
SKiiP 432GB120-2D

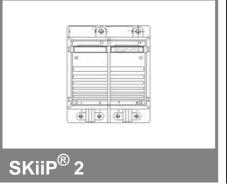
2-pack - integrated intelligent Power System

Power section


SKiiP 432GB120-2D

Features

- · SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- 1) with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CC} 1)	Operating DC link voltage	900	V			
V _{CES} V _{CC} 1) V _{GES}		± 20	V			
I _C	T _s = 25 (70) °C	400 (300)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	400 (300)	Α			
I _{FSM}	$T_{j} = 150 ^{\circ}\text{C}, t_{p} = 10 \text{ms}; \text{sin}.$	2880	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	41	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V_{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s =$						s = 25 °C unless otherwise specified			
Symbol Conditions				min.	typ.	max.	Units		
IGBT	Conditi	Ulia			111111.	typ.	IIIax.	Units	
V _{CEsat}	li = 350 4	A, T _i = 25 (1	25) °C		İ	2,6 (3,1)	3,1	l v	
V CEsat V _{CEO}	$T_i = 25 (1)$		23) 0			,	1,5 (1,6)	V	
r _{CE}	$T_i = 25 (1)$						4,5 (5,8)	mΩ	
I _{CES}	,	′, V _{CE} = V _{CE}	_			(20)	0.8	mA	
'CES	-		S'			(20)	0,0	''''	
E _{on} + E _{off}	T _j = 25 (125) °C I _C = 350 A, V _{CC} = 600 V					105	mJ		
-on -off		$C, V_{CC} = 90$					185	mJ	
P						0,25	100	mΩ	
R _{CC' + EE'} L _{CE}	terminal chip, T _j = 125 °C top, bottom					7,5		nH	
	•	e, AC-side				2,8		nF	
C _{CHC}	ļ. ·	, AC-side				2,0		'''	
Inverse o			a=\		i			1	
$V_F = V_{EC}$			25) °C			2,1 (1,9)		V	
V _{TO}	$T_j = 25 (1)$						1,4 (1,1)	V	
r _T E _{rr}	$T_j = 25 (1)$	25) C A, V _{CC} = 600	1 1/			2,5 (3)	3,4 (3,9) 12	mΩ mJ	
∟ _{rr}	_								
	,	C, V _{CC} = 90)U V				15	mJ	
Mechani					1				
M _{dc}	DC terminals, SI Units				6		8	Nm	
M _{ac}	AC terminals, SI Units				13	4.0	15	Nm	
W	SKiiP® 2 System w/o heat sink					1,9		kg	
W	heat sink				_	4,7		kg	
Thermal	characte	eristics (P16 hea	t sink; 3′	10 m ³ /h);	" ," refer	ence to		
temperat	ure sen	sor				•			
$R_{th(j-s)I}$	per IGBT						0,064	K/W	
$R_{th(j-s)D}$	per diode						0,188	K/W	
$R_{th(s-a)}$	per modu	le					0,043	K/W	
Z_{th}	R _i (mK/W) (max. values)				tau _i (s)				
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	7	50	8	0	1	0,13	0,001	1	
$Z_{th(j-r)D}$	21	144	23	0	1	0,13	0,001	1	
$Z_{\text{th(r-a)}}$	13,9	18,9	6,6	3,6	262	50	5	0,02	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

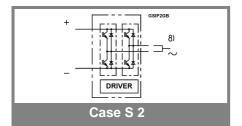
SKiiP 432GB120-2D

Absolute Maximum Ratings		_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isoIIO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 432GB120-2D


Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- · Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characteristics (T _a					
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	210+320	210+320*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	160+220*f/f _{max} +0,85*(I _{AC} /A)			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
t _{pERRRESET}	error memory reset time	9			μs
t_TD	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		400		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		500		Α
I _{TRIPLG}	ground fault protection				Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

