</sub>              | output current at pin 12/14                              |                                                      |                                                      | 5    | mA       |
| V <sub>0I</sub>                 | logic low output voltage                                 |                                                      |                                                      | 0,6  | V        |
| $V_{0H}$                        | logic high output voltage                                |                                                      |                                                      | 30   | V        |
| I <sub>TRIPSC</sub>             | over current trip level (I <sub>analog OUT</sub> = 10 V) |                                                      | 500                                                  |      | Α        |
| I <sub>TRIPLG</sub>             | ground fault protection                                  |                                                      |                                                      |      | Α        |
| $T_tp$                          | over temperature protection                              | 110                                                  |                                                      | 120  | °C       |
| U <sub>DCTRIP</sub>             | trip level of U <sub>DC</sub> -protection                | 900                                                  |                                                      |      | V        |
|                                 | ( U <sub>analog OUT</sub> = 9 V); (option)               |                                                      |                                                      |      |          |

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

