Freescale Semiconductor

Advance Information

Document Number: MCIMX31 Rev. 1.4, 04/2006

MCIMX31 and MCIMX31L

i.MX31 and i.MX31L

Multimedia Applications Processors Package Information Plastic Package Case 1581-01 14 x 14 mm, 0.5 P

Ordering Information							
Device	Operating Temperature Range	Package					
MCIMX31VKN5	0°C to +70°C	MAPBGA-457					
MCIMX31LVKN5	0°C to +70°C	MAPBGA-457					

1 Introduction

The i.MX31 (MCIMX31) and i.MX31L (MCIMX31L) are multimedia applications processors that represent the next step in low-power, high-performance application processors. Unless otherwise specified, the material in this data sheet is applicable to both the i.MX31 and i.MX31L processors.

Based on an ARM11[™] microprocessor core, the i.MX31 and i.MX31L provide the performance with low power consumption required by modern digital devices such as:

- Feature-rich cellular phones
- Portable media players and mobile gaming machines
- Personal digital assistants (PDAs) and Wireless PDAs
- Portable DVD players
- Digital cameras

The i.MX31 and i.MX31L take advantage of the ARM1136JF-STM core running at typical speeds of 532 MHz, and is optimized for minimal power

Contents

1	Introduction1
	1.1 Features
	1.2 Block Diagram 2
2	Functional Description and Application
	Information
	2.1 ARM11 Microprocessor Core 3
	2.2 Module Inventory 5
	2.3 Module Descriptions 8
3	Signal Descriptions 23
	3.1 i.MX31 and i.MX31L I/O Pad Signal
	Settings 23
4	Electrical Characteristics
	4.1 i.MX31 and i.MX31L
	Chip-Level Conditions
	4.2 Supply Power-Up Requirements and
	Restrictions 65
	4.3 Module-Level Electrical Specifications 66
5	Package Information and Pinout 152
	5.1 MAPBGA Production Package
	457 14 x 14 mm, 0.5 P 153
6	Product Documentation 167
	6.1 Revision History 167

This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved.

Preliminary

Introduction

consumption using the most advanced techniques for power saving (DPTC, DVFS, power gating, clock gating). With 90 nm technology and dual-Vt transistors (two threshold voltages), the i.MX31 and i.MX31L provide the optimal performance versus leakage current balance.

The performance of the i.MX31 and i.MX31L is boosted by a multi-level cache system, and features peripheral devices such as an MPEG-4 Hardware Encoder (VGA, 30 fps), an Autonomous Image Processing Unit, a Vector Floating Point (VFP11) co-processor, and a RISC-based SDMA controller.

The i.MX31 and i.MX31L support connections to various types of external memories, such as 266 MHz DDR, NAND Flash, NOR Flash, SDRAM, and SRAM. The i.MX31 and i.MX31L can be connected to a variety of external devices using technology, such as high-speed USB2.0 OTG, ATA, MMC/SDIO, and compact flash.

1.1 Features

The i.MX31 and i.MX31L are designed for the high-tier and mid-tier smartphone markets. They provide low-power solutions for high-performance demanding multimedia and graphics applications.

The i.MX31 and i.MX31L are built around the ARM11 MCU core and implemented in the 90 nm technology.

The systems include the following features:

- Multimedia and floating-point hardware acceleration supporting:
 - MPEG-4 real-time encode of up to VGA at 30 fps
 - MPEG-4 real-time video post-processing of up to VGA at 30 fps
 - Video conference call of up to QCIF-30 fps (decoder in software), 128 kbps
 - Video streaming (playback) of up to VGA-30 fps, 384 kbps
 - 3D graphics and other applications acceleration with the ARM[®] tightly-coupled Vector Floating Point co-processor
 - On-the-fly video processing that reduces system memory load (for example, the power-efficient viewfinder application with no involvement of either the memory system or the ARM CPU)
- Advanced power management
 - Dynamic voltage and frequency scaling
 - Multiple clock and power domains
 - Independent gating of power domains
- Multiple communication and expansion ports including a fast parallel interface to an external graphic accelerator (supporting major graphic accelerator vendors)

1.2 Block Diagram

Figure 1 shows the i.MX31 and i.MX31L simplified interface block diagram.

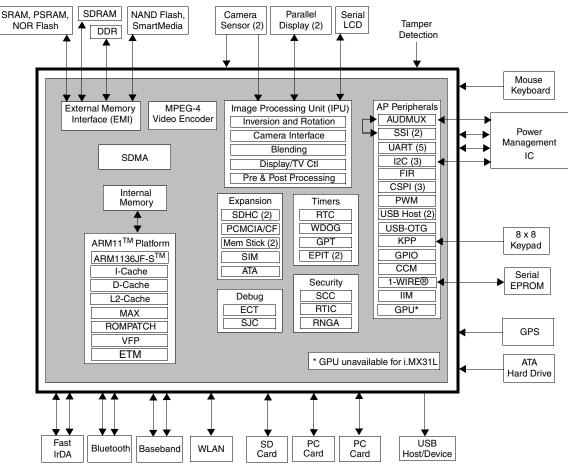


Figure 1. i.MX31/i.MX31L Simplified Interface Block Diagram

Table 1 provides additional details on the i.MX31 and i.MX31L orderable parts.

Table 1. Orderable Part Details

Device	Operating Temp. Range (T _A)	Package	RoHS Compliant	Pb-Free	MSL Level	Solder Temp.
MCIMX31VKN5	−0°C to +70°C	457-lead MAPBGA 0.5 mm, 14 mm x 14 mm	Yes	Yes	3	260°C
MCIMX31LVKN5	−0°C to +70°C	457-lead MAPBGA 0.5 mm, 14 mm x 14 mm	Yes	Yes	3	260°C

2 Functional Description and Application Information

2.1 ARM11 Microprocessor Core

The CPU of the i.MX31 and i.MX31L is the ARM1136JF-S core based on the ARM v6 architecture. It supports the ARM Thumb[®] instruction sets, features Jazelle[®] technology (which enables direct execution of Java byte codes), and a range of SIMD DSP instructions that operate on 16-bit or 8-bit data values in 32-bit registers.

The ARM1136JF-S processor core features:

- Integer unit with integral EmbeddedICE[™] logic
- Eight-stage pipeline
- Branch prediction with return stack
- Low-interrupt latency
- Instruction and data memory management units (MMUs), managed using micro TLB structures backed by a unified main TLB
- Instruction and data L1 caches, including a non-blocking data cache with Hit-Under-Miss
- Virtually indexed/physically addressed L1 caches
- 64-bit interface to both L1 caches
- Write buffer (bypassable)
- High-speed Advanced Micro Bus Architecture (AMBA)TM L2 interface
- Vector Floating Point co-processor (VFP) for 3D graphics and other floating-point applications hardware acceleration
- ETM^{TM} and JTAG-based debug support

2.1.1 Performance

ARM1136JF-S operating frequency in C90LP process:

• 532 MHz (4 × 133 MHz) (wcs)

2.1.2 Memory System

The ARM1136JF-S complex includes 16 KB Instruction and 16 KB Data L1 caches. It connects to the i.MX31 and i.MX31L L2 unified cache through 64-bit instruction (read-only), 64-bit data read/write (bi-directional), and 64-bit data write interfaces.

The embedded 16K SRAM can be used for audio streaming data to avoid external memory accesses for the Low Power Audio Playback, for Security, or for other applications. There is also a 32-KB ROM for bootstrap code and other frequently-used code and data.

A ROM patch module provides the ability to patch the internal ROM. It can also initiate an external boot by overriding the boot reset sequence by a jump to a configurable address.

Table 2 shows information about the i.MX31 and i.MX31L core in tabular form.

Core	Core	Brief Description	Integrated Memory
Acronym	Name		Includes
ARM11 or ARM1136	ARM1136 Platform	The ARM1136 [™] Platform consists of the ARM1136JF-S core, the ETM real-time debug modules, a 6 x 5 multi-layer AHB crossbar switch (MAX), and a Vector Floating Processor (VFP). The i.MX31/i.MX31L provide a high-performance ARM11 microprocessor core and highly integrated system functions. The ARM Application Processor (AP) and other subsystems address the needs of the personal, wireless, and portable product market with integrated peripherals, advanced processor core, and power management capabilities.	 16 Kbyte Instruction Cache 16 Kbyte Data Cache 128 Kbyte L2 Cache 32 Kbyte ROM 16 Kbyte RAM

Table 2. i.MX31/i.MX31L Core

2.2 Module Inventory

Table 3 shows an alphabetical listing of the modules in the multimedia applications processor. A cross-reference is provided directly to each module description for more information.

Block Mnemonic	Block Name	Functional Grouping	Brief Description3	Section/ Page
1-Wire®	1-Wire Interface	Connectivity Peripheral	The 1-Wire module provides bi-directional communication between the ARM11 core and the Add-Only-Memory EPROM (DS2502). The 1-Kbit EPROM is used to hold information about battery and communicates with the ARM11 platform using the IP interface.	2.3.1/8
ATA	Advanced Technology (AT) Attachment	Connectivity Peripheral	The ATA block is an AT attachment host interface. It is designed to interface with IDE hard disc drives and ATAPI optical disc drives.	2.3.2/8
AUDMUX	Digital Audio Multiplexer	Multimedia Peripheral	The AUDMUX interconnections allow multiple, simultaneous audio/voice/data flows between the ports in point-to-point or point-to-multipoint configurations.	2.3.3/9
ССМ	Clock Control Module	Clock	The CCM provides clock, reset, and power management control for the i.MX31 and i.MX31L.	2.3.4/9
CSPI	Configurable Serial Peripheral Interface (x 3)	Connectivity Peripheral	The CSPI is equipped with data FIFOs and is a master/slave configurable serial peripheral interface module, capable of interfacing to both SPI master and slave devices.	2.3.5/10
ECT	Embedded Cross Trigger	Debug	The ECT is composed of three CTIs (Cross Trigger Interface) and one CTM (Cross Trigger Matrix—key in the multi-core and multi-IP debug strategy.	2.3.6/10
EMI	MI External Memory Interface Memory Interface (EMI) NAND Flash Controller (NFC) Wireless External Interface Module (WEIM)		2.3.7/11	
EPIT	Enhanced Periodic Interrupt Timer	Timer Peripheral	The EPIT is a 32-bit "set and forget" timer which starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention.	2.3.8/12

Table 3. Digital and Analog Modules

Block Mnemonic	Block Name	Functional Grouping	Brief Description3	Section/ Page
FIR	Fast InfraRed Interface	Connectivity Peripheral	This FIR is capable of establishing a 0.576 Mbit/s, 1.152 Mbit/s or 4 Mbit/s half duplex link via a LED and IR detector. It supports 0.576 Mbit/s, 1.152 Mbit/s medium infrared (MIR) physical layer protocol and 4Mbit/s fast infrared (FIR) physical layer protocol defined by IrDA, version 1.4.	2.3.9/12
GPIO	General Purpose I/O Module	Pins	The GPIO provides 32 bits of bidirectional, general purpose I/O. This peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs.	2.3.10/12
GPT	General Purpose Timer	Timer Peripheral	The GPT is a multipurpose module used to measure intervals or generate periodic output.	2.3.11/12
GPU	Graphics Processing Unit	Multimedia Peripheral	The GPU provides hardware acceleration for 2D and 3D graphics algorithms.	2.3.12/13
12C	Inter IC Communication	Connectivity Peripheral	The I2C provides serial interface for controlling the Sensor Interface and other external devices. Data rates of up to 100 Kbits/s are supported.	2.3.13/13
IIM	IC Identification Module	Security	The IIM provides an interface for reading—and in some cases, programming, and overriding identification and control information stored in on-chip fuse elements.	2.3.14/13
IPU	Image Processing Unit	Multimedia Peripheral	The IPU supports video and graphics processing functions in the i.MX31 and i.MX31L and interfaces to video, still image sensors, and displays.	2.3.15/14
KPP	Keypad Port	Connectivity Peripheral	The KPP is used for key pad matrix scanning or as a general purpose I/O. This peripheral simplifies the software task of scanning a keypad matrix.	2.3.16/15
MPEG-4	MPEG-4 Video Encoder	Multimedia Peripherals	The MPEG-4 encoder accelerates video compression, following the MPEG-4 standard	2.3.17/15
PCMCIA	РСМ	Connectivity Peripheral	The PCMCIA Host Adapter provides the control logic for PCMCIA socket interfaces.	2.3.19/16
PWM	Pulse-Width Modulator	Timer Peripheral	The PWM has a 16-bit counter and is optimized to generate sound from stored sample audio images. It can also generate tones.	2.3.20/16
RNGA	Random Number Generator Accelerator	Security	The RNGA module is a digital integrated circuit capable of generating 32-bit random numbers. It is designed to comply with FIPS-140 standards for randomness and non-determinism.	2.3.21/16
RTC	Real Time Clock	Timer Peripheral	The RTC module provides a current stamp of seconds, minutes, hours, and days. Alarm and timer functions are also available for programming. The RTC support dates from the year 1980 to 2050.	2.3.22/16
RTIC	Run-Time Integrity Checkers	Security	The RTIC ensures the integrity of the peripheral memory contents and assists with boot authentication.	2.3.23/17

Table 3. Digital and Analog Modules (continued)

Block Mnemonic Block Name Functional Grouping			Brief Description3	Section/ Page
SCC	Security Controller Module	Security	The SCC is a hardware component composed of two blocks—the Secure RAM module, and the Security Monitor. The Secure RAM provides a way of securely storing sensitive information. The Security Monitor implements the security policy, checking algorithm sequencing, and controlling the Secure State.	2.3.24/17
SDHC	Secured Digital Host Controller	Connectivity Peripheral	The SDHC controls the MMC (MultiMediaCard), SD (Secure Digital) memory, and I/O cards by sending commands to cards and performing data accesses to and from the cards.	2.3.25/18
SDMA	SDMA	System Control Peripheral	The SDMA controller maximizes the system's performance by relieving the ARM core of the task of bulk data transfer from memory to memory or between memory and on-chip peripherals.	2.3.26/18
SIM	Subscriber Identification Module	Connectivity Peripheral	The SIM interfaces to an external Subscriber Identification Card. It is an asynchronous serial interface adapted for Smart Card communication for e-commerce applications.	2.3.27/20
SJC	Secure JTAG Controller	Debug	The SJC provides debug and test control with maximum security and provides a flexible architecture for future derivatives or future multi-cores architecture.	2.3.28/20
SSI	Synchronous Serial Interface	Multimedia Peripheral	The SSI is a full-duplex, serial port that allows the chip to communicate with a variety of serial devices, such as standard codecs, Digital Signal Processors (DSPs), microprocessors, peripherals, and popular industry audio codecs that implement the inter-IC sound bus standard (I2S) and Intel AC97 standard.	2.3.29/20
UART	Universal Asynchronous Receiver/Trans mitter	Connectivity Peripheral	The UART provides serial communication capability with external devices through an RS-232 cable or through use of external circuitry that converts infrared signals to electrical signals (for reception) or transforms electrical signals to signals that drive an infrared LED (for transmission) to provide low speed IrDA compatibility.	2.3.30/21
USB	Universal Serial Bus— 2 Host Controllers and 1 OTG (On-The-Go)	Connectivity Peripherals	 USB Host 1 is designed to support transceiverless connection to the on-board peripherals in Low Speed and Full Speed mode, and connection to the ULPI (UTMI+ Low-Pin Count) and Legacy Full Speed transceivers. USB Host 2 is designed to support transceiverless connection to the Cellular Modem Baseband Processor. The USB-OTG controller offers HS/FS/LS capabilities in Host mode and HS/FS in device mode. In Host mode, the controller supports direct connection of a FS/LS device (without external hub). In device (bypass) mode, the OTG port functions as gateway between the Host 1 Port and the OTG transceiver. 	2.3.31/21
WDOG	Watchdog Timer Module	Timer Peripheral	The WDOG module protects against system failures by providing a method for the system to recover from unexpected events or programming errors.	2.3.32/23

Table 3. Digital and Analog Modules (continued)

2.3 Module Descriptions

This section provides a brief text description of all the modules included in the i.MX31 and i.MX31L, arranged in alphabetical order.

2.3.1 1-Wire

The 1-Wire module provides bi-directional communication between the ARM11 core and the Add-Only-Memory EPROM (DS2502). The 1-Kbit EPROM is used to hold information about battery and communicates with the ARM11 platform using the IP interface. The ARM11 (through the 1-Wire interface) acts as the bus master and the DS2502 device is the slave. The 1-Wire peripheral does not trigger interrupts; hence it is necessary for the ARM11 to poll of the 1-Wire to manage the module. The 1-Wire uses an external pin(to connect to the DS2502. Timing requirements are met in hardware with the help of a 1 MHz clock. The clock divider generates a 1 MHz clock that is used as time reference by the state machine. Timing requirements are crucial for proper operation, and the 1-Wire state machine and the internal clock provide the necessary signal. The clock must configured to approximately 1 MHz. You can then set the 1-Wire register to send and receive bits over the 1-Wire bus.

2.3.2 Advanced Technology Attachment (ATA)

The ATA block provides an AT attachment host interface for the i.MX31 and i.MX31L. Its main use is to provide an interface with IDE hard disc drives and ATAPI optical disc drives. It interfaces with the ATA device using industry standard ATA signals. The ATA interface is compliant to the ATA standard, and supports following ATA standard protocols:

- PIO modes 0, 1, 2, 3, and 4
- Multiword DMA modes 0, 1, and 2
- Ultra DMA modes 0, 1, 2, 3, and 4 with a bus clock of 50 MHz or higher
- Ultra DMA mode 5 with bus clock of 80 MHz or higher

The ATA interface has two busses connected to it. The CPU bus provides communication with the ARM11 host processor and the DMA bus provides communication between the ATA module and the host DMA unit. All internal ATA registers are visible from both busses, allowing enhanced DMA access to program the interface.

There are basically two protocols that can be active at the same time on the ATA bus. The first and simplest protocol (PIO mode access) can be started at any time by either the ARM11 or the host-enhanced DMA to the ATA bus. The PIO mode is a slow protocol, mainly intended to be used to program an ATA disc drive, but also possible to use to transfer data to/from the disc drive.

The second protocol is the DMA mode access. DMA mode is started by the ATA interface after receiving a DMA request from the drive, and only if the ATA interface has been programmed to accept the DMA request. In DMA mode, either multiword DMA or ultra DMA protocol is used on the ATA bus. All transfers between FIFO and host IP or DMA IP bus are zero wait states transfer, so high speed transfer between FIFO and DMA/host bus is possible.

2.3.3 Digital Audio Mux (AUDMUX)

The AUDMUX provides programmable interconnecting for voice, audio, and synchronous data routing between host serial interfaces (i.e. SSI, SAP) and peripheral serial interfaces (i.e. audio and voice codecs). The AUDMUX allows audio system connectivity to be modified through programming (as opposed to altering the design of the system into which the chip is designed). The design of the AUDMUX allows multiple simultaneous audio/voice/data flows between the ports in point-to-point or point-to-multipoint configurations.

Included in the AUDMUX are two types of interfaces. The internal ports connect to the processor serial interfaces and external ports connect to off-chip audio devices and serial interfaces of other processors. A desired connectivity is achieved by configuring the appropriate internal and external ports.

The module includes full 6-wire SSI interfaces for asynchronous receive and transmit as well as a configurable 4-wire (synchronous) or 6-wire (asynchronous) peripheral interface The AUDMUX allows each host interface to be connected to any other host or peripheral interface in a point-to-point or point-to-multipoint (network mode).

2.3.4 Clock Control Module (CCM)

The CCM controls the system frequency, distributes clocks to various parts of the chip, controls the reset mechanism of the chip, and provides an advanced low-power management capability of the i.MX31 and i.MX31L.

The CCM utilizes multiple clock sources to generate the clock signals in the i.MX31 and i.MX31L. The external low frequency clock (CKIL) can use either a 32 kHz, 32.768 kHz or a 38.4 kHz crystal as its source. For applications that require a high frequency clock source the CCM has a CKIH pin to which an external high frequency clock can be connected.

The CCM provides a large number of clock outputs used to supply clocks to the MCU and the peripherals. The i.MX31 and i.MX31L are partitioned into two asynchronous clock domains: MCU and USB, as there are different functionality and frequency requirements from these clocks. The main clock of the MCU clock domain is mcu_main_clk and is generated by MCU clock switch unit. The MCU clock domain is partitioned into four synchronous clocks and two sub-domains. The main clock of this domain is called mcu_main_clk, and it is the output of the MCU clock switch unit. The main clock of the USB clock domain is usb_main_clk and is generated by the USB clock switch unit.

Another part of the CCM is the low-power clock gating (LPCG). The LPCG block distributes clocks to all modules from the subdomain clocks and gates off clocks in low-power mode. Clock gating for each module is carried out based on the specific low-power mode and the relevant bits in the MCGR register.

The power management portion of the i.MX31 and i.MX31L is controlled by the CCM. To this end, the i.MX31 and i.MX31L are partitioned into four power domains. The i.MX31 and i.MX31L support a versatile definition of power modes, including power and clock domains status and applied power techniques. The power modes are Run, Wait, Doze, State Retention, Deep Sleep, and Hibernate. The CCM supports several power management techniques that reduce active and static power consumption:

• Dynamic Voltage Frequency Scaling (DVFS) reduces active power consumption by scaling voltage and frequency accordingly to required MIPs.

- Dynamic Process Temperature Compensation (DPTC) reduces active power consumption by adjusting supply voltage accordingly specific process cases, the manner in which the chip was fabricated, and the ambient temperature.
- State Retention Voltage (SRV) reduces static power consumption by decreasing supply voltage to minimum State Retention level. Chip is not functional in this mode.
- Active Well Bias (AWB) reduces static power consumption by applying back bias on transistors. AWB can be applied on ARM11P. ARM11P is not functional when AWB is applied.
- L2 Cache Power Gating—Reduces static power consumption by eliminating L2 Cache leakage.
- ARM11P Power Gating—Reduces static power consumption by eliminating ARM11P leakage.

2.3.5 Configurable Serial Peripheral Interface (CSPI)

The CSPI is used for fast data communication with fewer software interrupts. There are three identical CSPI modules in the i.MX31 and i.MX31L that provide full-duplex synchronous serial interface. It is master/slave configurable and includes four chip selects to support multiple peripherals. In addition, the transfer continuation function of the CSPI allows unlimited length data transfers using 32-bit wide by 8 entry FIFO for both TX and RX data DMA support. The CSPI is equipped with data FIFOs and is a master/slave configurable serial peripheral interface module, capable of interfacing to both SPI master and slave devices. The CSPI Ready (SPI_RDY) and Chip Select (SS) control signals enable fast data communication with fewer software interrupts. When the CSPI module is configured as a master, it uses a serial link to transfer data between the CSPI and an external device. A chip-enable signal and a clock signal are used to transfer data between these two devices. When the CSPI module is configured as a slave, the user can configure the CSPI Control register to match the external SPI master's timing.

2.3.6 Embedded Cross Trigger (ECT)

The ECT scheme is based on the ECT debugging hardware from ARM Ltd. The ECT is composed of three CTIs (Cross Trigger Interface) and one CTM (Cross Trigger Matrix). The ECT is key in the multi-core and multi-IP debug strategy. The outcome is a SW-controlled debug signal matrix that receives many signals from various sources (i.e. cores and peripherals) and propagates/routes them to the different debug resources of the SoC. As seen in previous sections, those debug resources can include profiling capabilities, real-time trace (trace enabled or disabled), triggers, SOC level multiplexing, and debug interrupts.

The main advantages of using the ECT are that it provides a standardized debug scheme, in line with ARM RealView debugger, simplifies integration with ARM debug tools. Another advantage is that within a single debug domain, all the IPs can share the same debug resources and there is no need to duplicates counters or real-time trace resources. One trace port can be used with one tool to track the activity of the core and its peripherals. Since ECT should only be used during debug sessions, it is off (disabled) by default.

2.3.7 External Memory Interface (EMI)

The EMI controls all memory accesses external to the i.MX31 and i.MX31L (read/write/erase/program) from all the masters in the system. This is done by using two port interfaces MPG (AHB 32 bit) and MPG64 (AHB 64 bit) toward different external memories.

The EMI includes interface elements, and controllers of external memories, as shown in the list below:

- M3IF—Multi Master Memory Interface.
- ESDCTL/MDDRC—Enhanced SDRAM/MDDR memory controller.
- PCMCIA—PCMCIA memory controller.
- NFC—NAND Flash memory controller.
- WEIM—SRAM/PSRAM/FLASH memory controller.

All accesses via the EMI are arbitrated by the Multi Master Memory Interface (M3IF) and controlled by the respective memory controller. The M3IF - ESDCTL/MDDRC interface is designed to reduce access latency by generating multiple accesses through the dedicated ESDCTL/MDDRC arbitration (MAB) module, which controls the access towards/from the Enhanced SDRAM/MDDR memory controller. For the other memory interfaces (PCMCIA, NFC, WEIM), the M3IF only arbitrates and forwards the masters requests received through the Master Port Gasket (MPG/MPG64) interface.

The M3IF - Multi Master Memory Interface controls memory accesses (read/write/erase/program) from one or more masters through different port interfaces toward different external memory controllers. The masters arrive from the ARM Platform, the SDMA, the MPEG-4 encoder, or the IPU. The controllers are: ESDCTL/MDDRC, PCMCIA, NANDFLASH and WEIM. The interface between the M3IF and the controllers can be divided into two different types: M3IF-ESDCTL, and M3IF-all others. For the other port interfaces, the M3IF arbitrates and forwards the masters' requests received through the Master Port Gasket (MPG) interfaces and the M3IF arbitration (M3A) module toward the respective memory controller.

The Enhanced SDRAM Controller consists of 10 major blocks, including the SDRAM command state machine controller, bank register (page and bank address comparators), Row/Column Address Multiplexer & decoder, configuration registers, refresh request sequencer, command sequencer, size logic (splitting access), data path (data aligner/multiplexer), MDDR interface, and the Power Down timer. Since up to two SDRAMs can be connected to the ESDCTL, and each SDRAM has 4 banks, there are a total of 8 bank controllers. The bank controllers can also be used as comparators for timing parameters.

The NAND Flash Controller (NFC) interfaces standard NAND Flash devices to the i.MX31 and i.MX31L and hides the complexities of accessing the NAND Flash. It provides a glueless interface to both 8-bits and 16-bits NAND Flash parts with page sizes of 512 Bytes or 2 Kilobytes. It addressing scheme allows it to accesses flash devices of almost limitless capacities. The 2 kilobyte RAM buffer of the NAND Flash is used as the boot RAM during a cold reset (if the i.MX31 and i.MX31L are configured for a boot to be carried out from the NAND Flash device). After the boot procedure completes, the RAM is available as buffer RAM. In addition, the NAND Flash controller provides an X16 bit and X32 bit interface to the AHB bus on the chip side, and an X8/X16 interface to the NAND Flash device on the external side.

The Wireless External Interface Module (WEIM) handles the interface to devices external to chip, including generation of chip selects, clocks and controls for external peripherals and memory. It provides asynchronous and synchronous access to devices with SRAM-like interface. The WEIM includes six chip

selects for external devices, with two CS signals covering a range of 128Mbytes, and the other four each covering a range of 32Mbytes. The 128 Mbyte range can be increased to 256Mbytes when combined with combining the two signals. The WEIM offers selectable protection for each chip select as well as programmable data port size. There is a programmable wait-state generator for each chip select and support for Big Endian and Little Endian modes of operation per access.

2.3.8 Enhanced Periodic Interrupt Timer (EPIT)

The EPIT is a 32-bit "set and forget" timer which starts counting after the EPIT is enabled by software and can generate an interrupt generation when counter reaches the Compare value. It is capable of providing precise interrupts at regular intervals with minimal processor intervention. The EPIT is based on a 32-bit down counter with selectable clock. It also has a 12-bit prescaler for division of input clock frequency. The counter value can be programmed on the fly and can also be programmed to be active in both low power and debug modes.

2.3.9 Fast InfraRed Interface (FIR)

The Fast InfraRed Interface module (FIR) is capable of establishing a 0.576 Mbit/s, 1.152 Mbit/s or 4 Mbit/s half duplex link via a LED and IR detector. It supports 0.576 Mbit/s, 1.152 Mbit/s Medium InfraRed (MIR) physical layer protocol and 4Mbit/s Fast InfraRed (FIR) physical layer protocol defined by IrDA, version 1.4. In addition, the Serial InfraRed (SIR) protocol, which supports data rate 115.2kbps or lower, is implemented in UART module. The FIR interface signals are multiplexed with the UART counterpart signals via GPIO configuration for a complete InfraRed Interface supporting SIR, MIR and FIR modes.

2.3.10 General Purpose I/O Module (GPIO)

The general-purpose input/output (GPIO) peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs. When configured as an output, you can write to an internal register to control the state driven on the output pin. When configured as an input, you can detect the state of the input by reading the state of an internal register. The GPIO includes all of the general purpose input/output logic necessary to drive a specific data to the pad and control the direction of the pad using registers in the GPIO module. The ARM11 is able to sample the status of the corresponding pads by reading the appropriate status register. The GPIO supports up to 32 interrupts and has the ability to identify interrupt edges as well as generate three active high interrupts.

2.3.11 General Purpose Timer (GPT)

The General purpose timer (GPT) has a 32 bit up-counter. The timer counter value can be captured in a register using an event on an external pin. The capture trigger can be programmed to be a rising or/and falling edge. The GPT can also generate an event on ipp_do_cmpout pins and an interrupt when the timer reaches a programmed value. It has a 12-bit prescaler providing a programmable clock frequency derived from multiple clock sources. The GPT has one 32 bit up-counter with clock source selection, including external clock, two input capture channels with programmable trigger edge, and three output compare channels with programmable output mode. The GPT can perform a forced compare and can configured to

be programmed to be active in low power and debug modes Interrupt generation can be programmed for capture, compare, rollover events and the timers offers both restart or free-run modes of operation.

2.3.12 Graphics Processing Unit (GPU)

The GPU provides hardware acceleration for 2D and 3D graphics algorithms. The quality is sufficient for running desk-top quality interactive graphics applications on displays whose resolution is equivalent to VGA (and above) and whose color representation is up to 32 bits per pixel. The i.MX31 and i.MX31L's GPU is built around an ARM MBX R-S graphics accelerator.

The GPU operates on 3D scene data (sent as batches of triangles) that are transformed and lit by the VGP. Triangles are written directly to the TA on a First In First Out (FIFO) basis so that the CPU is not stalled. In addition, the SDMA can be used to perform batch transfers with very low CPU involvement. The TA performs advanced culling on triangle data by writing the tiled non-culled triangles to the external memory. The event manager uses SmartBuffer technology for control. As a result, any level of scene complexity is handled in a fixed display list buffer size. The HSR engine reads the tiled data and implements per-pixel HSR with full Z-accuracy. The resulting visible pixels are textured and shaded in Internal True Color (ITC, 24 bit per pixel) before rendering the final image for display buffer.

NOTE

The GPU is not available on the i.MX31L.

2.3.13 Inter IC Communication (I²C)

I²C is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange, minimizing the interconnection between devices. This bus is suitable for applications requiring occasional communications over a short distance between many devices. The flexible I²C allows additional devices to be connected to the bus for expansion and system development.

The I²C operates up to 400 kbps but it depends on the pad loading and timing (for pad requirement details please refer to Philips I²C Bus Specification, Version 2.1). The I²C system is a true multiple-master bus including arbitration and collision detection that prevents data corruption if multiple devices attempt to control the bus simultaneously. This feature supports complex applications with multiprocessor control and can be used for rapid testing and alignment of end products through external connections to an assembly-line computer.

2.3.14 IC Identification Module (IIM)

The IIM provides an interface for reading and in some cases programming and/or overriding identification and control information stored in on-chip fuse elements. The module supports laser fuses (L-Fuses) or electrically-programmable poly fuses (e-Fuses) or both kinds.

The IIM also provides a set of volatile software-accessible signals which can be used for software control of hardware elements, not requiring non-volatility. The IIM provides the primary user-visible mechanism for interfacing with on-chip fuse elements. Among the uses for the fuses are unique chip identifiers, mask revision numbers, cryptographic keys, and various control signals requiring permanent non-volatility. The IIM also provides up to 28 volatile control signals and a means to generate a second 168-bit SCC key.

The IIM consists of a master controller, a software fuse value shadow cache, and a set of registers to hold the values of signals visible outside the module. Up to eight arrays of fuses (L-Fuses and/or e-Fuses) are associated with the IIM, but are instantiated outside it.

The IIM is accessible via an 8-bit IP bus interface. An 8-bit interface is used because it matches the natural width of the fuse arrays. All registers are 32-bit aligned, to allow the module to be instantiated on IP buses supporting only 32-bit peripherals. A subset of fuses, as well as the software-controlled volatile signals, are capable of driving top-level nets within the SoC. These signals are hereinafter referred to as Hardware-Visible Signals, or HW-Visible Signals. These signals are intended for feature enablement and disablement and similar uses within the device.

Laser fuses can only be blown during chip manufacturing (at the wafer level). The e-Fuses may be blown under software or JTAG control during IC final test, at the customer factory or in the field. They include a mechanism to inhibit further blowing of fuses (write-protect), to support secure computing environments. The fuse values may also be overridden by software without modifying the fuse element. Similar to the write-protect functionality, the override functionality can also be permanently disabled. Fuse banks may also be scan-inhibited on a per-bank basis to prevent reading and programming of fuses through the JTAG interface.

2.3.15 Image Processing Unit (IPU)

The IPU is designed to support video and graphics processing functions in the i.MX31 and i.MX31L and to interface to video/still image sensors and displays. The IPU can capture image data from a camera sensor or from a TV decoder. The captured image can be sent to preprocessing or stored in an external system memory for additional processing on the ARM11 platform. Preprocessing of data can be programmed from the sensor or from the external system memory. There are two preprocessing includes determined by the data destination - an encoder or a display (viewfinder mode). Preprocessing includes downsizing with independent integer horizontal and vertical ratios, resizing with independent fractional horizontal and vertical ratios, color space conversion, combining a video plane with a graphics plane (blending on graphics on top of video plane),

Data postprocessing from the external system memory. The MCU can invoke a number of postprocessing channels sequentially by re-programming the IPU after finish of previous channel frame processing. Postprocessing includes downsizing with independent integer horizontal and vertical ratios, resizing with independent fractional horizontal and vertical ratios, color space conversion and combining a video plane with a graphics plane (blending on graphics on top of video plane). It also provides 90 degree rotation, up/down and left/right flipping of the image. Post-filtering of data from the system memory with support of the MPEG-4 (both deblocking and deringing) and H.264 post-filtering algorithms.

The IPU provides for the display of video and graphics on a synchronous (dump or memoryless) display by displaying video and graphics on an asynchronous (smart) display. There are two mechanisms to support smart display or graphic accelerator functionality: interleaving data and commands from a command buffer prepared by the MCU or automatic commands generation according to a prepared template. The data can be sent to the smart display from the system memory, internal IPU processing modules or directly from the MCU or the system DMA controller.

2.3.16 Keypad Port (KPP)

The Keypad Port is designed to interface with keypad matrix with 2-contact or 3-point contact keys. The Keypad Port is designed to simplify the software task of scanning a keypad matrix. With appropriate software support, the KPP is capable of detecting, debouncing and decoding one or multiple keys pressed simultaneously in the keypad. The KPP supports up to 8 x 8 external key pad matrix. Its port pins can be used as general purpose I/O. Using an open drain design the KPP includes glitch suppression circuit design, multiple keys, long key, and standby key detection.

2.3.17 MPEG-4 Video Encoder (MPEG-4)

The MPEG-4 encoder in the i.MX31 and i.MX31L accelerates video compression, in compliance with the MPEG-4 standard. The encoder provides several levels of compression formats including MPEG-4 simple profile (all levels) and H.263 baseline. The encoder can encode at a pixel rate up to VGA @ 30 fps and compressed bit-rates up to 4 Mbps. The MPEG-4 encoder provides what is essentially the complete video processing chain, generating a Huffman-coded stream with the exception of the formation of the final MPEG-4 stream which is the only burden put on the ARM11 processor. Additional processing provided by the MPEG-4 encoder includes picture smoothening (low-pass filter) and camera movement stabilization. Support for enhanced conference call format in the form of additional information inserted within the MPEG stream, used by a MPEG-4 decoder to improve performance.

2.3.18 Memory Stick Host Controller (MSHC)

The MSHC is located between the AIPS and the Sony Memory Stick and provides support for data transfers between the i.MX31/i.MX31L and the Memory Stick (MS). The memory stick host controller consists of two sub modules; the MSHC gasket and the Sony Memory Stick Host Controller (SMSC). The SMSC module, which is the actual memory stick host controller, is compatible with Sony Memory Stick Ver 1.x and Memory Stick PRO. The gasket connects the AIPS IP bus to the SMSC interface to allow communication and data transfers via the IP Bus.

The MSHC gasket uses a reduced IP Bus interface that supports the IP bus read/write transfers that include a back-to-back read or write {mshc_rd_wr_data,back_to_back_rw, back_to_back_complex}. DMA transfers also take place via the IP Bus interface.{mshc_sdma}.

A transfer can be initiated by the SDMA or the host (through AIPS) in response to an MSHC DMA request or interrupt. The SMSC has two SDMA address modes—a single address mode and a dual address mode.

The MSHC is set to dual address mode for transfers with the SDMA. In dual address mode, when the MSHC requests a transfer with the DMA request (XDRQ), the SDMA will initiate a transfer to the MSHC.

NOTE

All details regarding the operation of the SMSC module can be found separately in "*Memory Stick/Memory Stick PRO Host Controller IP Specification 1.3*".

2.3.19 PCMCIA Host Adapter (PCMCIA)

The PCMCIA Host Adapter provides the control logic for PCMCIA socket interfaces, and requires some additional external analog power switching logic and buffering. The PCMCIA host adapter module is fully compliant with the PCMCIA standard release 2.1 (PC Card -16) and supports one PCMCIA socket. The adapter supports hot-insertion, card detection and removal, CompactFlash[®], and ATA emulation in TrueIDE mode. The PCMCIA maps to common memory space, attribute memory space and I/O space. Each space can be up to 64Mbyte in size. As part of the EMI complex the PCMCIA shares its pins with the WEIM, SDRAMC, and NFC.

2.3.20 Pulse-Width Accelerator (PWM)

The PWM has a 16-bit counter and is optimized to generate sounds from stored sample audio images and it can also generate tones. It uses 16-bit resolution and a 4x16 data FIFO to generate sound. The following features characterize the PWM. the 16-bit up-counter has a source selectable clock with 4 x 16 FIFO to minimize interrupt overhead. Clock in frequency is controlled by a12-bit prescaler for division of clock. Capable of sound and melody generation the PWM has an active high or active low configurable output and can be programmed to be active in low power and debug modes. The PWM can be programmed to generate interrupts at compare and rollover events.

2.3.21 Random Number Generator Accelerator (RNGA)

The RNGA module is a digital integrated circuit capable of generating 32-bit random numbers. The RNGA is designed to comply with FIPS-140 standards for randomness and non-determinism. The random bits are generated by clocking shift registers with clocks derived from ring oscillators. The configuration of the shift registers ensures statistically good data (that is, data that looks random). The oscillators with their unknown frequencies provide the required entropy needed to create random data.

It is important to note that there is no known cryptographic proof showing that this is a secure method of generating random data. In fact, there may be an attack against the random number generator described in this document if its output is used directly in a cryptographic application (the attack is based on the linearity of the internal shift registers). Due to lack of a secure method and the potential for attacks, Freescale Semiconductor recommends that the random data produced by this module be used as an input seed to a NIST approved (based on DES or SHA-1) or cryptographically secure (RSA Generator or BBS Generator) random number generation algorithm. It is also recommended that other sources of entropy be used along with the RNGA to generate the seed to the pseudo-random algorithm. But this is optional. The more random sources combined to create the seed the better.

The RNGA uses a 32-bit IP Bus slave interface and contains a 16×32 FIFO. It provides a Secure mode or operations as well as a power saving mode

2.3.22 Real Time Clock (RTC)

The RTC module maintains the system clock, provides stopwatch, alarm, and interrupt functions, and supports the following features.

• Full clock—days, hours, minutes, seconds

- Minute countdown timer with interrupt
- Programmable daily alarm with interrupt
- Sampling timer with interrupt
- Once-per-day, once-per-hour, once-per-minute, and once-per-second interrupts
- Operation at 32.768 kHz, 32 kHz, or 38.4 kHz (determined by reference clock crystal)

The prescaler converts the incoming crystal reference clock to a 1 Hz signal which is used to increment the seconds, minutes, hours, and days TOD counters. The alarm functions, when enabled, generate RTC interrupts when the TOD settings reach programmed values. The sampling timer generates fixed-frequency interrupts, and the minute stopwatch allows for efficient interrupts on very small boundaries.

2.3.23 Run-Time Integrity Checker (RTIC)

The RTIC is one of the security components in the i.MX31 and i.MX31L. Its purpose is to ensure the integrity of the peripheral memory contents and assist with boot authentication. The RTIC has the ability to verify the memory contents during system boot and during run-time execution. If the memory contents at runtime fail to match the hash signature, an error in the security monitor is triggered.

The RTIC provides SHA-1 message authentication and receives input via the DMA (AMBA-AHB Lite bus master) interface. It uses segmented data gathering to support non-contiguous data blocks in memory (up to two segments per block) and works during and with High Assurance Boot (HAB) process. It provides Secure-scan DFT security and support for up to four independent memory blocks. The RTIC has both a programmable DMA bus duty cycle timer and its own watchdog timer.

The RTIC operates in two primary modes: One time hash mode and continuous hash mode.

The One time hash mode is used during HAB for code authentication or one time integrity checking during which it stores the hash result internally and signals the ARM11 using an interrupt. In Continuous hash mode the RTIC is used continuously to verify integrity of memory contents by checking re-generated hash against internally stored values and interrupts host only if error occurs.

2.3.24 Security Controller Module (SCC)

Security and security services, in an embedded or data processing platform, refer to the i.MX31 and i.MX31L processor's ability to provide mandatory and optional information protection services. Information in this context refers to all embedded data, both program store and data load. Therefore, a secure platform is intended to protect information/data from unauthorized access in the form of inspection (read), modification (write) or execution (use). Security assurance refers to the degree of confidence that security claims are actually met and is therefore associated with the resources available to, and the integrity of, a given security design.

The SCC is a hardware security component composed of two subblocks, the Secure RAM and the Security Monitor Overall its primary functionality is associated with establishing a centralized security state controller and hardware security state with a hardware configured, unalterable security policy. It also provides an uninterruptedly hardware mechanism to detect and respond to threat detection signals

(specifically platform test access signals). It also serves as a device unique data protection/encryption resource to enable off chip storage of security sensitive data and an internal storage resource which automatically and irrevocably destroys plain text security sensitive data upon threat detection.

2.3.25 Secure Digital Host Controller (SDHC)

The MultiMediaCard (MMC), is a universal low cost data storage and communication media that is designed to cover a wide area of applications as electronic toys, organizers, PDAs and smart phones etc. The MMC communication is based on an advanced 7 pin serial bus designed to operate in a low voltage range. The Secure Digital Card (SD), is an evolution of MMC technology, with two additional pins in the form factor. It is specifically designed to meet the security, capacity, performance, and environment requirement inherent in newly emerging audio and video consumer electronic devices. The physical form factor, pin assignment and data transfer protocol are forward compatible with the MultiMediaCard with some additions. Under SD, it can be categorized into Memory and I/O. The memory card invokes a copyright protection mechanism that complies with the security of the SDMI standard. It will be faster and provide the capability for a higher memory capacity. The I/O card provides high-speed data I/O with low power consumption for mobile electronic devices.

The SDHC controls the MMC, SD memory, and I/O cards by sending commands to cards and performing data accesses to/from the cards. The Multimedia Card/Secure Digital Host module (MMC/SD) integrates both MMC support along with SD memory and I/O functions. The SDHC is fully compatible with the MMC System Specification Version 3.0 as well as compatible with the SD Memory Card Specification 1.0, and SD I/O Specification 1.0 with 1/4 channel(s). The maximum data rate in 4-bit mode is 100 Mbps. The SDHC uses a built-in programmable frequency counter for SDHC bus and provides a maskable hardware interrupt for SDIO Interrupt, Internal status & FIFO status and it has a 32x16-bit data FIFO buffer built-in.

2.3.26 SDMA

The SDMA architecture offers highly-competitive DMA Controller features combined with software-based virtual-DMA flexibility. Furthermore, it enables data transfers between peripheral I/O devices and internal/external memories.

The Smart Direct Memory Access (SDMA) controller is a critical piece of hardware in a highly integrated IC like a 3G Baseband chip or a Multimedia SoC. It helps maximizing system performance by off-loading the CPU in dynamic data routing. It contains a custom RISC core along with its RAM, ROM, the three DMA units, the CRC unit, and the scheduler.

The SDMA is used to execute short routines that perform DMA transfers; these routines or programs are called scripts hereafter. The Instruction-Set is composed of single cycle instructions with the exception of Load/Store instructions to the internal memory (RAM, ROM and memory mapped registers), to the registers of the DMA and CRC units, and Branch instructions that may require several cycles to execute. The SDMA core is interfaced to its own memory via the SDMA System Bus. The SDMA System Bus supports a 32-bit data path and a 16-bit address bus. DMA units are interfaced to the CORE via the Functional Unit Bus and use dedicated registers to perform DMA transfers.

The SDMA memory is constituted of a ROM and a RAM. The ROM contains startup scripts (for example, boot code) and other common utilities which are referenced by the scripts that reside in the RAM. The internal RAM is divided into a context area and a script area.

Every transfer channel requires one context area to keep the contents of all the CORE and units registers while it is inactive. Channel scripts are downloaded into the internal RAM by the SDMA using a dedicated channel that is started during the boot sequence. Downloads are invoked using command and pointers provided by the MCU or DSP. Every channel contains a corresponding channel script that is located in RAM and/or ROM; and it can be reconfigured independently on an "as needed" basis. This permits a wide range of SDMA functionality while using the lowest internal memory footprint possible. Channel scripts can be stored in an external, large capacity, FLASH memory and downloaded when needed. The SDMA can be configured with any mixture of scripts to enable an endless combination of supported services.

The scheduler is responsible for monitoring and detecting DMA requests, mapping them to channels and mapping individual channels to a pre-configured priority. At any point in time, the scheduler will present the highest priority channel requiring service to the SDMA core. A special SDMA core instruction is used to "conditionally yield" the current channel being executed to an eligible channel that requires service. If, and only if, an eligible channel is pending will the current execution of a channel be pre-empted. There are two "yield" instructions that differently determine the eligible channels: in the first version, eligible channels with a strictly higher priority than the current channel priority; in the second version ("yieldage"), eligible channels are pending channels are pending service through its 32 DMA request inputs. After a request is detected, the scheduler determines the channel(s) that is (are) triggered by this request and marks it (them) as pending in the "Channel Pending (EP)" register. The priorities of all the pending channels are combined and continuously evaluated in order to update the highest pending priority. The channel pending flag is cleared by the channel script when the transfer has completed.

The MCU Control module contains the control registers which are used to configure the 32 individual channels. There are 32 Channel Enable Registers: every register is used to map one DMA request to any desired combination of channels. The 32 Priority Registers are used to assign a programmable 1-of-7 level priority to every possible channel. This module also contains all other control registers that can be accessed by the MCU.

The DSP Control module, when available, contains a restricted set of registers that enable the DSP to control the channels that have been allocated by the MCU approximately the same set of registers as the MCU Control module. The SDMA is either owned by the MCU or the DSP, never by both at the same time for security reasons. The master (MCU or DSP) that owns the SDMA is able to allocate channels to the other master; the latter that is not controlling the SDMA has a limited access to its control registers.

The 32 DMA requests that are connected to the scheduler come from a variety of sources. The "receive register full" and "transmit register empty" signals that are found in UART and USB ports are typical examples of DMA requests that can be connected to the SDMA. These requests can be used to trigger a specific SDMA channel, or several channels. This feature can be used to realize a "just-in-time" data exchange between the two processors to relax the requirement to meet critical deadlines.

The embedded nature of the SDMA requires on-chip debug capability to assure product quality and reliability and to realize the full performance capabilities of the core. The OnCE compatible debug port

includes support for setting breakpoints, Single-Step & Trace and register dump capability. In addition, all memory locations are accessible from the debug port.

2.3.27 Subscriber Identification Module (SIM)

The SIM Interface Module (SIM) is designed to facilitate communication to SIM cards or Eurochip pre-paid phone cards. The SIM module has two ports that can be used to interface with the various cards. The interface with the MCU is via a 16-bit connection, The SIM module I/O interface can be operated in one of three modes of operation.

Two wire interface. In this mode both the IC pin RX and IC pin TX are used to interface to the smartcard. This is activated by resetting the 3volt bit in the port control register to a "0".

External one wire interface. In this mode the IC pins RX and TX are tied together external to the IC and routed to the smartcard. The 3volt bit in the port control register is reset to a "0" and the OD bit in the OD_CONFIG register is set to a "1". For this interface to work properly the IC pin (RX-TX) must be pulled high by a resistor. The value should be selected small enough to give a fast enough rise time.

Internal one wire interface. In this mode the IC pin TX is routed to the smartcard. The receive pin RX is connected to the TX pin internal to the IC. The 3volt bit in the port control register is reset to a "1" and the OD bit in the OD_CONFIG register is set to a "1". For this interface to work properly the IC pin TX must be pulled high by a resistor. The value should be selected small enough to give a fast enough rise time.

2.3.28 Secure JTAG Controller (SJC)

The IEEE1149.1 JTAG test access port (TAP) supports IEEE1149.1 v2001 standard features, access to OnCE and ICE of each Core, debug features to improve controllability and absorbability of the Cores for debug purposes, manufacturing test features (special test modes, PLL bypass, memory BIST and Burn-in...). The SJC provides debug and test control with the maximum security and provide a flexible architecture for future derivatives or future multi-cores architecture (how to add-remove a Core, software and hardware implications). JTAG pins can be muxed to the PCS bus connectors.

The SJC operates at maximum 1/8 the slowest frequency of the accessed OnCE/ICE. For example in normal operation (no core in low-power mode), this frequency will be 1/8 of the SDMA frequency if this core is present in the TDI-TDO chain (serially connected with other cores or standalone). User needs also to take into account the 25MHz frequency limitation on the CE bus.

In addition, secure JTAG options are provided to protect debug resources from attacks by unauthorized users. The secure JTAG design prevents the debug architecture from compromising security.

2.3.29 Synchronous Serial Interface (SSI)

The SSI is a full-duplex, serial port that allows the chip to communicate with a variety of serial devices. These serial devices can be standard codecs, Digital Signal Processors (DSPs), microprocessors, peripherals, and popular industry audio codecs that implement the inter-IC sound bus standard (I2S) and Intel AC97 standard.

SSI is typically used to transfer samples in a periodic manner. The SSI consists of independent transmitter and receiver sections with independent clock generation and frame synchronization.

The SSI contains independent (asynchronous) or shared (synchronous) transmit and receive sections with separate or shared internal/external clocks and frame syncs, operating in Master or Slave mode. The SSI can work in normal mode operation using frame sync and in Network mode operation allowing multiple devices to share the port with as many as thirty-two time slots. The SSI provides 2 sets of Transmit and Receive FIFOs. Each of the four FIFOs is 8x24 bits. The two sets of Tx/Rx FIFOs can be used in Network mode to provide 2 independent channels for transmission and reception. It also has programmable data interface modes such like I2S, LSB, MSB aligned and programmable word lengths. Other program options include frame sync and clock generation and programmable I2S modes (Master, Slave or Normal). Oversampling clock, ccm_ssi_clk available as output from SRCK in I2S Master mode.

In addition to AC97 support the SSI has completely separate clock and frame sync selections for the receive and transmit sections. In AC97 standard, the clock is taken from an external source and frame sync is generated internally. the SSI also has a programmable internal clock divider and Time Slot Mask Registers for reduced CPU overhead (for Tx and Rx both).

2.3.30 Universal Asynchronous Receiver/Transmitter (UART)

The i.MX31 and i.MX31L contain five UART modules, Each UART module is capable of standard RS-232 non-return-to-zero (NRZ) encoding format and IrDA-compatible infrared modes. The UART provides serial communication capability with external devices through an RS-232 cable or through use of external circuitry that converts infrared signals to electrical signals (for reception) or transforms electrical signals to signals that drive an infrared LED (for transmission) to provide low speed IrDA compatibility.

The UART transmits and receives characters containing either 7 or 8 bits (program selectable). To transmit, data is written from the IP data bus (Sky-Blue line interface) to a 32-byte transmitter FIFO (TxFIFO). This data is passed to the shift register and shifted serially out on the transmitter pin (TXD). To receive, data is received serially from the receiver pin (RXD) and stored in a 32-half-words-deep receiver FIFO (RxFIFO). The received data is retrieved from the RxFIFO on the IP data bus. The RxFIFO and TxFIFO generate maskable interrupts as well as DMA Requests when the data level in each of the FIFO reaches a programmed threshold level.

The UART generates baud rates based on a dedicated input clock and its programmable divisor. The UART also contains programmable auto baud detection circuitry to receive 1 or 2 stop bits as well as odd, even, or no parity. The receiver detects framing errors, idle conditions, BREAK characters, parity errors, and overrun errors.

2.3.31 Universal Serial Bus (USB)

The i.MX31 and i.MX31L provides three USB ports. The USB module provides high performance USB On-The-Go (OTG) functionality, compliant with the USB 2.0 specification, the OTG supplement and the ULPI 1.0 Low Pin Count specification. The module consists of 3 independent USB cores, each controlling 1 USB port.

In addition to the USB cores, the module provides for a Transceiverless Link (TLL) operation on host ports 1 and 2 and allows for routing the OTG transceiver interface to HOST port 1 such that this transceiver can be used to communicate with a USB peripheral connected to host port 1.

The USB module has 2 connections to the CPU bus. One IP-bus connection for register accesses and one AHB-bus connection for DMA transfer of data to and from the FIFOs. The USB module includes the following features:

- Full Speed / Low speed Host only core (HOST 1)
- Transceiverless Link Logic (TLL) for on board connection to a FS/LS USB peripheral.
- Bypass mode to route Host Port 1 signals to OTG I/O port
- High Speed / Full Speed / Low Speed Host Only core (HOST2)
- Full Speed / Low Speed interface for Serial transceiver.
- TLL function for direct connection to USB peripheral in FS/LS (serial) operation
- High speed OTG core

The USB module has 2 main modes of operation; Normal mode and Bypass mode. Furthermore, the USB interfaces can be configured for High Speed operation (480 Mbps) and/or Full/Low speed operation (12/1.5 Mbps). In normal mode, each USB core controls its corresponding PORT. Each port can work in 1 or more modes PHY mode: In this mode, an external serial transceiver is connected to the port. This is used for off-board USB connections. TLL mode: In TLL mode, internal logic is enabled to emulate the functionality of 2 back-to-back connected transceivers. This mode is typically used for on-board USB connections to USB-capable peripherals. Host Port 2 supports ULPI and Serial Transceivers.

The OTG port requires a transceiver and is intended for off-board USB connections.

Serial Interface mode–In serial mode, a serial OTG transceiver must be connected. The port does not support dedicated signals for OTG signaling. Instead, a transceiver with built-in OTG registers must be used. Typically, the Transceiver registers are accessible over an I2C or SPI interface.

ULPI Mode–It this mode, a ULPI transceiver is connected to the port pins to support High-speed off board USB connections. ULPI mode is activated by writing the following:

Bypass mode–Bypass mode affects the operation of the OTG port and HOST port 1. This mode is only available when a serial transceiver is used on the OTG port, and the peripheral device on port 1 is using a TLL connection.

Bypass mode is activated by setting the bypass bit in the USBCONTROL register. In this mode, the USB OTG port connections are internally routed to the USB HOST 1 port, such that the transceiver on the OTG port connects to a peripheral USB device on HOST port 1. The OTG core and the HOST 1 core are disconnected from their ports when bypass is active.

Low Power mode–Each of the 3 USB cores has an associated power control module that is controlled by the USB core and clocked on a 32 kHz clock. When a USB bus is idle, the tranceiver can be placed in low power mode (suspend), after which the clocks to the USB core can be stopped. The 32 kHz low power clock must remain active as it is needed for wakeup detection.

2.3.32 Watchdog Module (WDOG)

The Watchdog (WDOG) timer module protects against system failures by providing a method of escaping from unexpected events or programming errors. Once the WDOG module is activated, it must be serviced by software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the WDOG Timer module either asserts the wdog signal or a system reset signal wdog_rst depending on software configuration. The WDOG Timer module also generates a system reset via a software write to the Watchdog Control Register (WCR), a detection of a clock monitor event, an external reset, an external JTAG reset signal, or if a power-on-reset has occurred.

3 Signal Descriptions

This section:

- Identifies and defines all device signals in text, tables, and (as appropriate) figures. Signals can be organized by group, as applicable.
- Contains pin-assignment/contact-connection diagrams, if the sequence of information in the data sheet requires them to be included here. Otherwise, these figures appear in Section 5, "Package Information and Pinout."

3.1 i.MX31 and i.MX31L I/O Pad Signal Settings

This section identifies and defines all device signals in Table 4 on page 23, Table 6 on page 39, and Table 7 on page 56.

3.1.1 Functional Multiplexing

Table 4 shows functional multiplexing information. Functional multiplexing allows the user to select the function of each pin by configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions.

Pin Name	Group	Description	Hardware Mode 1	HW Mode 2	SW_ MUX_ EN	Alt Mode 1	Alt Mode 2	Alt Mode 3	Alt Mode 4	Alt Mode 5	Alt Mode 6	GPIO
CAPTURE	Timer	Timer input Capture or Timer1 input clock. GPIO user for Memstick1 Card detect	ATA_DATA14	-	sw_mux_ctl_ capture [6:0]	-	CMP2	-	-	-	-	MCU1_ 7
COMPARE	Timer	Timer Output Compare for timers 1 2 3. GPIO used for Memstick2 card detect	ATA_DATA15	-	sw_mux_ctl_ compare [6:0]	CAP2	CMP3	-	ipp_epit o1	ipp_epit o2	-	MCU1_ 8
WATCHDOG _RST	WTDG	watchdog reset.	-	-	sw_mux_ctl_ watchdog_rs t[6:0]	-	IPU_FL ASH_S TROBE	-	-	-	-	-
PWMO	PWM	PWM output.	ATA_IORDY	-	sw_mux_ctl_ pwmo[6:0]	PC_SP KOUT	-	-	-	-	-	MCU1_ 9
GPIO1_0	GPIO1	GPIO reserved for IRQs	-	-	sw_mux_ctl_ gpio1_0 [6:0]	EXTDM A_0	-	-	-	-	-	MCU1_ 0

Table 4. Functional Multiplexing

Signal Descriptions

				LIM	CIM	A 14	A 14	A 14	A 14	A 14	A 14	
Pin Name	Group	Description	Hardware	HW Mode	SW_ MUX_	Alt Mode	Alt Mode	Alt Mode	Alt Mode	Alt Mode	Alt Mode	GPIO
1 III Hallio	choup	Decemption	Mode 1	2	EN	1	2	3	4	5	6	
GPIO1_1	GPIO1	GPIO reserved for IRQs & DMA events	_	-	sw_mux_ctl_ gpio1_1 [6:0]	EXTDM A_1	-	-	-	-	-	MCU1_ 1
GPIO1_2	GPIO1	GPIO reserved for IRQs & DMA events	-	-	sw_mux_ctl_ gpio1_2 [6:0]	EXTDM A_2	-	-	-	-	-	MCU1_ 2
GPIO1_3	GPIO1	GPIO reserved for IRQs	-	-	sw_mux_ctl_ gpio1_3 [6:0]	-	-	-	-	-	-	MCU1_ 3
GPIO1_4	GPIO1	GPIO used by USBH1	-	-	sw_mux_ctl_ gpio1_4 [6:0]	USBH1 _SUSP END	-	-	-	-	-	MCU1_ 4
GPIO1_5	GPIO1	GPIO reserved for PMIC IRQ	-	_	sw_mux_ctl_ gpio1_5 [6:0]	-	_	-	-	-	-	MCU1_ 5
GPIO1_6	GPIO1	GPIO reserved for Tamper detect	TAMPER_DE TECT	_	sw_mux_ctl_ gpio1_6 [6:0]	-	_	_	_	-	-	MCU1_ 6
GPIO3_0	GPIO3	GPIO used as IPU CSI chip select3	SPLL_BYPA SS_CLK	-	sw_mux_ctl_ gpio3_0 [6:0]	-	-	-	-	-	-	MCU3_ 0
GPIO3_1	GPIO3	GPIO used as IPU CSI chip select4	UPLL_BYPA SS_CLK	-	sw_mux_ctl_ gpio3_1 [6:0]	-	-	-	-	-	-	MCU3_ 1
SCLK0	SIM	SIM Port 0	-	_	sw_mux_ctl_ sclk0[6:0]	CTI_TRI G_IN_1 _4	DISPB_ D2_CS	obs_int_ 0	_	-	-	MCU3_ 2
SRST0	SIM	SIM Port 0	-	_	sw_mux_ctl_ srst0[6:0]	-	DISPB_ D12_VS YNC	obs_int_ 1	-	-	-	MCU3_ 3
SVEN0	SIM	SIM Port 0	-	-	sw_mux_ctl_ sven0[6:0]	CTI_TRI G_IN_1 _6	-	obs_int_ 2	-	-	-	MCU2_ 0
STX0	SIM	SIM Port 0	-	-	sw_mux_ctl_ stx0[6:0]	CTI_TRI G_IN_1 _5	-	obs_int_ 3	-	-	-	MCU2_ 1
SRX0	SIM	SIM Port 0	-	-	sw_mux_ctl_ srx0[6:0]	-	1	obs_int_ 4	-	-	-	MCU2_ 2
SIMPD0	SIM	SIM Port 0	-	_	sw_mux_ctl_ simpd0 [6:0]	-	_	-	-	-	-	MCU2_ 3
СКІН	Clock & Reset& PM	13-20 MHz clk input Osc input	-	-	-	-	-	-	-	-	-	-
RESET_IN	Clock & Reset& PM	Master Reset from external power mgt chip No MUX allowed	RESET_IN	_	sw_mux_ctl_ reset_in_b [6:0]	-	-	-	-	-	-	-
POR	Clock & Reset& PM	Power On Reset	-	-	_	-	-	-	-	-	-	-
CLKO	Clock & Reset& PM	Clock out signal	-	-	_	-	-	-	-	_	_	-
BOOT_MODE 0	Clock & Reset& PM	Boot Mode 0	-	-	_	-	-	-	I	_	-	_
BOOT_MODE 1	Clock & Reset& PM	Boot Mode 1	-	-	_	_	_	-	-	-	-	_

					-			-				
Pin Name	Group	Description	Hardware Mode 1	HW Mode 2	SW_ MUX_ EN	Alt Mode 1	Alt Mode 2	Alt Mode 3	Alt Mode 4	Alt Mode 5	Alt Mode 6	GPIO
BOOT_MODE 2	Clock & Reset& PM	Boot Mode 2	-	-	-	-	-	-	-	-	-	-
BOOT_MODE 3	Clock & Reset& PM	Boot Mode 3	-	-	-	-	-	-	-	-	-	-
BOOT_MODE 4	Clock & Reset& PM	Boot Mode 4	_	-	-	-	-	-	-	-	-	-
CKIL	Clock & Reset& PM	32 kHz clk input	_	-	_	-	-	-	-	-	-	_
POWER_FAIL	Clock & Reset& PM	power shut-off input	-	-	-	-	-	-	-	-	-	-
VSTBY	Clock & Reset& PM	Power management State retention	-	-	sw_mux_ctl_ vstby[6:0]	-	-	-	-	-	-	-
DVFS0	Clock & Reset& PM	Power management voltage change	_	-	sw_mux_ctl_ dvfs0[6:0]	-	-	-	-	-	-	-
DVFS1	Clock & Reset& PM	Power management voltage change	_	-	sw_mux_ctl_ dvfs1[6:0]	-	-	-	-	-	-	-
VPG0	Clock & Reset& PM	Power management power gating	-	-	sw_mux_ctl_ vpg0[6:0]	-	-	-	-	-	-	_
VPG1	Clock & Reset& PM	Power management power gating	-	-	sw_mux_ctl_ vpg1[6:0]	-	-	-	-	-	-	-
A0	EMI	EIM address 0	-	-	sw_mux_ctl_ a0[6:0]	-	-	-	-	-	-	-
A1	EMI	EIM address 1	-	-	sw_mux_ctl_ a1[6:0]	-	-	-	-	-	-	-
A2	EMI	EIM address 2	-	-	sw_mux_ctl_ a2[6:0]	-	-	-	-	-	-	-
A3	EMI	EIM address 3	-	-	sw_mux_ctl_ a3[6:0]	-	-	-	-	-	-	-
A4	EMI	EIM address 4	-	-	sw_mux_ctl_ a4[6:0]	-	-	-	-	-	-	-
A5	EMI	EIM address 5	-	-	sw_mux_ctl_ a5[6:0]	-	-	-	-	-	-	-
A6	EMI	EIM address 6	-	-	sw_mux_ctl_ a6[6:0]	-	-	-	-	-	-	-
A7	EMI	EIM address 7	-	-	sw_mux_ctl_ a7[6:0]	-	-	-	-	-	-	-
A8	EMI	EIM address 8	-	-	sw_mux_ctl_ a8[6:0]	-	-	-	-	-	-	-
A9	EMI	EIM address 9	-	-	sw_mux_ctl_ a9[6:0]	-	-	-	-	-	-	-
A10	EMI	EIM address 10	-	-	sw_mux_ctl_ a10[6:0]	-	-	-	-	-	_	-
MA10	EMI	-	-	-	sw_mux_ctl_ ma10[6:0]	-	-	-	-	-	-	-
A11	EMI	EIM address 11	-	-	sw_mux_ctl_ a11[6:0]	-	-	-	-	-	_	-
A12	EMI	EIM address 12	-	-	sw_mux_ctl_ a12[6:0]	-	-	-	-	-	-	1

Signal Descriptions

					-							
			Hardware	HW	SW_	Alt	Alt	Alt	Alt	Alt	Alt	
Pin Name	Group	Description	Mode 1	Mode 2	MUX_ EN	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	GPIO
A13	EMI	EIM address 13	-	-	sw_mux_ctl_ a13[6:0]	-	-	-	-	-	-	-
A14	EMI	EIM address 14	-	-	sw_mux_ctl_ a14[6:0]	-	-	-	-	-	-	-
A15	EMI	EIM address 15	-	-	sw_mux_ctl_ a15[6:0]	-	-	-	-	-	-	-
A16	EMI	EIM address 16	-	-	sw_mux_ctl_ a16[6:0]	-	-	-	-	-	-	-
A17	EMI	EIM address 17	-	-	sw_mux_ctl_ a17[6:0]	-	-	-	-	-	-	-
A18	EMI	EIM address 18	-	-	sw_mux_ctl_ a18[6:0]	-	-	_	-	-	-	_
A19	EMI	EIM address 19	-	-	sw_mux_ctl_	-	-	-	-	-	-	-
A20	EMI	EIM address 20	_	-	a19[6:0] sw_mux_ctl_	-	-	-	-	-	-	_
					a20[6:0]							
A21	EMI	EIM address 21	-	-	sw_mux_ctl_ a21[6:0]	-	-	-	-	-	-	-
A22	EMI	EIM address 22	-	-	sw_mux_ctl_ a22[6:0]	-	-	-	-	-	-	-
A23	EMI	EIM address 23	-	-	sw_mux_ctl_ a23[6:0]	-	-	-	-	-	-	-
A24	EMI	EIM address 24	-	-	sw_mux_ctl_ a24[6:0]	-	-	-	-	-	-	-
A25	EMI	EIM address 25	-	-	sw_mux_ctl_ a25[6:0]	-	-	-	-	-	-	-
SDBA1	EMI	EIM Bank Address	-	-	sw_mux_ctl_ sdba1[6:0]	-	-	-	-	-	-	-
SDBA0	EMI	EIM Bank Address	-	-	sw_mux_ctl_ sdba0[6:0]	-	-	-	-	-	-	-
SD0	EMI	DDR/SDRAM Data 0	_	_	_	_	_	_	_	_	_	_
SD1	EMI	DDR/SDRAM Data 1	_	_	_	_	_	_	_	_	_	_
SD2	EMI	DDR/SDRAM Data 2	_	_	_	_	_	_	_	_	_	_
SD3	EMI	DDR/SDRAM Data 3	_	_	_	_	_	_	_	_	_	_
SD4	EMI	DDR/SDRAM Data 4	_	_	_	_	_	_	_	_	_	_
SD5	EMI	DDR/SDRAM Data 5	_	_	_	_	_	-	_	_	_	_
SD5	EMI	DDR/SDRAM Data 5	_	_	_	_	_		_	_	_	
SD0			_	_	_	-	_		_	_	_	_
-	EMI	DDR/SDRAM Data 7	-	_	-	_	_	_	_	-	-	_
SD8	EMI	DDR/SDRAM Data 8	-	-	-	_	-	_	-	-	-	_
SD9	EMI	DDR/SDRAM Data 9	-	-	-	-	-	-	-	-	-	-
SD10	EMI	DDR/SDRAM Data 10	-	-	-	-	-	-	-	-	-	-
SD11	EMI	DDR/SDRAM Data 11	-	-	-	-	-	-	-	-	-	-
SD12	EMI	DDR/SDRAM Data 12	-	-	-	-	-	-	-	-	-	-
SD13	EMI	DDR/SDRAM Data 13	-	-	-	-	-	-	-	-	-	-
SD14	EMI	DDR/SDRAM Data 14	-	-	-	-	-	-	-	-	-	-
SD15	EMI	DDR/SDRAM Data 15	-	-	-	-	-	-	-	-	-	-
SD16	EMI	DDR/SDRAM Data 16	-	-	-	-	-	-	-	-	-	-
SD17	EMI	DDR/SDRAM Data 17	-	-	-	-	-	-	-	-	-	_
SD18	EMI	DDR/SDRAM Data 18	-	-	-	-	-	-	-	-	-	-
SD19	EMI	DDR/SDRAM Data 19	-	-	-	-	-	-	-	-	-	-
SD20	EMI	DDR/SDRAM Data 20	-	-	-	-	-	-	-	-	-	-
SD21	EMI	DDR/SDRAM Data 21	-	-	-	-	-	-	-	-	-	-
SD22	EMI	DDR/SDRAM Data 22	-	-	-	-	-	-	-	-	-	-

Table 4. Functional Multiplexing (continued)

Table 4. Functional Multiplexing (continued)	Table 4.	Functional	Multiplexing	(continued)
--	----------	------------	--------------	-------------

					•	3		,				
Pin Name	Group	Description	Hardware Mode 1	HW Mode 2	SW_ MUX_ EN	Alt Mode 1	Alt Mode 2	Alt Mode 3	Alt Mode 4	Alt Mode 5	Alt Mode 6	GPIO
SD23	EMI	DDR/SDRAM Data 23	-	-	-	-	-	-	-	-	-	-
SD24	EMI	DDR/SDRAM Data 24	-	-	-	-	-	-	-	-	-	-
SD25	EMI	DDR/SDRAM Data 25	-	-	-	-	-	-	-	-	-	-
SD26	EMI	DDR/SDRAM Data 26	-	-	-	-	-	-	-	-	-	-
SD27	EMI	DDR/SDRAM Data 27	-	-	-	-	-	-	-	-	-	-
SD28	EMI	DDR/SDRAM Data 28	-	-	-	-	-	-	-	-	-	-
SD29	EMI	DDR/SDRAM Data 29	-	-	-	-	-	-	-	-	-	-
SD30	EMI	DDR/SDRAM Data 30	-	-	-	-	-	-	-	-	-	-
SD31	EMI	DDR/SDRAM Data 31	-	-	-	-	-	-	-	-	-	-
DQM0	EMI	Byte strobe DDR data enable	_	-	sw_mux_ctl_ dqm0[6:0]	_	-	_	-	-	-	_
DQM1	EMI	Byte strobe DDR data enable	_	_	sw_mux_ctl_ dqm1[6:0]	-	_	-	_	-	_	-
DQM2	EMI	Byte strobe DDR data enable	-	-	sw_mux_ctl_ dqm2[6:0]	-	-	-	-	-	-	-
DQM3	EMI	Byte strobe DDR data enable	-	-	sw_mux_ctl_ dqm3[6:0]	-	-	-	-	-	-	-
EB0	EMI	LSB Byte strobe WEIM data enable; Controls D[7:0]	-	-	sw_mux_ctl_ eb0[6:0]	-	-	-	-	-	-	_
EB1	EMI	LSB Byte strobe WEIM data enable Controls D[15:8]	_	-	sw_mux_ctl_ eb1[6:0]	-	-	-	-	-	-	-
OE	EMI	Memory Output enable	-	-	sw_mux_ctl_ oe[6:0]	-	-	-	-	-	-	-
CS0	EMI	Chip select 0	-	-	sw_mux_ctl_ cs0[6:0]	-	-	-	-	-	-	-
CS1	EMI	Chip select 1	-	-	sw_mux_ctl_ cs1[6:0]	-	-	-	-	-	-	-
CS2	EMI	Chip select 2/ SDRAM Sync Flash chip select	-	-	sw_mux_ctl_ cs2[6:0]	-	-	-	-	-	-	-
CS3	EMI	Chip select 3/ SDRAM Sync Flash chip select	-	-	sw_mux_ctl_ cs3[6:0]	Ι	-	Ι	-	-	-	
CS4	EMI	Chip select 4	-	-	sw_mux_ctl_ cs4[6:0]	_	-	_	-	-	-	-
CS5	EMI	Chip select 5	-	-	sw_mux_ctl_ cs5[6:0]	-	-	-	-	-	-	-
ECB	EMI	End Current Burst	-	-	-	-	-	-	-	-	-	-
LBA	EMI	Load Base Address	-	-	sw_mux_ctl_ lba[6:0]	-	-	-	-	-	-	-
BCLK	EMI	used by Flash for burst mode	-	-	sw_mux_ctl_ bclk[6:0]	-	-	-	-	-	-	-
RW	EMI	read/write signal or WE for external DRAM	-	-	sw_mux_ctl_ rw[6:0]	-	-	-	-	-	-	_
RAS	EMI	SDRAM row address select	-	-	sw_mux_ctl_ ras[6:0]	-	-	-	-	-	-	-
CAS	EMI	SDRAM column address select	-	-	sw_mux_ctl_ cas[6:0]	_	-	_	-	-	-	-
SDWE	EMI	SDRAM write enable	-	-	sw_mux_ctl_ sdwe[6:0]	-	-	-	-	-	-	-
SDCKE0	EMI	SDRAM clock enable0	-	-	sw_mux_ctl_ sdcke0[6:0]	-	-	-	-	-	-	-
SDCKE1	EMI	SDRAM clock enable1	-	-	sw_mux_ctl_ sdcke1[6:0]	I	-	I	-	_	-	-
SDCLK	EMI	SDRAM clock DDR clock pad	-	-	sw_mux_ctl_ sdclk[6:0]	Ι	-	Ι	-	—	-	_

Signal Descriptions

					0.14							
	A	Description	Hardware	HW	SW_	Alt	Alt	Alt	Alt	Alt	Alt	
Pin Name	Group	Description	Mode 1	Mode	MUX_ EN	Mode	Mode	Mode 3	Mode	Mode 5	Mode	GPIO
				2		1	2	3	4	C	6	
SDCLK	DDR	False pad DDR_CLK	-	-	-	-	-	-	-	-	-	-
SDQS0	EMI	DDR sample strobe	-	-	-	-	-	-	-	-	-	-
SDQS1	EMI	DDR sample strobe	-	-	-	-	-	-	-	-	-	-
SDQS2	EMI	DDR sample strobe	-	-	-	-	-	-	-	-	-	-
SDQS3	EMI	DDR sample strobe	-	-	-	-	-	-	-	-	-	-
NFWE	EMI	NANDF	ATA_DATA7	ATA_IN TRQ	sw_mux_ctl_ nfwe_b[6:0]	-	USBH2 _DATA2	-	TRACE DATA_0	-	-	MCU1_ 10
NFRE	EMI	NANDF	ATA_DATA8	ATA_BU FFER_E N	sw_mux_ctl_ nfre_b[6:0]	-	USBH2 _DATA3	-	TRACE DATA_1	-	-	MCU1_ 11
NFALE	EMI	NANDF	ATA_DATA9	ATA_DM ARQ	sw_mux_ctl_ nfale[6:0]	-	USBH2 _DATA4	-	TRACE DATA_2	-	-	MCU1_ 12
NFCLE	EMI	NANDF	ATA_DATA10	ATA_DA 0	sw_mux_ctl_ nfcle[6:0]	-	USBH2 _DATA5	-	TRACE DATA_3	-	-	MCU1_ 13
NFWP	EMI	NANDF	ATA_DATA11	ATA_DA 1	sw_mux_ctl_ nfwp_b[6:0]	NFWP	USBH2 _DATA6	-	TRACE DATA_4	-	-	MCU1_ 14
NFCE	EMI	NANDF	ATA_DATA12	ATA_DA 2	sw_mux_ctl_ nfce_b[6:0]	-	USBH2 _DATA7	-	TRACE DATA_5	-	-	MCU1_ 15
NFRB	EMI	NANDF	ATA_DATA13	-	sw_mux_ctl_ nfrb[6:0]	-	-	-	TRACE DATA_6	-	-	MCU1_ 16
D15	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D14	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D13	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D12	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D11	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D10	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D9	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D8	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D7	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D6	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D5	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D4	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D3	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D2	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D1	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
D0	EMI	PCMCIA/WEIM/NANDF Data	-	-	-	-	-	-	-	-	-	-
PC_CD1	EMI	PCMCIA	_	-	sw_mux_ctl_ pc_cd1_b [6:0]	SD2_ CMD	MSHC2 _SCLK	_	-	-	-	-

				HW	CW/	Alt	Alt	Alt	Alt	Alt	Alt	
Pin Name	Group	Description	Hardware	Mode	SW_ MUX	Mode	Mode	Mode	Mode	Mode	Mode	GPIO
1 III Haine	Cloup	Becomption	Mode 1	2	EN	1	2	3	4	5	6	
PC_CD2	EMI	PCMCIA	_	-	sw_mux_ctl_ pc_cd2_b[6: 0]	SD2_CL K	MSHC2 _BS	-	-	-	-	-
PC_WAIT	EMI	PCMCIA	-	-	sw_mux_ctl_ pc_wait_b[6: 0]	SD2_DA TA0	MSHC2 _SDIO_ DATA0	-	-	-	-	-
PC_READY	EMI	PCMCIA	-	-	sw_mux_ctl_ pc_ready[6:0]	SD2_DA TA1	MSHC2 _DATA1	-	-	-	-	-
PC_PWRON	EMI	PCMCIA	_	-	sw_mux_ctl_ pc_pwron[6: 0]	SD2_DA TA3	MSHC2 _DATA2	-	-	-	-	-
PC_VS1	EMI	PCMCIA	_	-	sw_mux_ctl_ pc_vs1[6:0]	SD2_DA TA2	MSHC2 _DATA3	-	-	-	-	-
PC_VS2	EMI	PCMCIA	-	-	sw_mux_ctl_ pc_vs2[6:0]	USBH2 _DATA2	UART5_ RTS	-	-	-	-	-
PC_BVD1	EMI	PCMCIA	Ι	-	sw_mux_ctl_ pc_bvd1[6:0]	USBH2 _DATA3	UART5_ RXD	-	-	-	-	-
PC_BVD2	EMI	PCMCIA	-	-	sw_mux_ctl_ pc_bvd2[6:0]	USBH2 _DATA4	UART5_ TXD	-	-	-	-	-
PC_RST	EMI	PCMCIA	Ι	-	sw_mux_ctl_ pc_rst[6:0]	USBH2 _DATA5	UART5_ CTS	-	-	-	-	_
IOIS16	EMI	PCMCIA	Ι	-	sw_mux_ctl_ iois16[6:0]	USBH2 _DATA6	-	-	-	-	-	-
PC_RW	EMI	PCMCIA	1	-	sw_mux_ctl_ pc_rw_b[6:0]	USBH2 _DATA7	-	-	-	-	-	_
PC_POE	EMI	PCMCIA	-	-	sw_mux_ctl_ pc_poe[6:0]	-	-	-	-	-	-	-
M_REQUEST	EMI	EMI sharing	-	-	-	-	-	-	-	-	-	-
M_GRANT	EMI	EMI sharing	-	-	-	-	-	-	-	-	-	_
CSI_D4	IPU (CSI)	GPIO used as IPU CSI chip select1	-	-	sw_mux_ctl_ csi_d4[6:0]	-	-	-	-	-	CTI_TRI G_OUT _1_2	MCU3_ 4
CSI_D5	IPU (CSI)	GPIO used as IPU CSI chip select2	-	-	sw_mux_ctl_ csi_d5[6:0]	-	-	-	-	-	CTI_TRI G_OUT _1_3	MCU3_ 5
CSI_D6	IPU (CSI)	Sensor Port Data 0 (bit 6)	ATA_DATA0	-	sw_mux_ctl_ csi_d6[6:0]	-	-	-	-	-	CTI_TRI G_OUT _1_4	MCU3_ 6
CSI_D7	IPU (CSI)	Sensor Port Data 1 (bit 7)	ATA_DATA1	-	sw_mux_ctl_ csi_d7[6:0]	-	-	-	-	-	CTI_TRI G_OUT _1_5	MCU3_ 7
CSI_D8	IPU (CSI)	Sensor Port Data 2 (bit 8)	ATA_DATA2	-	sw_mux_ctl_ csi_d8[6:0]	-	-	-	-	-	-	MCU3_ 8
CSI_D9	IPU (CSI)	Sensor Port Data 3 (bit 9)	ATA_DATA3	-	sw_mux_ctl_ csi_d9[6:0]	-	-	-	-	-	-	MCU3_ 9
CSI_D10	IPU (CSI)	Sensor Port Data 4 (bit 10)	ATA_DATA4	_	sw_mux_ctl_ csi_d10[6:0]	-	-	_	-	-	-	MCU3_ 10
CSI_D11	IPU (CSI)	Sensor Port Data 5 (bit 11)	ATA_DATA5	_	sw_mux_ctl_ csi_d11[6:0]	-	-	_	-	-	-	MCU3_ 11
CSI_D12	IPU (CSI)	Sensor Port Data 6 (bit 12)	ATA_DATA6	_	sw_mux_ctl_ csi_d12[6:0]	-	-	_	_	-	-	MCU3_ 12
CSI_D13	IPU (CSI)	Sensor Port Data 7 (bit 13)	ATA_DATA7	_	sw_mux_ctl_ csi_d13[6:0]	-	-	_	-	-	-	MCU3_ 13
CSI_D14		Sensor Port Data 8 (bit 14)	ATA_DATA8	-	sw_mux_ctl_ csi_d14[6:0]	-	-	-	-	-	-	MCU3_ 14
CSI_D15	IPU (CSI)	Sensor Port Data 9 (bit 15)	ATA_DATA9	-	sw_mux_ctl_ csi_d15[6:0]	_	-	-	-	-	-	MCU3_ 15

Signal Descriptions

			Hardware	HW	SW_	Alt	Alt	Alt	Alt	Alt	Alt	
Pin Name	Group	Description	Mode 1	Mode 2	MUX_ EN	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	GPIO
CSI_MCLK	. ,	Sensor Port master Clock	ATA_DATA10	-	sw_mux_ctl_ csi_mclk[6:0]	-	-	-	-	-	-	MCU3_ 16
CSI_VSYNC	IPU (CSI)	Sensor port vertical sync	ATA_DATA11	-	sw_mux_ctl_ csi_vsync[6: 0]	-	-	-	-	-	-	MCU3_ 17
CSI_HSYNC	IPU (CSI)	Sensor port horizontal Sync	ATA_DATA12	-	sw_mux_ctl_ csi_hsync[6: 0]	-	-	-	-	-	-	MCU3_ 18
CSI_PIXCLK	IPU (CSI)	Sensor port data latch clock	ATA_DATA13	-	sw_mux_ctl_ csi_pixclk[6: 0]	-	-	-	-	-	-	MCU3_ 19
I2C_CLK	I2C	I2C clock	ATA_DATA14	_	sw_mux_ctl_ i2c_clk[6:0]	-	-	IPU_DI AGB[0]	-	-	-	_
I2C_DAT	I2C	I2C data	ATA_DATA15	-	-	-	-	IPU_DI AGB[1]	-	-	-	-
STXD3	AudioPort 3-BB (HP3)	TxD	ATA_DATA7	USBH2 _DATA2	sw_mux_ctl_ stxd3[6:0]	_	-	IPU_DI AGB[2]	TRACE DATA_7	EVNTB US_0	EMI_DE BUG0	MCU1_ 17
SRXD3	AudioPort 3-BB (HP3)	RxD	ATA_DATA8	USBH2 _DATA3	sw_mux_ctl_ srxd3[6:0]	-	-	IPU_DI AGB[3]	TRACE DATA_8	EVNTB US_1	EMI_DE BUG1	MCU1_ 18
SCK3	AudioPort 3-BB (HP3)	Tx Serial Clock	ATA_DATA9	USBH2 _DATA4	sw_mux_ctl_ sck3[6:0]	-	-	IPU_DI AGB[4]	TRACE DATA_9	EVNTB US_2	EMI_DE BUG2	-
SFS3	AudioPort 3-BB (HP3)	Tx Frame Sync	ATA_DATA10	USBH2 _DATA5	sw_mux_ctl_ sfs3[6:0]	-	-	IPU_DI AGB[5]	TRACE DATA_ 10	EVNTB US_3	EMI_DE BUG3	-
STXD4	AudioPort 4-PM_NB (PP1)	TxD	_	-	sw_mux_ctl_ stxd4[6:0]	RXFS3	-	IPU_DI AGB[6]	-	EVNTB US_4	EMI_DE BUG4	MCU1_ 19
SRXD4	AudioPort 4-PM_NB (PP1)	RxD	-	-	sw_mux_ctl_ srxd4[6:0]	RXCLK 3	-	IPU_DI AGB[7]	-	EVNTB US_5	ARM_C OREASI D0	MCU1_ 20
SCK4	AudioPort 4-PM_NB (PP1)	Tx Serial Clock	_	-	sw_mux_ctl_ sck4[6:0]	RXFS5	-	IPU_DI AGB[8]	-	EVNTB US_6	ARM_C OREASI D1	-
SFS4	AudioPort 4-PM_NB (PP1)	Tx Frame Sync	-	-	sw_mux_ctl_ sfs4[6:0]	RXCLK 5	-	IPU_DI AGB[9]	-	EVNTB US_7	ARM_C OREASI D2	-
STXD5	AudioPort 5-PM_W B (PP2)	TxD	_	-	sw_mux_ctl_ stxd5[6:0]	-	-	IPU_DI AGB[10]	-	EVNTB US_8	ARM_C OREASI D3	MCU1_ 21
SRXD5	AudioPort 5-PM_W B (PP2)	RxD	_	-	sw_mux_ctl_ srxd5[6:0]	-	-	IPU_DI AGB[11]	-	EVNTB US_9	ARM_C OREASI D4	MCU1_ 22
SCK5	AudioPort 5-PM_W B (PP2)	Tx Serial Clock	-	-	sw_mux_ctl_ sck5[6:0]	-	-	IPU_DI AGB[12]	-	EVNTB US_10	ARM_C OREASI D5	-
SFS5	AudioPort 5-PM_W B (PP2)	Tx Frame Sync	_	-	sw_mux_ctl_ sfs5[6:0]	-	-	IPU_DI AGB[13]	-	EVNTB US_11	ARM_C OREASI D6	-
STXD6	AudioPort 6-BT (PP3)	TxD	ATA_DATA11	USBH2 _DATA6	sw_mux_ctl_ stxd6[6:0]	-	-	IPU_DI AGB[14]	TRACE DATA_ 11	EVNTB US_12	ARM_C OREASI D7	MCU1_ 23
SRXD6	AudioPort 6-BT (PP3)	RxD	ATA_DATA12	USBH2 _DATA7	sw_mux_ctl_ srxd6[6:0]	-	_	IPU_DI AGB[15]	TRACE DATA_ 12	EVNTB US_13	M3IF_C HOSEN _MAST ER_0	MCU1_ 24

Table 4. Functional Multiplexing (continued)

					-			-				
			Hardware	HW	SW_	Alt	Alt	Alt	Alt	Alt	Alt	
Pin Name	Group	Description	Mode 1	Mode	MUX_	Mode	Mode	Mode	Mode	Mode	Mode	GPIO
				2	EN	1	2	3	4	5	6	
SCK6	AudioPort 6-BT (PP3)	Tx Serial Clock	ATA_DATA13	_	sw_mux_ctl_ sck6[6:0]	-	_	IPU_DI AGB[16]	TRACE DATA_ 13	EVNTB US_14	M3IF_C HOSEN _MAST ER_1	MCU1_ 25
SFS6	AudioPort 6-BT (PP3)	Tx Frame Sync	USBH1_SUS PEND	-	sw_mux_ctl_ sfs6[6:0]	-	-	IPU_DI AGB[17]	TRACE DATA_ 14	EVNTB US_15	M3IF_C HOSEN _MAST ER_2	MCU1_ 26
CSPI1_MOSI	CSPI1_ BB	Master Out/Slave In.	ATA_DATA0	ATA_IN TRQ	sw_mux_ctl_ cspi1_mosi[6 :0]	USBH1 _RXDM	RXD3	IPU_DI AGB[18]	TRACE DATA_ 15	-	-	-
CSPI1_MISO	CSPI1_ BB	Slave In/Master Out.	ATA_DATA1	ATA_BU FFER_E N	sw_mux_ctl_ cspi1_miso[6 :0]	USBH1 _RXDP	TXD3	IPU_DI AGB[19]	TRACE DATA_ 16	-	-	-
CSPI1_SS0	CSPI1_ BB	Slave Select (Selectable polarity).	ATA_DATA2	ATA_DM ARQ	sw_mux_ctl_ cspi1_ss0[6: 0]	USBH1 _TXDM	CSPI3_ SS2	IPU_DI AGB[20]	TRACE DATA_ 17	-	-	-
CSPI1_SS1	CSPI1_ BB	Slave Select (Selectable polarity).	ATA_DATA3	ATA_DA 0	sw_mux_ctl_ cspi1_ss1[6: 0]	USBH1 _TXDP	CSPI2_ SS3	IPU_DI AGB[21]	TRACE DATA_ 18	-	-	-
CSPI1_SS2	CSPI1_ BB	Slave Select (Selectable polarity).	ATA_DATA4	ATA_DA 1	sw_mux_ctl_ cspi1_ss2[6: 0]	USBH1 _RCV	CSPI3_ SS3	IPU_DI AGB[22]	TRACE DATA_ 19	-	-	-
CSPI1_SCLK	CSPI1_ BB	Serial Clock.	ATA_DATA5	ATA_DA 2	sw_mux_ctl_ cspi1_sclk[6: 0]	USBH1 _OEB	RTS3	IPU_DI AGB[23]	-	-	-	-
CSPI1_SPI_ RDY	CSPI1_ BB	Serial Data Ready.	ATA_DATA6	-	sw_mux_ctl_ cspi1_spi_rd y[6:0]	USBH1 _FS	CTS3	IPU_DI AGB[24]	-	-	-	-
CSPI2_MOSI	CSPI2_ PM	Master Out/Slave In.	_	-	sw_mux_ctl_ cspi2_mosi [6:0]	I2C2_S CL	-	-	-	-	-	-
CSPI2_MISO	CSPI2_ PM	Slave In/Master Out.	-	-	sw_mux_ctl_ cspi2_miso [6:0]	I2C2_S DA	-	-	-	-	-	-
CSPI2_SS0	CSPI2_ PM	Slave Select (Selectable polarity).	_	-	sw_mux_ctl_ cspi2_ss0 [6:0]	CSPI3_ SS0	-	-	-	-	-	-
CSPI2_SS1	CSPI2_ PM	Slave Select (Selectable polarity).	-	-	sw_mux_ctl_ cspi2_ss1 [6:0]	CSPI3_ SS1	CSPI1_ SS3	-	-	-	-	-
CSPI2_SS2	CSPI2_ PM	Slave Select (Selectable polarity).	-	-	sw_mux_ctl_ cspi2_ss2 [6:0]	I2C3_S DA	IPU_FL ASH_S TROBE	-	_	-	-	-
CSPI2_SCLK	CSPI2_ PM	Serial Clock.	-	-	sw_mux_ctl_ cspi2_sclk [6:0]	I2C3_S CL	-	-	-	-	-	-
CSPI2_SPI_ RDY	CSPI2_ PM	-	-	-	sw_mux_ctl_ cspi2_spi_ rdy[6:0]	-	-	-	-	-	-	-
RXD1	UART1_ GPS	Rx Data. (+CE Bus 12)	TRSTB	-	sw_mux_ctl_ rxd1[6:0]	USBOT G_DATA 4	PP4_TX DAT/ STDA	-	DSR_ DCE1	-	-	MCU2_ 4
TXD1	UART1_ GPS	Tx Data. + (CE Bus 10)	ТСК	-	sw_mux_ctl_ txd1[6:0]	USBOT G_DATA 1	PP4_TX CLK/ SCK	-	RI_DCE 1	-	-	MCU2_ 5
RTS1	UART1_ GPS	Request to send. + (CE Bus 9)	-	-	sw_mux_ctl_ rts1[6:0]	Ι	PP4_TX FS/FS	-	DCD_D CE1	-	_	MCU2_ 6
CTS1	UART1_ GPS	Clear to send. + CE Bus 8)	DE	-	sw_mux_ctl_ cts1[6:0]	-	-	-	1	-	-	MCU2_ 7

					014							
Pin Name	Group	Description	Hardware	HW Mode	SW_ MUX	Alt Mode	Alt Mode	Alt Mode	Alt Mode	Alt Mode	Alt Mode	GPIO
Fin Name	Group	Description	Mode 1	2	EN	1	2	3	4	5	6	GFIO
DTR_DCE1	UART1_ GPS	CE Bus 11	TMS	-	sw_mux_ctl_ dtr_dce1[6:0]	-	PP4_RX DAT/SR DA	_	-	-	-	MCU2_ 8
DSR_DCE1	Full UART IF	Full UART IF + CE Bus 4	TDO	USBOT G_DATA 3	sw_mux_ctl_ dsr_dce1[6:0]	CSPI1_ SCLK	TXD1	DSR_D CE2	-	-	-	MCU2_ 9
RI_DCE1	Full UART IF	Full UART IF + CE Bus 5	TDI	USBOT G_DATA 4	sw_mux_ctl_ ri_dce1[6:0]	CSPI1_ SPI_RD Y	RXD1	RI_DCE 2	-	-	-	MCU2_ 10
DCD_DCE1	Full UART IF	Full UART IF + CE Bus 6	RESET_IN	USBOT G_DATA 5	sw_mux_ctl_ dcd_dce1 [6:0]	CSPI1_ SS3	RTS1	DCD_D CE2	USB_P WR	-	-	MCU2_ 11
DTR_DTE1	Full UART IF	_	CSPI1_MOSI	-	sw_mux_ctl_ dtr_dte1[6:0]	-	-	DTR_D TE2	-	EVNTB US_16	-	MCU2_ 12
DSR_DTE1	Full UART IF	-	CSPI1_MISO	-	sw_mux_ctl_ dsr_dte1[6:0]	DSR_D TE2	-	-	-	EVNTB US_17	-	MCU2_ 13
RI_DTE1	Full UART IF	-	CSPI1_SS0	-	sw_mux_ctl_ ri_dte1[6:0]	RI_DTE 2	I2C2_S CL	IPU_DI AGB[25]	-	EVNTB US_18	-	MCU2_ 14
DCD_DTE1	Full UART IF	-	CSPI1_SS1	-	sw_mux_ctl_ dcd_dte1 [6:0]	DCD_ DTE2	I2C2_S DA	IPU_DI AGB[26]	-	EVNTB US_19	-	MCU2_ 15
DTR_DCE2	Full UART IF	-	CSPI1_SS2	-	sw_mux_ctl_ dtr_dce2[6:0]	-	-	IPU_DI AGB[27]	-	-	-	MCU2_ 16
RXD2	UART2_ IR	Tx Data.	ipp_ind_firi_ rxd	-	sw_mux_ctl_ rxd2[6:0]	-	-	IPU_DI AGB[28]	-	-	-	MCU1_ 27
TXD2	UART2_ IR	Tx Data.	ipp_do_firi_ txd	-	sw_mux_ctl_ txd2[6:0]	-	-	IPU_DI AGB[29]	-	-	-	MCU1_ 28
RTS2	UART2_ IR	Request to send.	ipp_ind_firi_ rxd	-	sw_mux_ctl_ rts2[6:0]	-	-	IPU_DI AGB[30]	-	-	-	-
CTS2	UART2_ IR	Clear to send.	ipp_do_firi_ txd	-	sw_mux_ctl_ cts2[6:0]	-	-	IPU_DI AGB[31]	-	-	-	I
BATT_LINE	1-Wire	One Wire Data	-	-	sw_mux_ctl_ batt_line[6:0]	-	-	-	-	-	-	MCU2_ 17
KEY_ROW0	Keypad	keypad row sense 0	-	-	sw_mux_ctl_ key_row0 [6:0]	-	_	-	-	-	-	-
KEY_ROW1	Keypad	keypad row sense 1	-	-	sw_mux_ctl_ key_row1 [6:0]	-	-	-	-	-	-	_
KEY_ROW2	Keypad	keypad row sense 2	-	-	sw_mux_ctl_ key_row2 [6:0]	-	-	-	-	-	-	-
KEY_ROW3	Keypad	keypad row sense 3	-	-	sw_mux_ctl_ key_row3 [6:0]	-	-	-	TRACE CTL	-	-	-
KEY_ROW4	Keypad	keypad row sense 4	-	-	sw_mux_ctl_ key_row4 [6:0]	-	-	-	TRACE CLK	-	-	MCU2_ 18
KEY_ROW5	Keypad	keypad row sense 5	_	-	sw_mux_ctl_ key_row5 [6:0]	-	-	-	TRACE DATA_0	-	-	MCU2_ 19
KEY_ROW6	Keypad	keypad row sense 6	ATA_INTRQ	-	sw_mux_ctl_ key_row6 [6:0]	-	-	-	TRACE DATA_1	_	_	MCU2_ 20
KEY_ROW7	Keypad	keypad row sense 7	ATA_ BUFFER_EN	_	sw_mux_ctl_ key_row7 [6:0]	-	-	-	TRACE DATA_2	-	-	MCU2_ 21
KEY_COL0	Keypad	keypad column driver 0	_	-	sw_mux_ctl_ key_col0 [6:0]	-	-	-	_	-	_	-

					014	A 14						
	Creation	Decerintian	Hardware	HW	SW_	Alt	Alt	Alt Mode	Alt	Alt	Alt	GPIO
Pin Name	Group	Description	Mode 1	Mode 2	MUX_ EN	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Mode 6	GPIO
KEY_COL1	Keypad	keypad column driver 1	-	-	sw_mux_ctl_ key_col1 [6:0]	-	-	-	-	-	-	-
KEY_COL2	Keypad	keypad column driver 2	-	-	sw_mux_ctl_ key_col2 [6:0]	-	-	-	-	-	-	-
KEY_COL3	Keypad	keypad column driver 3	-	_	sw_mux_ctl_ key_col3 [6:0]	_	-	-	TRACE DATA_3	-	-	-
KEY_COL4	Keypad	keypad column driver 4	ATA_DMARQ	-	sw_mux_ctl_ key_col4 [6:0]	-	-	-	TRACE DATA_4	-	-	MCU2_ 22
KEY_COL5	Keypad	keypad column driver 5	ATA_DA0	-	sw_mux_ctl_ key_col5 [6:0]	-	-	-	TRACE DATA_5	-	-	MCU2_ 23
KEY_COL6	Keypad	keypad column driver 6	ATA_DA1	-	sw_mux_ctl_ key_col6 [6:0]	-	_	_	TRACE DATA_6	_	-	MCU2_ 24
KEY_COL7	Keypad	keypad column driver 7	ATA_DA2	-	sw_mux_ctl_ key_col7 [6:0]	-	-	_	TRACE DATA_7	_	_	MCU2_ 25
RTCK	JTAG	ARM Debug Test Clock	-	-	-	-	-	-	-	-	-	-
тск	JTAG	JTAG TAP clock No MUX allowed	-	-	sw_mux_ctl_ tck[6:0]	-	-	-	-	-	-	-
TMS	JTAG	JTAG TAP mode select No MUX allowed	-	-	sw_mux_ctl_ tms[6:0]	-	-	-	-	-	-	-
TDI	JTAG	JTAG Tap Data In No MUX allowed	-	-	sw_mux_ctl_ tdi[6:0]	-	-	-	-	-	-	-
TDO	JTAG	JTAG TAP data out	-	-	-	-	-	-	-	-	-	-
TRSTB	JTAG	JTAG TAP reset No MUX allowed	-	-	sw_mux_ctl_ trstb[6:0]	-	-	-	-	-	-	-
DE	JTAG	JTAG Debug Enable No MUX allowed	-	-	sw_mux_ctl_ de_b[6:0]	-	-	-	-	-	-	-
SJC_MOD	JTAG	JTAG Mode	-	-	-	-	-	-	-	-	-	-
USB_PWR	USB GEN	USB Generic	-	-	sw_mux_ctl_ usb_pwr[6:0]	-	-	-	-	-	MAX1_ HMAST ER_0	MCU1_ 29
USB_OC	USB GEN	USB Generic	_	-	sw_mux_ctl_ usb_oc[6:0]	-	-	-	-	-	MAX1_ HMAST ER_1	MCU1_ 30
USB_BYP	USB GEN	USB Generic	_	-	sw_mux_ctl_ usb_byp[6:0]	_	-	-	-	-	MAX1_ HMAST ER_2	MCU1_ 31
USBOTG_ CLK	USBOTG	USB OTG FS/ULPI Port	-	_	sw_mux_ctl_ usbotg_clk [6:0]	_	-	-	-	-	MAX1_ HMAST ER_3	-
USBOTG_DIR	USBOTG	USB OTG FS/ULPI Port	-	_	sw_mux_ctl_ usbotg_dir [6:0]	_	-	-	-	-	MAX0_ HMAST ER_0	-
USBOTG_ STP	USBOTG	USB OTG FS/ULPI Port	-	_	sw_mux_ctl_ usbotg_stp [6:0]	_	-	-	-	-	MAX0_ HMAST ER_1	-
USBOTG_ NXT	USBOTG	USB OTG FS/ULPI Port	-	-	sw_mux_ctl_ usbotg_nxt [6:0]	-	-	-	-	-	MAX0_ HMAST ER_2	-
USBOTG_ DATA0	USBOTG	USB OTG FS/ULPI Port + CE Bus	_	Ι	sw_mux_ctl_ usbotg_ data0[6:0]	-	UART4_ CTS	_	_	_	MAX0_ HMAST ER_3	_

			Hardware	HW	SW_	Alt	Alt	Alt	Alt	Alt	Alt	
Pin Name	Group	Description	Mode 1	Mode	MUX_	Mode	Mode	Mode	Mode	Mode	Mode	GPIO
				2	EN	1	2	3	4	5	6	
USBOTG_ DATA1	USBOTG	USB OTG FS/ULPI Port	-	-	sw_mux_ctl_ usbotg_data 1[6:0]	-	-	-	-	-	-	-
USBOTG_ DATA2	USBOTG	USB OTG FS/ULPI Port + CE Bus	-	-	sw_mux_ctl_ usbotg_data 2[6:0]	-	-	-	-	-	-	-
USBOTG_ DATA3	USBOTG	USB OTG FS/ULPI Port	_	-	sw_mux_ctl_ usbotg_data 3[6:0]	-	UART4_ RXD	-	-	-	-	-
USBOTG_ DATA4	USBOTG	USB OTG FS/ULPI Port	_	_	sw_mux_ctl_ usbotg_data 4[6:0]	-	UART4_ TXD	_	-	-	-	-
USBOTG_ DATA5	USBOTG	USB OTG FS/ULPI Port	_	-	sw_mux_ctl_ usbotg_data 5[6:0]	-	UART4_ RTS	-	-	-	-	-
USBOTG_ DATA6	USBOTG	USB OTG FS/ULPI Port	_	_	sw_mux_ctl_ usbotg_data 6[6:0]	_	_	_	-	-	-	-
USBOTG_ DATA7	USBOTG	USB OTG FS/ULPI Port	_	-	sw_mux_ctl_ usbotg_data 7[6:0]	-	-	-	-	-	-	-
USBH2_CLK	USBH2	USB Host2 FS/ULPI	ATA_INTRQ	-	sw_mux_ctl_ usbh2_ clk[6:0]	UART5_ RTS	-	-	TRACE DATA_2 0	-	-	-
USBH2_DIR	USBH2	USB Host2 FS/ULPI	ATA_BUFFE R_EN	-	sw_mux_ctl_ usbh2_ dir[6:0]	UART5_ RXD	-	-	TRACE DATA_2 1	-	-	_
USBH2_STP	USBH2	USB Host2 FS/ULPI	ATA_DMARQ	-	sw_mux_ctl_ usbh2_ stp[6:0]	UART5_ TXD	-	-	TRACE DATA_2 2	-	-	1
USBH2_NXT	USBH2	USB Host2 FS/ULPI	ATA_DA0	-	sw_mux_ctl_ usbh2_ nxt[6:0]	UART5_ CTS	-	-	TRACE DATA_2 3	-	-	-
USBH2_ DATA0	USBH2	USB Host2 FS/ULPI	ATA_DA1	-	sw_mux_ctl_ usbh2_data0 [6:0]	-	-	-	TRACE CTL	-	-	Ι
USBH2_ DATA1	USBH2	USB Host2 FS/ULPI	ATA_DA2	-	sw_mux_ctl_ usbh2_data1 [6:0]	-	-	-	TRACE CLK	-	-	-
LD0	IPU (LCD)	-	-	-	sw_mux_ctl_ ld0[6:0]	-	-	-	-	-	SDMA_ DEBUG _PC_0	-
LD1	IPU (LCD)	-	-	-	sw_mux_ctl_ ld1[6:0]	-	-	-	-	-	SDMA_ DEBUG _PC_1	-
LD2	IPU (LCD)	-	-	-	sw_mux_ctl_ ld2[6:0]	-	-	-	-	-	SDMA_ DEBUG _PC_2	-
LD3	IPU (LCD)	_	-	-	sw_mux_ctl_ ld3[6:0]	-	-	-	-	-	SDMA_ DEBUG _PC_3	-
LD4	IPU (LCD)	_	_	-	sw_mux_ctl_ ld4[6:0]	-	-	-	-	-	SDMA_ DEBUG _PC_4	-
LD5	IPU (LCD)	-	-	_	sw_mux_ctl_ ld5[6:0]	-	-	_	-	_	SDMA_ DEBUG _PC_5	_
LD6	IPU (LCD)	_	-	-	sw_mux_ctl_ ld6[6:0]	-	-	-	-	-	SDMA_ DEBUG _PC_6	-

						<u> </u>						
Pin Name	Group	Description	Hardware Mode 1	HW Mode 2	SW_ MUX_ EN	Alt Mode 1	Alt Mode 2	Alt Mode 3	Alt Mode 4	Alt Mode 5	Alt Mode 6	GPIO
LD7	IPU (LCD)	-	-	-	sw_mux_ctl_ ld7[6:0]	-	-	-	-	-	SDMA_ DEBUG _PC_7	-
LD8	IPU (LCD)	-	-	-	sw_mux_ctl_ ld8[6:0]	_	-	-	-	-	SDMA_ DEBUG _PC_8	-
LD9	IPU (LCD)	_	-	-	sw_mux_ctl_ ld9[6:0]	_	-	-	-	-	SDMA_ DEBUG _PC_9	-
LD10	IPU (LCD)	-	-	-	sw_mux_ctl_ ld10[6:0]	I	-	-	-	-	SDMA_ DEBUG _PC_10	-
LD11	IPU (LCD)	_	-	-	sw_mux_ctl_ ld11[6:0]	Ι	-	-	-	-	SDMA_ DEBUG _PC_11	-
LD12	IPU (LCD)	_	-	_	sw_mux_ctl_ ld12[6:0]	I	-	-	-	_	SDMA_ DEBUG _PC_12	-
LD13	IPU (LCD)	_	-	-	sw_mux_ctl_ ld13[6:0]	Ι	-	-	-	-	SDMA_ DEBUG _PC_13	-
LD14	IPU (LCD)	-	_	-	sw_mux_ctl_ ld14[6:0]	-	-	-	-	_	SDMA_ DEBUG _EVEN T_CHA NNEL_0	-
LD15	IPU (LCD)	_	-	-	sw_mux_ctl_ ld15[6:0]	-	-	-	-	_	SDMA_ DEBUG _EVEN T_CHA NNEL_1	-
LD16	IPU (LCD)	-	_	_	sw_mux_ctl_ ld16[6:0]	-	-	-	-	_	SDMA_ DEBUG _EVEN T_CHA NNEL_2	-
LD17	IPU (LCD)	_	-	-	sw_mux_ctl_ ld17[6:0]	-	-	-	-	_	SDMA_ DEBUG _EVEN T_CHA NNEL_3	-
VSYNCO	IPU (LCD)	frame sync	-	-	sw_mux_ctl_ vsync0[6:0]	-	-	-	-	_	SDMA_ DEBUG _EVEN T_CHA NNEL_4	-
HSYNC	IPU (LCD)	line sync	-	_	sw_mux_ctl_ hsync[6:0]	-	-	-	-	_	SDMA_ DEBUG _EVEN T_CHA NNEL_5	-
FPSHIFT	IPU (LCD)	shift	-	_	sw_mux_ctl_ fpshift[6:0]	DISPB_ BCLK	-	-	-	-	SDMA_ DEBUG _CORE _STATU S_0	-
DRDY0	IPU (LCD)	DRDY/VLD	-	-	sw_mux_ctl_ drdy0[6:0]	-	-	-	-	-	SDMA_ DEBUG _CORE _STATU S_1	-

Signal Descriptions

					-							
Pin Name	Group	Description	Hardware Mode 1	HW Mode 2	SW_ MUX_ EN	Alt Mode 1	Alt Mode 2	Alt Mode 3	Alt Mode 4	Alt Mode 5	Alt Mode 6	GPIO
SD_D_I	IPU (LCD)	Data in for Serial Display	_	-	sw_mux_ctl_ sd_d_i[6:0]	-	SD_D_I	-	-	-	SDMA_ DEBUG _CORE _STATU S_2	MCU3_ 20
SD_D_IO	IPU (LCD)	Data in/out for Serial Display	-	-	sw_mux_ctl_ sd_d_io[6:0]	-	-	-	-	-	SDMA_ DEBUG _CORE _STATU S_3	MCU3_ 21
SD_D_CLK	IPU (LCD)	Serial Display clock	-	-	sw_mux_ctl_ sd_d_clk[6:0]	-	-	-	-	-	-	MCU3_ 22
LCS0	IPU (LCD)	Asynch. Port chip select	_	-	sw_mux_ctl_ lcs0[6:0]	DISPB_ BCLK	-	-	-	-	-	MCU3_ 23
LCS1	IPU (LCD)	Asynch. Port chip select	-	-	sw_mux_ctl_ lcs1[6:0]	-	-	-	-	-	-	MCU3_ 24
SER_RS	IPU (LCD)	Asynch. Serial Port data/comm	_	-	sw_mux_ctl_ ser_rs[6:0]	-	-	-	-	-	_	MCU3_ 25
PAR_RS	IPU (LCD)	Asynch.Parallel Port data/comm	-	-	sw_mux_ctl_ par_rs[6:0]	-	-	-	-	-	-	-
WRITE	IPU (LCD)	Asynch. Port write	-	-	sw_mux_ctl_ write[6:0]	-	-	-	-	-	-	-
READ	IPU (LCD)	Asynch. Port read	-	-	sw_mux_ctl_ read[6:0]	-	-	-	-	-	-	-
VSYNC3	IPU (LCD)	vsync	-	-	sw_mux_ctl_ vsync3[6:0]	-	-	-	-	-	-	-
CONTRAST	IPU (LCD)	-	_	-	sw_mux_ctl_ contrast[6:0]	-	-	-	-	-	-	-
D3_REV	IPU (LCD)	-	-	-	sw_mux_ctl_ d3_rev[6:0]	-	-	-	-	-	-	-
D3_CLS	IPU (LCD)	_	-	-	sw_mux_ctl_ d3_cls[6:0]	-	-	-	-	-	-	I
D3_SPL	IPU (LCD)	_	-	-	sw_mux_ctl_ d3_spl[6:0]	-	-	-	-	-	_	I
SD1_CMD	SD/MMC 1	_	_	-	sw_mux_ctl_ sd1_ cmd[6:0]	MSHC1 _SCLK	-	-	TRACE DATA_0	-	-	MCU2_ 26
SD1_CLK	SD/MMC 1	_	-	-	sw_mux_ctl_ sd1_clk[6:0]	MSHC1 _BS	-	-	TRACE DATA_1	-	-	MCU2_ 27
SD1_DATA0	SD/MMC 1	_	-	-	sw_mux_ctl_ sd1_ data0[6:0]	MSHC1 _SDIO_ DATA0	-	-	TRACE DATA_2	-	-	MCU2_ 28
SD1_DATA1	SD/MMC 1	-	-	-	sw_mux_ctl_ sd1_ data1[6:0]	MSHC1 _DATA1	-	-	TRACE DATA_3	-	-	MCU2_ 29
SD1_DATA2	SD/MMC 1	-	-	-	sw_mux_ctl_ sd1_ data2[6:0]	MSHC1 _DATA2	-	-	TRACE DATA_4	-	-	MCU2_ 30
SD1_DATA3	SD/MMC 1	-	-	-	sw_mux_ctl_ sd1_ data3[6:0]	MSHC1 _DATA3	CTI_TRI G_IN_1 _7	-	TRACE DATA_5	obs_int_ 5	-	MCU2_ 31
ATA_CS0	ATA	-	-	-	sw_mux_ctl_ ata_cs0[6:0]	UART4_ RXD	CSI_D0	SD_D_ CLK	TRACE DATA_6	-	-	MCU3_ 26
ATA_CS1	ATA	-	-	-	sw_mux_ctl_ ata_cs1[6:0]	UART4_ RTS	CSI_D1	LCS1	TRACE DATA_7	obs_int_ 6	-	MCU3_ 27
ATA_DIOR	ATA	-	-	-	sw_mux_ctl_ ata_dior[6:0]	UART4_ TXD	CSI_D2	SER_R S	TRACE CTL	obs_int_ 7	-	MCU3_ 28

Table 4. Functional Multiplexing (continued)

				HW	SW_	Alt	Alt	Alt	Alt	Alt	Alt	
Pin Name	Group	Description	Hardware	Mode	MUX_	Mode	Mode	Mode	Mode	Mode	Mode	GPIO
T III Nullie	Cioup	Beschption	Mode 1	2	EN	1	2	3	4	5	6	
ATA_DIOW	ATA	_	_	-	sw_mux_ctl_	UART4_	CSI_D3	-	TRACE	obs int	-	MCU3_
					ata_	CTS			CLK	8		29
ATA_DMACK	ATA				diow[6:0]	SD_D_				obs_int_		MCU3_
AIA_DMACK	AIA	-	-	-	sw_mux_ctl_ ata_	5D_D_ 0	-	-	-	obs_int_ 9	-	30
					dmack[6:0]							
ATA_RESET	ATA	-	-	-	sw_mux_ctl_ ata_	SD_D	-	-	-	-	-	MCU3_ 31
					reset_b[6:0]							51
CE_	CE	-	-	-	-	-	-	-	-	-	-	-
CONTROL	CONTROL											
CLKSS	Clock & Reset& PM	Clock Source Select at reset	-	-	-	-	-	-	-	-	-	-
CSPI3_MOSI	CSPI3_	Master Out/Slave In.	_	_	sw_mux_ctl_	RXD3	_	_	_	_	_	_
	MM				cspi3_ mosi[6:0]	10,000						
CSPI3_MISO	CSPI3_	Slave In/Master Out.	-	-	sw_mux_ctl_	TXD3	-	-	-	-	-	-
	MM				cspi3_ miso[6:0]							
CSPI3_SCLK	CSPI3_	Serial Clock.	-	-	sw_mux_ctl_	RTS3	-	-	-	-	-	-
	MM				cspi3_ sclk[6:0]							
CSPI3_SPI_	CSPI3_	Serial Data Ready.	-	-	sw_mux_ctl_	CTS3	-	-	-	-	-	-
RDY	MM				cspi3_spi_ rdy[6:0]							
TTM_PAD	TTM_ PAD	Special TTM pad ¹	-	-	-	-	-	-	-	-	-	-
IOQVDD	QVDD	_	_	_	_	_	_	_	_	_	_	_
MVCC	PLL's	_	_	_	_	_	_	_	_	_	_	_
MGND	PLL's		_	-	-	_	_	_	_	_	_	_
UVCC	PLL's	_	_	_	-	-	_	_	_	_	-	-
UGND	PLL's	-	-	-	_	_	-	-	-	-	-	_
FVCC	PLL's	_	-	-	-	_	-	_	-	-	-	_
FGND	PLL's	-	-	-	-	-	-	-	-	-	-	-
SVCC	PLL's	_	-	-	-	-	-	-	-	-	-	_
SGND	PLL's	_	-	-	-	-	-	-	-	-	-	_
NVCC1	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC2	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC3	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC4	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC5	Noisy	_	-	-	-	-	-	-	-	-	-	-
NVCC6	Noisy	-	-	-	-	-	-	-	-	-	-	1
NVCC7	Noisy	_	-	-	-	-	-	-	-	-	-	-
NVCC8	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC9	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC10	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC10	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC21	Noisy	-	-	-	-	-	-	-	-	-	-	-
NVCC22	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND1	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND2	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND3	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND4	Noisy	-	-	-	-	-	-	-	-	-	-	-

Table 4. Functional Multiplexing (continued)

Pin Name	Group	Description	Hardware Mode 1	HW Mode 2	SW_ MUX_ EN	Alt Mode 1	Alt Mode 2	Alt Mode 3	Alt Mode 4	Alt Mode 5	Alt Mode 6	GPIO
NGND5	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND6	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND7	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND8	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND9	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND10	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND21	Noisy	-	-	-	-	-	-	-	-	-	-	-
NGND22	Noisy	-	-	-	-	-	-	-	-	-	-	-
QVCC	Quiet	-	-	-	-	-	-	-	-	-	-	-
QVCC1	Quiet	-	-	-	-	-	-	-	-	-	-	-
4	Quiet	_	-	-	_	-	-	-	-	-	-	-

Table 4. Functional Multiplexing (continued)

¹ The special TTM pad (at U20) is used by Freescale internally and must be connected to GND on the customer's production board.

3.1.2 Pad Settings

Table 5 shows the legend for the pin settings. Table 6 defines all the settings of each pad. If a pad's settings is configurable by software, then the bit controlling this setting is described in that table.

Term	Description
Slew Rate	Defines the speed of the pad (fast or slow).
Loopback	Enables the input buffer when the output buffer is enabled.
Drive Strength Control	Defines the driving strength of the pad.
Pull Value	Resistor value on the pad.
Pull/Keep Select	The capability selected—pull or keeper. The signal has no meaning if pull/keeper enable is not enabled.
Pull/Keep Enable	Pull or keeper enabled or not.
Open Drain	The signal that enables the open drain capability of the pad.
Schmitt Trigger	The signal that enables the Schmidt trigger capability of the pad.
Supply Group	The supply that the pad is connected to.

Table 5. Pad Settings Legend

Freescale	
Semiconductor	

Preliminary

i.MX31/i.MX31L Advance Information, Rev. 1.4

Pin Name	Pad	Slew Ra	ate	Loopba	ck	Drive Stre Enable (M		Drive Stre Enable0 (I Norma	High/	Pull	Value	Pull/ Keep Selec		Pull/ Keep Ena	able	Open Drain		Schmitt Tr	igger	Supply Group	Value After Reset
		value	reset	value	reset	value	reset	value	reset	value	reset	value	reset	value	reset	value	reset	value	reset		
CAPTURE r	regular	sw_pad_ct I_capture[0]	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	sw_pad_ct I_capture[8]	VCC	GND	GND	GND	GND	NVCC1	_
COMPARE r	regular	sw_pad_ct I_compare [0]	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC1	Ι
WATCHDOG_ r RST	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC1	Ι
PWMO r	regular	sw_pad_ct l_pwmo[0]	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	sw_pad_ct I_pwmo[8]	GND	GND	GND	sw_pad_ct I_pwmo[4]	VCC	NVCC3	I
GPIO1_0 r	regular	sw_pad_ct I_gpio1_0 [0]	slow	GND	GND	sw_pad_ct I_gpio1_0 [2]	GND	sw_pad_ct I_gpio1_0 [1]	GND	pu100	pu100	sw_pad_ct l_gpio1_0 [7]	pull	sw_pad_ct I_gpio1_0 [8]	VCC	sw_pad_ct I_gpio1_0 [3]	GND	sw_pad_ct I_gpio1_0 [4]	GND	NVCC1	Ι
GPIO1_1 r	regular	sw_pad_ct I_gpio1_1 [0]	slow	GND	GND	sw_pad_ct I_gpio1_1 [2]	GND	sw_pad_ct I_gpio1_1 [1]	GND	pu100	pu100	sw_pad_ct l_gpio1_1 [7]	pull	sw_pad_ct I_gpio1_1 [8]	VCC	sw_pad_ct I_gpio1_1 [3]	GND	sw_pad_ct I_gpio1_1 [4]	GND	NVCC1	-
GPIO1_2 r	regular	sw_pad_ct I_gpio1_2 [0]	slow	GND	GND	sw_pad_ct I_gpio1_2 [2]	GND	sw_pad_ct I_gpio1_2 [1]	GND	pu100	pu100	sw_pad_ct l_gpio1_2 [7]	pull	sw_pad_ct I_gpio1_2 [8]	VCC	sw_pad_ct I_gpio1_2 [3]	GND	sw_pad_ct l_gpio1_2 [4]	GND	NVCC1	-
GPIO1_3 r	regular	sw_pad_ct I_gpio1_3 [0]	slow	GND	GND	sw_pad_ct I_gpio1_3 [2]	GND	sw_pad_ct I_gpio1_3 [1]	GND	pu100	pu100	sw_pad_ct l_gpio1_3 [7]	pull	sw_pad_ct I_gpio1_3 [8]	VCC	sw_pad_ct I_gpio1_3 [3]	GND	sw_pad_ct I_gpio1_3 [4]	GND	NVCC1	Ι
GPIO1_4 r	regular	sw_pad_ct I_gpio1_4 [0]	slow	GND	GND	sw_pad_ct I_gpio1_4 [2]	GND	sw_pad_ct I_gpio1_4 [1]	GND	pu100	pu100	sw_pad_ct I_gpio1_4 [7]	pull	sw_pad_ct l_gpio1_4 [8]	VCC	sw_pad_ct I_gpio1_4 [3]	GND	sw_pad_ct I_gpio1_4 [4]	GND	NVCC1	I
GPIO1_5 r	regular	sw_pad_ct I_gpio1_5 [0]	slow	GND	GND	sw_pad_ct I_gpio1_5 [2]	GND	sw_pad_ct I_gpio1_5 [1]	GND	pu100	pu100	sw_pad_ct l_gpio1_5 [7]	pull	sw_pad_ct l_gpio1_5 [8]	VCC	sw_pad_ct I_gpio1_5 [3]	GND	sw_pad_ct I_gpio1_5 [4]	GND	NVCC1	I
GPIO1_6 r	regular	sw_pad_ct I_gpio1_6 [0]	slow	GND	GND	sw_pad_ct I_gpio1_6 [2]	GND	sw_pad_ct I_gpio1_6 [1]	GND	pu100	pu100	sw_pad_ct I_gpio1_6 [7]	pull	sw_pad_ct l_gpio1_6 [8]	VCC	sw_pad_ct I_gpio1_6 [3]	GND	sw_pad_ct I_gpio1_6 [4]	GND	NVCC1	I
GPIO3_0 r	regular	sw_pad_ct I_gpio3_0 [0]	slow	GND	GND	sw_pad_ct I_gpio3_0 [2]	GND	sw_pad_ct I_gpio3_0 [1]	GND	pu100	pu100	sw_pad_ct I_gpio3_0 [7]	pull	sw_pad_ct I_gpio3_0 [8]	VCC	sw_pad_ct I_gpio3_0 [3]	GND	sw_pad_ct I_gpio3_0 [4]	GND	NVCC4	I
GPIO3_1 r	regular	sw_pad_ct I_gpio3_1 [0]	slow	GND	GND	sw_pad_ct I_gpio3_1 [2]	GND	sw_pad_ct I_gpio3_1 [1]	GND	pu100	pu100	sw_pad_ct I_gpio3_1 [7]	pull	sw_pad_ct l_gpio3_1 [8]	VCC	sw_pad_ct I_gpio3_1 [3]	GND	sw_pad_ct I_gpio3_1 [4]	GND	NVCC4	I
SCLK0 r	regular	sw_pad_ct l_sclk0[0]	slow	sw_pad_ct I_sclk0[9]	GND	sw_pad_ct I_sclk0[2]	GND	sw_pad_ct l_sclk0[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_sclk0[8]	VCC	GND	GND	GND	GND	NVCC9	I
SRST0 r	regular	sw_pad_ct I_srst0[0]	slow	GND	GND	sw_pad_ct I_srst0[2]	GND	sw_pad_ct I_srst0[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_srst0[8]	VCC	GND	GND	GND	GND	NVCC9	Ι
SVEN0 r	regular	sw_pad_ct I_sven0[0]	slow	GND	GND	sw_pad_ct I_sven0[2]	GND	sw_pad_ct I_sven0[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_sven0[8]	VCC	GND	GND	GND	GND	NVCC9	I
STX0 r	regular	sw_pad_ct I_stx0[0]	slow	sw_pad_ct I_stx0[9]	VCC	sw_pad_ct l_stx0[2]	GND	sw_pad_ct l_stx0[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_stx0[8]	VCC	GND	GND	GND	GND	NVCC9	I
SRX0 r	regular	sw_pad_ct I_srx0[0]	slow	GND	GND	sw_pad_ct I_srx0[2]	GND	sw_pad_ct l_srx0[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_srx0[8]	VCC	GND	GND	GND	GND	NVCC9	I

Table 6. Pad Settings

Signal Descriptions

39

Table 6. Pad Settings (continued)

Pin Name	Pad	Slew Ra	ate	Loopba	ack	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec)	Pull/ Keep Ena	able	Oper Drain		Schmitt Tr	igger	Supply Group	Value After Reset
SIMPD0	regular	sw_pad_ct I_simpd0 [0]	slow	GND	GND	sw_pad_ct I_simpd0 [2]	GND	sw_pad_ct I_simpd0 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_simpd0 [8]	VCC	GND	GND	GND	GND	NVCC9	Ι
СКІН	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	sw_pad_ct I_ckih[4]	VCC	NVCC1	I
RESET_IN	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	VCC	VCC	GND	GND	VCC	VCC	NVCC1	I
POR	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	VCC	GND	GND	GND	VCC	VCC	NVCC1	1
CLKO	ddr	fast	fast	GND	GND	VCC	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	Н
BOOT_MODE0	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	1
BOOT_MODE1	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	I
BOOT_MODE2	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	
BOOT_MODE3	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	I
BOOT_MODE4	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	Ι
CKIL	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	VCC	VCC	NVCC1	I
POWER_FAIL	regular	slow	slow	GND	GND	GND	GND	GND	GND	pd100	pd100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC1	I
VSTBY	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	L
DVFS0	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	L
DVFS1	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	L
VPG0	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	L
VPG1	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC1	L
A0	regular	fast	fast	GND	GND	sw_pad_ct I_a0[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A1	regular	fast	fast	GND	GND	sw_pad_ct I_a1[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A2	regular	fast	fast	GND	GND	sw_pad_ct I_a2[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A3	regular	fast	fast	GND	GND	sw_pad_ct I_a3[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A4	regular	fast	fast	GND	GND	sw_pad_ct I_a4[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A5	regular	fast	fast	GND	GND	sw_pad_ct I_a5[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A6	regular	fast	fast	GND	GND	sw_pad_ct I_a6[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A7	regular	fast	fast	GND	GND	sw_pad_ct I_a7[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A8	regular	fast	fast	GND	GND	sw_pad_ct I_a8[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A9	regular	fast	fast	GND	GND	sw_pad_ct I_a9[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A10	regular	fast	fast	GND	GND	sw_pad_ct l_a10[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	L
MA10	regular	fast	fast	GND	GND	sw_pad_ct [_ma10[2]	vcc	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A11	regular	fast	fast	GND	GND	sw_pad_ct	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L

Freescale
Semiconductor

Preliminary

i.MX31/i.MX31L Advance Information, Rev. 1.4

Pin Name	Pad	Slew F	late	Loopb	ack	Drive Stre Enable (I		Drive Str Enable0 Norm	(High/	Pull	Value	Pul Kee Sele	р	Pul Keep Ei		Ope Drai		Schmitt T	rigger	Supply Group	Val Aft Res
A12	regular	fast	fast	GND	GND	sw_pad_ct I_a12[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	L
A13	regular	fast	fast	GND	GND	sw_pad_ct I_a13[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	1
A14	regular	fast	fast	GND	GND	sw_pad_ct I_a14[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC21	
A15	regular	fast	fast	GND	GND		VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC21	
A16	regular	fast	fast	GND	GND	sw_pad_ct I_a16[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC21	
A17	regular	fast	fast	GND	GND	sw_pad_ct	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
A18	regular	fast	fast	GND	GND	sw_pad_ct	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
A19	regular	fast	fast	GND	GND		VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
A20	regular	fast	fast	GND	GND	sw_pad_ct I_a20[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
A21	regular	fast	fast	GND	GND	sw_pad_ct I_a21[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
A22	regular	fast	fast	GND	GND		VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
A23	regular	fast	fast	GND	GND		VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
A24	regular	fast	fast	GND	GND	sw_pad_ct I_a24[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
A25	regular	fast	fast	GND	GND	sw_pad_ct I_a25[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
SDBA1	regular	fast	fast	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
SDBA0	regular	fast	fast	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC22	
SD0	ddr	fast	fast	GND	GND	sw_pad_ct I_sd0[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	
SD1	ddr	fast	fast	GND	GND	sw_pad_ct I_sd1[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	
SD2	ddr	fast	fast	GND	GND	sw_pad_ct I_sd2[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	
SD3	ddr	fast	fast	GND	GND	sw_pad_ct I_sd3[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	
SD4	ddr	fast	fast	GND	GND	sw_pad_ct I_sd4[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	
SD5	ddr	fast	fast	GND	GND	sw_pad_ct I_sd5[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	
SD6	ddr	fast	fast	GND	GND	sw_pad_ct I_sd6[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	
SD7	ddr	fast	fast	GND	GND	sw_pad_ct I_sd7[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	
SD8	ddr	fast	fast	GND	GND	sw_pad_ct	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	

Signal Descriptions

41

4	
Ń	

	Pin Name	Pad	Slew R	ate	Loopb	ack	Drive Stre Enable (N		Drive Stre Enable0 (Norma	High/	Pull	/alue	Pull Keej Seleo	5	Pull Keep Er		Ope Drai		Schmitt 1	rigger	Supply Group	Value After Reset
	SD9	ddr	fast	fast	GND	GND	sw_pad_ct I_sd9[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	I
	SD10	ddr	fast	fast	GND	GND	sw_pad_ct I_sd10[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	I
	SD11	ddr	fast	fast	GND	GND	sw_pad_ct I_sd11[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	I
	SD12	ddr	fast	fast	GND	GND	sw_pad_ct I_sd12[2]	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	I
	SD13	ddr	fast	fast	GND	GND	sw_pad_ct I_sd13[2]	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND			I
.	SD14	ddr	fast	fast	GND	GND	sw_pad_ct I_sd14[2]	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	I
MX3-	SD15	ddr	fast	fast	GND	GND	sw_pad_ct I_sd15[2]	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND	-		
1/i.M	SD16	ddr	fast	fast	GND	GND	sw_pad_ct I_sd16[2]	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND			
MX31/i.MX31L	SD17	ddr	fast	fast	GND	GND	sw_pad_ct I_sd17[2]	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND		NVCC22	I
	SD18	ddr	fast	fast	GND	GND	sw_pad_ct I_sd18[2]	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	
Advance	SD19	ddr	fast	fast	GND	GND	sw_pad_ct I_sd19[2]	VCC			pu100		keep	keep		VCC	GND	GND	GND	GND	NVCC22	
	SD20 SD21	ddr	fast	fast	GND	GND	sw_pad_ct I_sd20[2]	VCC			pu100		keep	keep		VCC	GND	GND	GND		NVCC22 NVCC22	
Information,	SD21	ddr ddr	fast	fast fast	GND GND	GND GND	sw_pad_ct I_sd21[2] sw pad ct	VCC	VCC		pu100 pu100		keep keep	keep keep	VCC	VCC	GND	GND	GND GND	GND GND	NVCC22	
	SD22	ddr	fast	fast	GND	GND	I_sd22[2]	VCC			pu100		keep	keep	VCC	VCC	GND	GND	GND	-	NVCC22	- '
Rev.	SD23	ddr	fast	fast	GND	GND	I_sd23[2]	VCC			pu100		keep	keep	VCC	VCC	GND	GND	GND		NVCC22	
1.4	SD25	ddr	fast	fast	GND	GND	I_sd24[2]	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND		NVCC22	
	SD26	ddr	fast	fast	GND	GND	I_sd25[2] sw_pad_ct	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	-
	SD27	ddr	fast	fast	GND	GND	I_sd26[2] sw_pad_ct	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND	-		1
	SD28	ddr	fast	fast	GND	GND	I_sd27[2] sw_pad_ct	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND		NVCC22	1
	SD29	ddr	fast	fast	GND	GND	I_sd28[2] sw_pad_ct	VCC	VCC		pu100		keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	I
	SD30	ddr	fast	fast	GND	GND	I_sd29[2] sw_pad_ct	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	I
	SD31	ddr	fast	fast	GND	GND	I_sd30[2] sw_pad_ct	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC22	I
	DQM0	ddr	fast	fast	GND	GND	l_sd31[2] sw_pad_ct l_dqm0[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	I

П
ree
SC
ale
Š
m
8
nd
Сţ
q

Preliminary

	Pin Name											U - (continu	,								
		Pad	Slew R	ate	Loopba	ack	Drive Stre Enable (I		Drive Str Enable0 (Norm	(High/	Pull	Value	Pull Keej Seleo	p	Pull Keep En		Oper Drair		Schmitt T	rigger	Supply Group	Value After Reset
	DQM1	ddr	fast	fast	GND	GND	sw_pad_ct I_dqm1[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	I
	DQM2	ddr	fast	fast	GND	GND	sw_pad_ct I_dqm2[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	I
	DQM3	ddr	fast	fast	GND	GND	sw_pad_ct I_dqm3[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC21	I
	EB0	regular	fast	fast	GND	GND	sw_pad_ct I_eb0[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	Н
	EB1	regular	fast	fast	GND	GND	sw_pad_ct I_eb1[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	Н
	OE	regular	fast	fast	GND	GND	sw_pad_ct I_oe[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	Н
	CS0	regular	fast	fast	GND	GND	sw_pad_ct I_cs0[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	Н
	CS1	regular	fast	fast	GND	GND	sw_pad_ct I_cs1[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	Н
	CS2	regular	fast	fast	GND	GND	sw_pad_ct I_cs2[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	Н
	CS3	regular	fast	fast	GND	GND	sw_pad_ct I_cs3[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	н
	CS4	regular	fast	fast	GND	GND	sw_pad_ct I_cs4[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	Н
	CS5	regular	fast	fast	GND	GND	sw_pad_ct I_cs5[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	Н
	ECB	regular	fast	fast	GND	GND	sw_pad_ct I_ecb[2]	GND	VCC	VCC	pu100	pu100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC2	н
	LBA	regular	fast	fast	GND	GND	sw_pad_ct I_lba[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	I
	BCLK	regular	fast	fast	VCC	VCC	sw_pad_ct I_bclk[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	I
	RW	regular	fast	fast	GND	GND	sw_pad_ct I_rw[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	I
	RAS	regular	fast	fast	GND	GND	sw_pad_ct I_ras[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	I
	CAS	regular	fast	fast	GND	GND	sw_pad_ct I_cas[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	I
	SDWE	regular	fast	fast	GND	GND	GND	GND	GND	GND	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	I
:	SDCKE0	regular	fast	fast	GND	GND	GND	GND	GND	GND	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	I
5	SDCKE1	regular	fast	fast	GND	GND	GND	GND	GND	GND	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC2	I
	SDCLK	ddr	fast	fast	VCC	VCC	sw_pad_ct I_sdclk[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	I
	SDCLK	ddr	fast	fast	VCC	VCC	sw_pad_ct I_sdclk[2]	VCC	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	I
	SDQS0	ddr	fast	fast	GND	GND	GND	GND	GND	GND	pd100	pd100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC21	I
	SDQS1	ddr	fast	fast	GND	GND	GND	GND	GND	GND	pd100	pd100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC22	I
	SDQS2	ddr	fast	fast	GND	GND	GND	GND	GND	GND	pd100	pd100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC22	I
	SDQS3	ddr	fast	fast	GND	GND	GND	GND	GND	GND	pd100	pd100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC22	I

Signal Descriptions

43

▶	

Pin Name	Pad	Slew Ra	ate	Loopb	ack	Drive Stre Enable (I		Drive Stre Enable0 (I Norma	High/	Pull	Value	Pull Keej Seled	5	Pull/ Keep Ena	able	Ope Drai		Schmitt T	rigger	Supply Group	Valu Afte Rese
NFWE	regular	sw_pad_ct I_nfwe_b [0]	fast	GND	GND	sw_pad_ct I_nfwe_b [2]	GND	sw_pad_ct I_nfwe_b [1]	VCC	pd100	pd100	pull	pull	sw_pad_ct I_nfwe_b [8]	VCC	GND	GND	GND	GND	NVCC10	I
NFRE	regular	sw_pad_ct l_nfre_b[0]	fast	GND	GND	sw_pad_ct I_nfre_b[2]	GND	sw_pad_ct l_nfre_b[1]	VCC	pu100	pu100	pull	pull	sw_pad_ct l_nfre_b[8]	VCC	GND	GND	GND	GND	NVCC10	1
NFALE	regular	sw_pad_ct I_nfale[0]	fast	GND	GND	sw_pad_ct I_nfale[2]	GND	sw_pad_ct I_nfale[1]	VCC	pu100	pu100	pull	pull	sw_pad_ct I_nfale[8]	VCC	GND	GND	GND	GND	NVCC10	I
NFCLE	regular	sw_pad_ct I_nfcle[0]	fast	GND	GND	sw_pad_ct I_nfcle[2]	GND	sw_pad_ct I_nfcle[1]	VCC	pu100	pu100	pull	pull	sw_pad_ct I_nfcle[8]	VCC	GND	GND	GND	GND	NVCC10	1
NFWP	regular	sw_pad_ct I_nfwp_b [0]	fast	GND	GND	sw_pad_ct I_nfwp_b [2]	GND	sw_pad_ct I_nfwp_b [1]	VCC	pu100	pu100	pull	pull	sw_pad_ct I_nfwp_b [8]	VCC	GND	GND	GND	GND	NVCC10	I
NFCE	regular	sw_pad_ct I_nfce_b [0]	fast	GND	GND	sw_pad_ct I_nfce_b [2]	GND	sw_pad_ct I_nfce_b [1]	VCC	pu100	pu100	pull	pull	sw_pad_ct I_nfce_b [8]	VCC	GND	GND	GND	GND	NVCC10	I
NFRB	regular	sw_pad_ct I_nfrb[0]	fast	GND	GND	sw_pad_ct I_nfrb[2]	GND	sw_pad_ct I_nfrb[1]	VCC	pu100	pu100	pull	pull	sw_pad_ct I_nfrb[8]	VCC	GND	GND	GND	GND	NVCC10	
D15	regular	fast	fast	GND	GND	sw_pad_ct I_d15[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D14	regular	fast	fast	GND	GND	sw_pad_ct I_d14[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D13	regular	fast	fast	GND	GND	sw_pad_ct I_d13[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D12	regular	fast	fast	GND	GND	sw_pad_ct I_d12[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D11	regular	fast	fast	GND	GND	sw_pad_ct I_d11[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	1
D10	regular	fast	fast	GND	GND	sw_pad_ct I_d10[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D9	regular	fast	fast	GND	GND	sw_pad_ct I_d9[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D8	regular	fast	fast	GND	GND	sw_pad_ct I_d8[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D7	regular	fast	fast	GND	GND	sw_pad_ct I_d7[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D6	regular	fast	fast	GND	GND	sw_pad_ct	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D5	regular	fast	fast	GND	GND	sw_pad_ct I_d5[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D4	regular	fast	fast	GND	GND	sw_pad_ct I_d4[2]	vcc	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D3	regular	fast	fast	GND	GND	sw_pad_ct I_d3[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D2	regular	fast	fast	GND	GND	sw_pad_ct I_d2[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	
D1	regular	fast	fast	GND	GND		VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	

Preliminary

i.MX31/i.MX31L Advance Information, Rev. 1.4

Freescale	
e Semiconc	
ductor	

Preliminary

i.MX31/i.MX31L Advance Information, Rev. 1.4

Pin Name	Pad	Slew Ra	te	Loopba	ck	Drive Stre Enable (M		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec	1	Pull/ Keep En		Oper Drair		Schmitt Tr	rigger	Supply Group	Value After Reset
D0	regular	fast	fast	GND	GND	sw_pad_ct I_d0[2]	VCC	VCC	VCC	pu100	pu100	keep	keep	VCC	VCC	GND	GND	GND	GND	NVCC10	I
PC_CD1	regular	slow	slow	sw_pad_ct I_pc_cd1_ b[9]	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct l_pc_cd1_ b[8]	VCC	GND	GND	sw_pad_ct l_pc_cd1_ b[4]	GND	NVCC3	I
PC_CD2	regular	slow	slow	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct I_pc_cd2_ b[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_WAIT	regular	slow	slow	sw_pad_ct l_pc_wait_ b[9]	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct I_pc_wait_ b[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_READY	regular	slow	slow	sw_pad_ct I_pc_read y[9]	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct I_pc_read y[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_PWRON	regular	slow	slow	sw_pad_ct l_pc_pwro n[9]	GND	GND	GND	VCC	VCC	pd100	pd100	pull	pull	sw_pad_ct l_pc_pwro n[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_VS1	regular	slow	slow	sw_pad_ct l_pc_vs1[9]	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct l_pc_vs1[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_VS2	regular	slow	slow	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct I_pc_vs2[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_BVD1	regular	slow	slow	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct l_pc_bvd1[8]	VCC	GND	GND	GND	GND	NVCC3	Ι
PC_BVD2	regular	slow	slow	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct l_pc_bvd2[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_RST	regular	slow	slow	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct I_pc_rst[8]	VCC	GND	GND	GND	GND	NVCC3	I
IOIS16	regular	slow	slow	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct I_iois16[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_RW	regular	slow	slow	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	sw_pad_ct l_pc_rw_b[8]	VCC	GND	GND	GND	GND	NVCC3	I
PC_POE	regular	slow	slow	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC3	I
M_REQUEST	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC2	I
M_GRANT	regular	slow	slow	GND	GND	GND	GND	GND		pu100		pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC2	I
CSI_D4	regular	sw_pad_ct l_csi_d4[0]	fast	GND	GND	sw_pad_ct l_csi_d4[2]	GND	sw_pad_ct l_csi_d4[1]	VCC	pu100	pu100	sw_pad_ct I_csi_d4[7]	keep	sw_pad_ct I_csi_d4[8]	VCC	GND	GND	GND	GND	NVCC4	Ι
CSI_D5	regular	sw_pad_ct I_csi_d5[0]	fast	GND	GND	sw_pad_ct I_csi_d5[2]	GND	sw_pad_ct I_csi_d5[1]	VCC	pu100	pu100	sw_pad_ct l_csi_d5[7]	keep	sw_pad_ct I_csi_d5[8]	VCC	GND	GND	GND	GND	NVCC4	Ι
CSI_D6	regular	sw_pad_ct l_csi_d6[0]	fast	GND	GND	sw_pad_ct l_csi_d6[2]	GND	sw_pad_ct l_csi_d6[1]	VCC	pu100	pu100	sw_pad_ct l_csi_d6[7]	keep	sw_pad_ct I_csi_d6[8]	VCC	GND	GND	GND	GND	NVCC4	I
CSI_D7	regular	sw_pad_ct l_csi_d7[0]	fast	GND	GND	sw_pad_ct I_csi_d7[2]	GND	sw_pad_ct I_csi_d7[1]	VCC	pu100	pu100	sw_pad_ct I_csi_d7[7]	keep	sw_pad_ct I_csi_d7[8]	VCC	GND	GND	GND	GND	NVCC4	I
CSI_D8	regular	sw_pad_ct I_csi_d8[0]	fast	GND	GND	sw_pad_ct I_csi_d8[2]	GND	sw_pad_ct I_csi_d8[1]		pu100	pu100	sw_pad_ct I_csi_d8[7]	keep	sw_pad_ct I_csi_d8[8]	VCC	GND	GND	GND	GND	NVCC4	I

Table 6. Pad Settings (continued)

Signal Descriptions

4 5

-	4
	ົ

Pin Name	Pad	Slew Ra	ate	Loopba	ack	Drive Stre Enable (I		Drive Stre Enable0 (I Norma	High/	Pull	Value	Pull/ Keep Selec)	Pull/ Keep Ena	ıble	Open Drain		Schmitt Tr	igger	Supply Group	Valu Afte Rese
CSI_D9	regular	sw_pad_ct l_csi_d9[0]	fast	GND	GND	sw_pad_ct l_csi_d9[2]	GND	sw_pad_ct l_csi_d9[1]	VCC	pu100	pu100	sw_pad_ct l_csi_d9[7]	keep	sw_pad_ct l_csi_d9[8]	VCC	GND	GND	GND	GND	NVCC4	I
CSI_D10	regular	sw_pad_ct l_csi_d10 [0]	fast	GND	GND	sw_pad_ct I_csi_d10 [2]	GND	sw_pad_ct I_csi_d10 [1]	VCC	pu100	pu100	sw_pad_ct I_csi_d10[7]	keep	sw_pad_ct I_csi_d10 [8]	VCC	GND	GND	GND	GND	NVCC4	I
CSI_D11	regular	sw_pad_ct l_csi_d11 [0]	fast	GND	GND	sw_pad_ct I_csi_d11 [2]	GND	sw_pad_ct I_csi_d11 [1]	VCC	pu100	pu100	sw_pad_ct I_csi_d11[7]	keep	sw_pad_ct I_csi_d11 [8]	VCC	GND	GND	GND	GND	NVCC4	I
CSI_D12	regular	sw_pad_ct I_csi_d12 [0]	fast	GND	GND	sw_pad_ct I_csi_d12 [2]	GND	sw_pad_ct I_csi_d12 [1]	VCC	pu100	pu100	sw_pad_ct I_csi_d12[7]	keep	sw_pad_ct I_csi_d12 [8]	VCC	GND	GND	GND	GND	NVCC4	I
CSI_D13	regular	sw_pad_ct I_csi_d13 [0]	fast	GND	GND	sw_pad_ct I_csi_d13 [2]	GND	sw_pad_ct I_csi_d13 [1]	VCC	pu100	pu100	sw_pad_ct I_csi_d13[7]	keep	sw_pad_ct I_csi_d13 [8]	VCC	GND	GND	GND	GND	NVCC4	1
CSI_D14	regular	sw_pad_ct I_csi_d14 [0]	fast	GND	GND	sw_pad_ct I_csi_d14 [2]	GND	sw_pad_ct I_csi_d14 [1]	VCC	pu100	pu100	sw_pad_ct I_csi_d14[7]	keep	sw_pad_ct I_csi_d14 [8]	VCC	GND	GND	GND	GND	NVCC4	
CSI_D15	regular	sw_pad_ct I_csi_d15 [0]	fast	GND	GND	sw_pad_ct I_csi_d15 [2]	GND	sw_pad_ct I_csi_d15 [1]	VCC	pu100	pu100	sw_pad_ct I_csi_d15[7]	keep	sw_pad_ct I_csi_d15 [8]	VCC	GND	GND	GND	GND	NVCC4	
CSI_MCLK	regular	sw_pad_ct I_csi_mclk [0]	fast	GND	GND	sw_pad_ct l_csi_mclk [2]	GND	sw_pad_ct I_csi_mclk [1]	VCC	pu100	pu100	sw_pad_ct l_csi_mclk [7]		sw_pad_ct l_csi_mclk [8]	VCC	GND	GND	GND	GND	NVCC4	
CSI_VSYNC	regular	sw_pad_ct l_csi_vsyn c[0]	fast	GND	GND	sw_pad_ct I_csi_vsyn c[2]	GND	sw_pad_ct I_csi_vsyn c[1]	VCC	pu100	pu100	sw_pad_ct l_csi_vsyn c[7]		sw_pad_ct l_csi_vsyn c[8]	VCC	GND	GND	GND	GND	NVCC4	
CSI_HSYNC	regular	sw_pad_ct I_csi_hsyn c[0]	fast	GND	GND	sw_pad_ct I_csi_hsyn c[2]	GND	sw_pad_ct I_csi_hsyn c[1]	VCC	pu100	pu100	sw_pad_ct I_csi_hsyn c[7]		sw_pad_ct l_csi_hsyn c[8]	VCC	GND	GND	GND	GND	NVCC4	
CSI_PIXCLK	regular	sw_pad_ct l_csi_pixcl k[0]	fast	GND	GND	sw_pad_ct I_csi_pixcl k[2]	GND	sw_pad_ct I_csi_pixcl k[1]	VCC	pu100	pu100	sw_pad_ct I_csi_pixcl k[7]	keep	sw_pad_ct l_csi_pixcl k[8]	VCC	GND	GND	sw_pad_ct I_csi_pixcl k[4]	VCC	NVCC4	
I2C_CLK	regular	sw_pad_ct I_i2c_clk [0]	slow	GND	GND	sw_pad_ct I_i2c_clk [2]	GND	sw_pad_ct I_i2c_clk [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_i2c_clk [8]	VCC	sw_pad_ct I_i2c_clk [3]	GND	sw_pad_ct I_i2c_clk [4]	VCC	NVCC4	
I2C_DAT	regular	sw_pad_ct I_i2c_dat [0]	slow	GND	GND	sw_pad_ct I_i2c_dat [2]	GND	sw_pad_ct I_i2c_dat [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_i2c_dat [8]	VCC	sw_pad_ct I_i2c_dat [3]	GND	VCC	VCC	NVCC4	
STXD3	regular	sw_pad_ct I_stxd3[0]	slow	GND	GND	sw_pad_ct I_stxd3[2]	GND	sw_pad_ct I_stxd3[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_stxd3[8]	VCC	GND	GND	GND	GND	NVCC10	
SRXD3	regular	sw_pad_ct I_srxd3[0]	slow	GND	GND	sw_pad_ct I_srxd3[2]	GND	sw_pad_ct I_srxd3[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_srxd3[8]	VCC	GND	GND	GND	GND	NVCC10	
SCK3	regular	sw_pad_ct I_sck3[0]	slow	GND	GND	sw_pad_ct I_sck3[2]	GND	sw_pad_ct I_sck3[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_sck3[8]	VCC	GND	GND	sw_pad_ct I_sck3[4]	VCC	NVCC10	
SFS3	regular	sw_pad_ct I_sfs3[0]	slow	GND	GND	sw_pad_ct I_sfs3[2]	GND	sw_pad_ct I_sfs3[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_sfs3[8]	VCC	GND	GND	GND	GND	NVCC10	
STXD4	regular	sw_pad_ct I_stxd4[0]	slow	GND	GND	sw_pad_ct I_stxd4[2]	GND	sw_pad_ct I_stxd4[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_stxd4[8]	VCC	GND	GND	GND	GND	NVCC5	
SRXD4	regular	sw_pad_ct I_srxd4[0]	slow	GND	GND	sw_pad_ct I_srxd4[2]	GND	sw_pad_ct I_srxd4[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_srxd4[8]	VCC	GND	GND	sw_pad_ct I_srxd4[4]	GND	NVCC5	

Preliminary

i.MX31/i.MX31L Advance Information, Rev. 1.4

Freescale Semiconductor

Freescale
e Semicon
ductor

Preliminary

Table 6. Pad Settings (continued)

Pin Name	Pad	Slew Ra	ate	Loopba	ack	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec	1	Pull/ Keep Ena		Open Drain		Schmitt Tr	igger	Supply Group	Value After Reset
SCK4	regular	sw_pad_ct I_sck4[0]	slow	GND	GND	sw_pad_ct I_sck4[2]	GND	sw_pad_ct I_sck4[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_sck4[8]	VCC	GND	GND	sw_pad_ct I_sck4[4]	VCC	NVCC5	I
SFS4	regular	sw_pad_ct I_sfs4[0]	slow	GND	GND	sw_pad_ct I_sfs4[2]	GND	sw_pad_ct I_sfs4[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_sfs4[8]	VCC	GND	GND	sw_pad_ct I_sfs4[4]	GND	NVCC5	Ι
STXD5	regular	sw_pad_ct I_stxd5[0]	slow	GND	GND	sw_pad_ct I_stxd5[2]	GND	sw_pad_ct I_stxd5[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_stxd5[8]	VCC	GND	GND	GND	GND	NVCC5	I
SRXD5	regular	sw_pad_ct I_srxd5[0]	slow	GND	GND	sw_pad_ct I_srxd5[2]	GND	sw_pad_ct I_srxd5[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_srxd5[8]	VCC	GND	GND	GND	GND	NVCC5	I
SCK5	regular	sw_pad_ct I_sck5[0]	slow	GND	GND	sw_pad_ct I_sck5[2]	GND	sw_pad_ct I_sck5[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_sck5[8]	VCC	GND	GND	sw_pad_ct I_sck5[4]	VCC	NVCC5	I
SFS5	regular	sw_pad_ct I_sfs5[0]	slow	GND	GND	sw_pad_ct I_sfs5[2]	GND	sw_pad_ct I_sfs5[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_sfs5[8]	VCC	GND	GND	GND	GND	NVCC5	I
STXD6	regular	sw_pad_ct I_stxd6[0]	slow	GND	GND	sw_pad_ct I_stxd6[2]	GND	sw_pad_ct I_stxd6[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_stxd6[8]	VCC	GND	GND	GND	GND	NVCC10	Ι
SRXD6	regular	sw_pad_ct I_srxd6[0]	slow	GND	GND	sw_pad_ct I_srxd6[2]	GND	sw_pad_ct I_srxd6[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_srxd6[8]	VCC	GND	GND	GND	GND	NVCC10	I
SCK6	regular	sw_pad_ct I_sck6[0]	slow	GND	GND	sw_pad_ct I_sck6[2]	GND	sw_pad_ct I_sck6[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_sck6[8]	VCC	GND	GND	sw_pad_ct I_sck6[4]	VCC	NVCC10	I
SFS6	regular	sw_pad_ct sfs6[0]	slow	GND	GND	sw_pad_ct I_sfs6[2]	GND	sw_pad_ct	GND	pu100) pu100	pull	pull	sw_pad_ct	VCC	GND	GND	GND	GND	NVCC10	I
CSPI1_MOSI	regular	sw_pad_ct I_cspi1_m osi[0]	slow	GND	GND	sw_pad_ct I_cspi1_m osi[2]	GND	sw_pad_ct I_cspi1_m osi[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_cspi1_m osi[8]	VCC	GND	GND	GND	GND	NVCC10	I
CSPI1_MISO	regular	sw_pad_ct I_cspi1_mi so[0]	slow	GND	GND	sw_pad_ct I_cspi1_mi so[2]		sw_pad_ct I_cspi1_mi so[1]		pu100) pu100	pull	pull	sw_pad_ct I_cspi1_mi so[8]	VCC	GND	GND	GND	GND	NVCC10	I
CSPI1_SS0	regular	sw_pad_ct I_cspi1_ss 0[0]	slow	GND	GND	sw_pad_ct l_cspi1_ss 0[2]	GND	sw_pad_ct l_cspi1_ss 0[1]		pu100) pu100	pull	pull	sw_pad_ct I_cspi1_ss 0[8]	VCC	GND	GND	GND	GND	NVCC10	I
CSPI1_SS1	regular	sw_pad_ct I_cspi1_ss 1[0]	slow	GND	GND	sw_pad_ct l_cspi1_ss 1[2]	GND	sw_pad_ct I_cspi1_ss 1[1]	-	pu100) pu100	pull	pull	sw_pad_ct I_cspi1_ss 1[8]	VCC	GND	GND	GND	GND	NVCC10	ļ
CSPI1_SS2	regular	sw_pad_ct I_cspi1_ss 2[0]	slow	GND	GND	sw_pad_ct l_cspi1_ss 2[2]	GND	sw_pad_ct I_cspi1_ss 2[1]		pu100) pu100	pull	pull	sw_pad_ct I_cspi1_ss 2[8]	VCC	GND	GND	GND	GND	NVCC10	I
CSPI1_SCLK	regular	sw_pad_ct l_cspi1_sc lk[0]	slow	GND	GND	sw_pad_ct l_cspi1_sc lk[2]	GND	sw_pad_ct l_cspi1_sc lk[1]		pu100) pu100	pull	pull	sw_pad_ct l_cspi1_sc lk[8]	VCC	GND	GND	sw_pad_ct I_cspi1_sc Ik[4]	VCC	NVCC10	I
CSPI1_SPI_R DY	regular	sw_pad_ct l_cspi1_sp i_rdy[0]	slow	GND	GND	sw_pad_ct l_cspi1_sp i_rdy[2]	GND	sw_pad_ct l_cspi1_sp i_rdy[1]		pu100) pu100	pull	pull	sw_pad_ct l_cspi1_sp i_rdy[8]	VCC	GND	GND	GND	GND	NVCC10	I
CSPI2_MOSI	regular	sw_pad_ct I_cspi2_m osi[0]	slow	GND	GND	sw_pad_ct l_cspi2_m osi[2]	GND	sw_pad_ct I_cspi2_m osi[1]	GND	pu100) pu100	pull	pull	sw_pad_ct l_cspi2_m osi[8]	VCC	sw_pad_ct l_cspi2_m osi[3]	GND	VCC	VCC	NVCC5	ļ
CSPI2_MISO	regular	sw_pad_ct I_cspi2_mi so[0]	slow	GND	GND	sw_pad_ct I_cspi2_mi so[2]	GND	sw_pad_ct I_cspi2_mi so[1]	GND	pu100) pu100	pull	pull	sw_pad_ct I_cspi2_mi so[8]	VCC	sw_pad_ct l_cspi2_mi so[3]	GND	VCC	VCC	NVCC5	Ι
CSPI2_SS0	regular	sw_pad_ct I_cspi2_ss 0[0]	slow	GND	GND	sw_pad_ct I_cspi2_ss 0[2]	GND	sw_pad_ct I_cspi2_ss 0[1]		pu100) pu100	pull	pull	sw_pad_ct I_cspi2_ss 0[8]	VCC	GND	GND	GND	GND	NVCC5	Ι

Signal Descriptions

47

-		•
(x)

Pin Name	Pad	Slew Ra	ate	Loopba	ack	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec)	Pull/ Keep En		Open Drain		Schmitt Tr	igger	Supply Group	Value After Rese
CSPI2_SS1	regular	sw_pad_ct l_cspi2_ss 1[0]	slow	GND	GND	sw_pad_ct I_cspi2_ss 1[2]	GND	sw_pad_ct I_cspi2_ss 1[1]		pu100	pu100	pull	pull	sw_pad_ct I_cspi2_ss 1[8]	VCC	GND	GND	GND	GND	NVCC5	I
CSPI2_SS2	regular	sw_pad_ct I_cspi2_ss 2[0]	slow	GND	GND	sw_pad_ct I_cspi2_ss 2[2]	GND	sw_pad_ct I_cspi2_ss 2[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_cspi2_ss 2[8]	VCC	sw_pad_ct I_cspi2_ss 2[3]		VCC	VCC	NVCC5	Η
CSPI2_SCLK	regular	sw_pad_ct l_cspi2_sc lk[0]	slow	GND	GND	sw_pad_ct I_cspi2_sc Ik[2]	GND	sw_pad_ct I_cspi2_sc Ik[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_cspi2_sc Ik[8]	VCC	sw_pad_ct I_cspi2_sc Ik[3]		sw_pad_ct I_cspi2_sc Ik[4]	VCC	NVCC5	I
CSPI2_SPI_R DY	regular	sw_pad_ct I_cspi2_sp i_rdy[0]	slow	GND	GND	sw_pad_ct I_cspi2_sp i_rdy[2]	GND	sw_pad_ct I_cspi2_sp i_rdy[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_cspi2_sp i_rdy[8]	VCC	GND	GND	GND	GND	NVCC5	I
RXD1	regular	sw_pad_ct I_rxd1[0]	slow	GND	GND	sw_pad_ct I_rxd1[2]	GND	sw_pad_ct I_rxd1[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_rxd1[8]	VCC	GND	GND	GND	GND	NVCC8	I
TXD1	regular	sw_pad_ct I_txd1[0]	slow	GND	GND	sw_pad_ct I_txd1[2]	GND	sw_pad_ct I_txd1[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_txd1[8]	VCC	GND	GND	sw_pad_ct I_txd1[4]	GND	NVCC8	Ι
RTS1	regular	sw_pad_ct I_rts1[0]	slow	GND	GND	sw_pad_ct I_rts1[2]	GND	sw_pad_ct I_rts1[1]			pu100	pull	pull	sw_pad_ct I_rts1[8]	VCC	GND	GND	GND	GND	NVCC8	1
CTS1	regular	sw_pad_ct I_cts1[0]	slow	GND	GND	sw_pad_ct I_cts1[2]	GND	sw_pad_ct I_cts1[1]			pu100	pull	pull	sw_pad_ct I_cts1[8]	VCC	GND	GND	GND	GND	NVCC8	I
DTR_DCE1	regular	sw_pad_ct I_dtr_dce1 [0]	slow	GND	GND	sw_pad_ct I_dtr_dce1 [2]	GND	sw_pad_ct I_dtr_dce1 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_dtr_dce1 [8]	VCC	GND	GND	GND	GND	NVCC8	I
DSR_DCE1	regular	sw_pad_ct I_dsr_dce 1[0]	slow	GND	GND	sw_pad_ct I_dsr_dce 1[2]	GND	sw_pad_ct I_dsr_dce 1[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_dsr_dce 1[8]	VCC	GND	GND	sw_pad_ct I_dsr_dce 1[4]	GND	NVCC8	I
RI_DCE1	regular	sw_pad_ct I_ri_dce1 [0]	slow	GND	GND	sw_pad_ct I_ri_dce1 [2]	GND	sw_pad_ct I_ri_dce1 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_ri_dce1[8]	VCC	GND	GND	GND	GND	NVCC8	Ι
DCD_DCE1	regular	sw_pad_ct I_dcd_dce 1[0]	slow	GND	GND	sw_pad_ct I_dcd_dce 1[2]	GND	sw_pad_ct I_dcd_dce 1[1]		pu100	pu100	pull	pull	sw_pad_ct I_dcd_dce 1[8]	VCC	GND	GND	GND	GND	NVCC8	I
DTR_DTE1	regular	sw_pad_ct l_dtr_dte1[0]	slow	GND	GND	sw_pad_ct I_dtr_dte1 [2]	GND	sw_pad_ct I_dtr_dte1 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_dtr_dte1[8]	VCC	GND	GND	VCC	VCC	NVCC8	I
DSR_DTE1	regular	sw_pad_ct I_dsr_dte1 [0]	slow	GND	GND	sw_pad_ct l_dsr_dte1 [2]	GND	sw_pad_ct I_dsr_dte1 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_dsr_dte1 [8]	VCC	GND	GND	GND	GND	NVCC8	I
RI_DTE1	regular	sw_pad_ct I_ri_dte1 [0]	slow	GND	GND	sw_pad_ct I_ri_dte1 [2]	GND	sw_pad_ct I_ri_dte1 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_ri_dte1[8]	VCC	sw_pad_ct I_ri_dte1[3]		VCC	VCC	NVCC8	I
DCD_DTE1	regular	sw_pad_ct I_dcd_dte 1[0]	slow	GND	GND	sw_pad_ct I_dcd_dte 1[2]	GND	sw_pad_ct I_dcd_dte 1[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_dcd_dte 1[8]	VCC	sw_pad_ct I_dcd_dte 1[3]	GND	GND	GND	NVCC8	I
DTR_DCE2	regular	sw_pad_ct I_dtr_dce2 [0]	slow	GND	GND	sw_pad_ct I_dtr_dce2 [2]	GND	sw_pad_ct l_dtr_dce2 [1]	-	pu100	pu100	pull	pull	sw_pad_ct l_dtr_dce2 [8]	VCC	GND	GND	GND	GND	NVCC8	I
RXD2	regular	sw_pad_ct I_rxd2[0]	slow	GND	GND	sw_pad_ct I_rxd2[2]	GND	sw_pad_ct I_rxd2[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_rxd2[8]	VCC	GND	GND	GND	GND	NVCC8	I

Freescale
Semiconductor

Preliminary

Table 6. Pad Settings (continued)

Pin Name	Pad	Slew Ra	ate	Loopba	ack	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec		Pull/ Keep Ena	ıble	Oper Drair		Schmitt Ti	rigger	Supply Group	Value After Reset
TXD2	regular	sw_pad_ct l_txd2[0]	slow	GND	GND	sw_pad_ct I_txd2[2]	GND	sw_pad_ct l_txd2[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_txd2[8]	VCC	GND	GND	GND	GND	NVCC8	I
RTS2	regular	sw_pad_ct I_rts2[0]	slow	GND	GND	sw_pad_ct I_rts2[2]	GND	sw_pad_ct I_rts2[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_rts2[8]	VCC	GND	GND	GND	GND	NVCC8	Ι
CTS2	regular	sw_pad_ct I_cts2[0]	slow	GND	GND	sw_pad_ct I_cts2[2]	GND	sw_pad_ct I_cts2[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_cts2[8]	VCC	GND	GND	GND	GND	NVCC8	-
BATT_LINE	regular	slow	slow	VCC	VCC	GND	GND	GND	GND	pu100	pu100	pull	pull	sw_pad_ct I_batt_line[8]	VCC	VCC	VCC	GND	GND	NVCC5	Ι
KEY_ROW0	regular	sw_pad_ct l_key_row 0[0]	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	sw_pad_ct l_key_row 0[8]	VCC	GND	GND	GND	GND	NVCC6	Н
KEY_ROW1	regular	sw_pad_ct I_key_row 1[0]	slow	GND	GND	sw_pad_ct l_key_row 1[2]	GND	sw_pad_ct I_key_row 1[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_row 1[8]	VCC	GND	GND	GND	GND	NVCC6	H
KEY_ROW2	regular	sw_pad_ct I_key_row 2[0]	slow	GND	GND	sw_pad_ct I_key_row 2[2]	GND	sw_pad_ct I_key_row 2[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_row 2[8]	VCC	GND	GND	GND	GND	NVCC6	Н
KEY_ROW3	regular	sw_pad_ct I_key_row 3[0]	slow	GND	GND	sw_pad_ct I_key_row 3[2]	GND	sw_pad_ct I_key_row 3[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_row 3[8]	VCC	GND	GND	GND	GND	NVCC6	Н
KEY_ROW4	regular	sw_pad_ct I_key_row 4[0]	slow	GND	GND	sw_pad_ct l_key_row 4[2]	GND	sw_pad_ct I_key_row 4[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_row 4[8]	VCC	GND	GND	GND	GND	NVCC6	Н
KEY_ROW5	regular	sw_pad_ct I_key_row 5[0]	slow	GND	GND	sw_pad_ct l_key_row 5[2]	GND	sw_pad_ct I_key_row 5[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_row 5[8]	VCC	GND	GND	GND	GND	NVCC6	Н
KEY_ROW6	regular	sw_pad_ct I_key_row 6[0]	slow	GND	GND	sw_pad_ct l_key_row 6[2]	GND	sw_pad_ct I_key_row 6[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_row 6[8]	VCC	GND	GND	GND	GND	NVCC6	Н
KEY_ROW7	regular	sw_pad_ct I_key_row 7[0]	slow	GND	GND	sw_pad_ct I_key_row 7[2]	GND	sw_pad_ct I_key_row 7[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_row 7[8]	VCC	GND	GND	GND	GND	NVCC6	Η
KEY_COL0	regular	sw_pad_ct l_key_col0 [0]	slow	GND	GND	sw_pad_ct I_key_col0 [2]	GND	sw_pad_ct I_key_col0 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_key_col0 [8]	VCC	ipp_ode_c ol[0]	GND	GND	GND	NVCC6	I
KEY_COL1	regular	sw_pad_ct l_key_col1 [0]	slow	GND	GND	sw_pad_ct I_key_col1 [2]	GND	sw_pad_ct I_key_col1 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_key_col1 [8]	VCC	ipp_ode_c ol[1]	GND	GND	GND	NVCC6	I
KEY_COL2	regular	sw_pad_ct I_key_col2 [0]	slow	GND	GND	sw_pad_ct I_key_col2 [2]	GND	sw_pad_ct I_key_col2 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_col2 [8]	VCC	ipp_ode_c ol[2]	GND	GND	GND	NVCC6	Ι
KEY_COL3	regular	sw_pad_ct l_key_col3 [0]	slow	GND	GND	sw_pad_ct I_key_col3 [2]	GND	sw_pad_ct l_key_col3 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_key_col3 [8]	VCC	ipp_ode_c ol[3]	GND	GND	GND	NVCC6	ļ
KEY_COL4	regular	sw_pad_ct l_key_col4 [0]	slow	GND	GND	sw_pad_ct I_key_col4 [2]	GND	sw_pad_ct I_key_col4 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_key_col4 [8]	VCC	ipp_ode_c ol[4]	GND	GND	GND	NVCC6	Ι

Pin Name	Pad	Slew Ra	ate	Loopba	ack	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec)	Pull/ Keep Ena		Open Drain		Schmitt Tr	igger	Supply Group	Valu Afte Rese
KEY_COL5	regular	sw_pad_ct l_key_col5 [0]	slow	GND	GND	sw_pad_ct l_key_col5 [2]	GND	sw_pad_ct I_key_col5 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_key_col5 [8]	VCC	ipp_ode_c ol[5]	GND	GND	GND	NVCC6	I
KEY_COL6	regular	sw_pad_ct I_key_col6 [0]	slow	GND	GND	sw_pad_ct I_key_col6 [2]	GND	sw_pad_ct l_key_col6 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_key_col6 [8]	VCC	ipp_ode_c ol[6]	GND	GND	GND	NVCC6	I
KEY_COL7	regular	sw_pad_ct I_key_col7 [0]	slow	GND	GND	sw_pad_ct I_key_col7 [2]	GND	sw_pad_ct I_key_col7 [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_key_col7 [8]	VCC	ipp_ode_c ol[7]	GND	GND	GND	NVCC6	I
RTCK	regular	fast	fast	GND	GND	GND	GND	VCC	VCC	pd100	pd100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC6	I
TCK	regular	slow	slow	GND	GND	GND	GND	GND	GND	pd100	pd100	pull	pull	VCC	VCC	GND	GND	VCC	VCC	NVCC6	1
TMS	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	VCC	VCC	GND	GND	VCC	VCC	NVCC6	1
TDI	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	VCC	VCC	GND	GND	VCC	VCC	NVCC6	I
TDO	regular	fast	fast	GND	GND	GND	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC6	L
TRSTB	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC6	
DE	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC6	
SJC_MOD	regular	sw_pad_ct I_sjc_mod [0]	slow	GND	GND	sw_pad_ct I_sjc_mod [2]	GND	sw_pad_ct I_sjc_mod [1]	GND	pu100	pu100	pull	pull	VCC	VCC	GND	GND	GND	GND	NVCC6	
USB_PWR	regular	sw_pad_ct I_usb_pwr [0]	slow	GND	GND	sw_pad_ct I_usb_pwr [2]	GND	sw_pad_ct l_usb_pwr [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_usb_pwr [8]	VCC	GND	GND	GND	GND	NVCC5	I
USB_OC	regular	sw_pad_ct I_usb_oc [0]	slow	GND	GND	sw_pad_ct I_usb_oc [2]	GND	sw_pad_ct I_usb_oc [1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_usb_oc [8]	VCC	GND	GND	GND	GND	NVCC5	I
USB_BYP	regular	sw_pad_ct I_usb_byp[0]	slow	GND	GND	sw_pad_ct l_usb_byp[2]	GND	sw_pad_ct I_usb_byp[1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_usb_byp[8]	VCC	GND	GND	GND	GND	NVCC5	I
SBOTG_CLK	regular	sw_pad_ct I_usbotg_c lk[0]	slow	GND	GND	sw_pad_ct l_usbotg_c lk[2]	GND	sw_pad_ct I_usbotg_c lk[1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_usbotg_c lk[8]	VCC	GND	GND	sw_pad_ct l_usbotg_c lk[4]	VCC	NVCC5	I
ISBOTG_DIR	regular	sw_pad_ct I_usbotg_ dir[0]	slow	GND	GND	sw_pad_ct I_usbotg_ dir[2]	GND	sw_pad_ct I_usbotg_ dir[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_usbotg_ dir[8]	VCC	GND	GND	GND	GND	NVCC5	I
SBOTG_STP	regular	sw_pad_ct I_usbotg_s tp[0]	slow	GND	GND	sw_pad_ct I_usbotg_s tp[2]	GND	sw_pad_ct I_usbotg_s tp[1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_usbotg_s tp[8]	VCC	GND	GND	GND	GND	NVCC5	I
SBOTG_NXT	regular	sw_pad_ct I_usbotg_ nxt[0]	slow	GND	GND	sw_pad_ct I_usbotg_ nxt[2]	GND	sw_pad_ct I_usbotg_ nxt[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_usbotg_ nxt[8]	VCC	GND	GND	GND	GND	NVCC5	I
SBOTG_DAT A0	regular	sw_pad_ct I_usbotg_ data0[0]	slow	GND	GND	sw_pad_ct I_usbotg_ data0[2]	GND	sw_pad_ct I_usbotg_ data0[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_usbotg_ data0[8]	VCC	GND	GND	GND	GND	NVCC5	
ISBOTG_DAT A1	regular	sw_pad_ct I_usbotg_ data1[0]	slow	GND	GND	sw_pad_ct I_usbotg_ data1[2]	GND	sw_pad_ct I_usbotg_ data1[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_usbotg_ data1[8]	VCC	GND	GND	GND	GND	NVCC5	I
ISBOTG_DAT A2	regular	sw_pad_ct l_usbotg_ data2[0]	slow	GND	GND	sw_pad_ct I_usbotg_ data2[2]	GND	sw_pad_ct I_usbotg_ data2[1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_usbotg_ data2[8]	VCC	GND	GND	GND	GND	NVCC5	I

Freescale
Semiconductor

Preliminary

Table 6. Pad Settings (continued)

Pin Name	Pad	Slew Ra	ate	Loopba	ack	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec		Pull/ Keep Ena	ıble	Oper Drair		Schmitt Tr	igger	Supply Group	Value After Reset
USBOTG_DAT A3	regular	sw_pad_ct l_usbotg_ data3[0]	slow	GND	GND	sw_pad_ct l_usbotg_ data3[2]	GND	sw_pad_ct I_usbotg_ data3[1]	GND	pu100	pu100) pull	pull	sw_pad_ct I_usbotg_ data3[8]	VCC	GND	GND	GND	GND	NVCC5	I
USBOTG_DAT A4	regular	sw_pad_ct l_usbotg_ data4[0]	slow	GND	GND	sw_pad_ct I_usbotg_ data4[2]	GND	sw_pad_ct I_usbotg_ data4[1]	GND	pu100	pu100) pull	pull	sw_pad_ct I_usbotg_ data4[8]	VCC	GND	GND	GND	GND	NVCC5	I
USBOTG_DAT A5	regular	sw_pad_ct l_usbotg_ data5[0]	slow	GND	GND	sw_pad_ct I_usbotg_ data5[2]	GND	sw_pad_ct I_usbotg_ data5[1]	GND	pu100	pu100) pull	pull	sw_pad_ct I_usbotg_ data5[8]	VCC	GND	GND	GND	GND	NVCC5	I
USBOTG_DAT A6	regular	sw_pad_ct l_usbotg_ data6[0]	slow	GND	GND	sw_pad_ct I_usbotg_ data6[2]	GND	sw_pad_ct I_usbotg_ data6[1]	GND	pu100	pu100) pull	pull	sw_pad_ct I_usbotg_ data6[8]	VCC	GND	GND	GND	GND	NVCC5	I
USBOTG_DAT A7	regular	sw_pad_ct l_usbotg_ data7[0]	slow	GND	GND	sw_pad_ct I_usbotg_ data7[2]	GND	sw_pad_ct I_usbotg_ data7[1]	GND	pu100	pu100) pull	pull	sw_pad_ct I_usbotg_ data7[8]	VCC	GND	GND	GND	GND	NVCC5	I
USBH2_CLK	regular	sw_pad_ct l_usbh2_cl k[0]	slow	GND	GND	sw_pad_ct I_usbh2_cl k[2]	GND	sw_pad_ct l_usbh2_cl k[1]		pu100	pu100) pull	pull	sw_pad_ct l_usbh2_cl k[8]	VCC	GND	GND	sw_pad_ct I_usbh2_cl k[4]	VCC	NVCC10	I
USBH2_DIR	regular	sw_pad_ct I_usbh2_di r[0]	slow	GND	GND	sw_pad_ct I_usbh2_di r[2]	GND	sw_pad_ct I_usbh2_di r[1]		pu100	pu100) pull	pull	sw_pad_ct I_usbh2_di r[8]	VCC	GND	GND	GND	GND	NVCC10	I
USBH2_STP	regular	sw_pad_ct I_usbh2_st p[0]	slow	GND	GND	sw_pad_ct I_usbh2_st p[2]	GND	sw_pad_ct I_usbh2_st p[1]		pu100	pu100) pull	pull	sw_pad_ct I_usbh2_st p[8]	VCC	GND	GND	GND	GND	NVCC10	I
USBH2_NXT	regular	sw_pad_ct l_usbh2_n xt[0]	slow	GND	GND	sw_pad_ct l_usbh2_n xt[2]	GND	sw_pad_ct l_usbh2_n xt[1]		pu100	pu100) pull	pull	sw_pad_ct l_usbh2_n xt[8]	VCC	GND	GND	GND	GND	NVCC10	ļ
USBH2_DATA0	regular	sw_pad_ct l_usbh2_d ata0[0]	slow	GND	GND	sw_pad_ct l_usbh2_d ata0[2]	GND	sw_pad_ct l_usbh2_d ata0[1]		pu100	pu100) pull	pull	sw_pad_ct l_usbh2_d ata0[8]	VCC	GND	GND	GND	GND	NVCC10	I
USBH2_DATA1	regular	sw_pad_ct l_usbh2_d ata1[0]	slow	GND	GND	sw_pad_ct I_usbh2_d ata1[2]	GND	sw_pad_ct l_usbh2_d ata1[1]		pu100	pu100) pull	pull	sw_pad_ct I_usbh2_d ata1[8]	VCC	GND	GND	GND	GND	NVCC10	I
LD0	regular	fast	fast	GND	GND	sw_pad_ct I_ld0[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld0[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	Ι
LD1	regular	fast	fast	GND	GND	sw_pad_ct I_ld1[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld1[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
LD2	regular	fast	fast	GND	GND	sw_pad_ct I_ld2[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld2[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
LD3	regular	fast	fast	GND	GND	sw_pad_ct I_ld3[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld3[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
LD4	regular	fast	fast	GND	GND	sw_pad_ct I_ld4[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld4[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
LD5	regular	fast	fast	GND	GND	sw_pad_ct I_ld5[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld5[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
LD6	regular	fast	fast	GND	GND	sw_pad_ct I_ld6[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld6[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
LD7	regular	fast	fast	GND	GND	sw_pad_ct I_ld7[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld7[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	Ι

σ	
Ň	

	Pin Name	Pad	Slew F	late	Loopba	ack	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec		Pull Keep Er		Ope Drai		Schmitt 1	rigger	Supply Group	Value After Reset
	LD8	regular	fast	fast	GND	GND	sw_pad_ct I_ld8[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_Id8[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
	LD9	regular	fast	fast	GND	GND	sw_pad_ct I_ld9[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_Id9[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
	LD10	regular	fast	fast	GND	GND	sw_pad_ct I_ld10[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld10[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
	LD11	regular	fast	fast	GND	GND	sw_pad_ct I_ld11[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld11[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
	LD12	regular	fast	fast	GND	GND	sw_pad_ct I_ld12[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld12[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
	LD13	regular	fast	fast	GND	GND	sw_pad_ct I_ld13[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld13[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
i.MX31/i.MX31L	LD14	regular	fast	fast	GND	GND	sw_pad_ct I_ld14[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld14[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
51/i-N	LD15	regular	fast	fast	GND	GND	sw_pad_ct I_ld15[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld15[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
X31	LD16	regular	fast	fast	GND	GND	sw_pad_ct I_ld16[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld16[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
	LD17	regular	fast	fast	GND	GND	sw_pad_ct I_ld17[2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_ld17[7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
Advance	VSYNC0	regular	fast	fast	GND	GND	sw_pad_ct I_vsync0 [2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_vsync0 [7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
Information.	HSYNC	regular	fast	fast	GND	GND	sw_pad_ct I_hsync[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
rmati	FPSHIFT	regular	fast	fast	GND	GND	sw_pad_ct I_fpshift[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
	DRDY0	regular	fast	fast	GND	GND	sw_pad_ct I_drdy0[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
Rev.	SD_D_I	regular	fast	fast	GND	GND	sw_pad_ct l_sd_d_i[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
1.4	SD_D_IO	regular	fast	fast	GND	GND	sw_pad_ct I_sd_d_io [2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
	SD_D_CLK	regular	fast	fast	GND	GND	sw_pad_ct I_sd_d_clk [2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
	LCS0	regular	fast	fast	GND	GND	sw_pad_ct I_lcs0[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
	LCS1	regular	fast	fast	GND	GND	sw_pad_ct I_lcs1[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
	SER_RS	regular	fast	fast	GND	GND	sw_pad_ct I_ser_rs[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
	PAR_RS	regular	fast	fast	GND	GND	sw_pad_ct l_par_rs[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
	WRITE	regular	fast	fast	GND	GND	sw_pad_ct I_write[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I

Freescale
Semiconductor

Preliminary

i.MX31/i.MX31L Advance Information, Rev. 1.4

Pin Name	Pad	Slew Ra	ate	Loopba	ick	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec	1	Pull/ Keep En		Oper Drair		Schmitt Tr	igger	Supply Group	Value After Reset
READ	regular	fast	fast	GND	GND	sw_pad_ct I_read[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
VSYNC3	regular	fast	fast	GND	GND	sw_pad_ct I_vsync3 [2]	GND	VCC	VCC	pu100	pu100	sw_pad_ct I_vsync3 [7]	pull	VCC	VCC	GND	GND	GND	GND	NVCC7	I
CONTRAST	regular	fast	fast	GND	GND	sw_pad_ct I_contrast [2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
D3_REV	regular	fast	fast	GND	GND	sw_pad_ct I_d3_rev [2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
D3_CLS	regular	fast	fast	GND	GND	sw_pad_ct I_d3_cls[2]	GND	VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
D3_SPL	regular	fast	fast	GND	GND	sw_pad_ct I_d3_spl[2]		VCC	VCC	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	I
SD1_CMD	regular	sw_pad_ct I_sd1_cmd [0]	fast	sw_pad_ct I_sd1_cmd [9]	GND	sw_pad_ct I_sd1_cmd [2]		sw_pad_ct I_sd1_cmd [1]		pu100	pu100	pull	pull	GND	GND	GND	GND	sw_pad_ct l_sd1_cmd [4]	GND	NVCC3	I
SD1_CLK	regular	sw_pad_ct l_sd1_clk [0]	fast	GND	GND	sw_pad_ct I_sd1_clk [2]	GND	sw_pad_ct I_sd1_clk[1]		pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC3	I
SD1_DATA0	regular	sw_pad_ct l_sd1_dat a0[0]	fast	sw_pad_ct I_sd1_dat a0[9]	GND	sw_pad_ct l_sd1_dat a0[2]	GND	sw_pad_ct I_sd1_dat a0[1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_sd1_dat a0[8]	GND	GND	GND	GND	GND	NVCC3	I
SD1_DATA1	regular	sw_pad_ct l_sd1_dat a1[0]	fast	sw_pad_ct l_sd1_dat a1[9]	GND	sw_pad_ct l_sd1_dat a1[2]	GND	sw_pad_ct I_sd1_dat a1[1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_sd1_dat a1[8]	GND	GND	GND	GND	GND	NVCC3	I
SD1_DATA2	regular	sw_pad_ct l_sd1_dat a2[0]	fast	sw_pad_ct l_sd1_dat a2[9]	GND	sw_pad_ct l_sd1_dat a2[2]	GND	sw_pad_ct I_sd1_dat a2[1]	GND	pu100	pu100	pull	pull	sw_pad_ct l_sd1_dat a2[8]	GND	GND	GND	GND	GND	NVCC3	I
SD1_DATA3	regular	sw_pad_ct l_sd1_dat a3[0]	fast	sw_pad_ct l_sd1_dat a3[9]	GND	sw_pad_ct I_sd1_dat a3[2]	GND	sw_pad_ct I_sd1_dat a3[1]	GND	pd100	pd100	pull	pull	sw_pad_ct I_sd1_dat a3[8]	GND	GND	GND	GND	GND	NVCC3	I
ATA_CS0	regular	sw_pad_ct I_ata_cs0 [0]	slow	GND	GND	sw_pad_ct I_ata_cs0 [2]	GND	sw_pad_ct I_ata_cs0 [1]	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC3	I
ATA_CS1	regular	sw_pad_ct I_ata_cs1 [0]	slow	GND	GND	sw_pad_ct I_ata_cs1 [2]	GND	sw_pad_ct I_ata_cs1 [1]	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC3	I
ATA_DIOR	regular	sw_pad_ct l_ata_dior[0]	slow	GND	GND	sw_pad_ct I_ata_dior[2]	GND	sw_pad_ct I_ata_dior [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_ata_dior[8]	VCC	GND	GND	GND	GND	NVCC3	I
ATA_DIOW	regular	sw_pad_ct l_ata_diow [0]	slow	GND	GND	sw_pad_ct I_ata_diow [2]	GND	sw_pad_ct I_ata_diow [1]	GND	pu100	pu100	pull	pull	sw_pad_ct I_ata_diow [8]	VCC	GND	GND	GND	GND	NVCC3	I
ATA_DMACK	regular	sw_pad_ct l_ata_dma ck[0]	slow	GND	GND	sw_pad_ct l_ata_dma ck[2]	GND	sw_pad_ct I_ata_dma ck[1]		pu100	pu100	pull	pull	sw_pad_ct l_ata_dma ck[8]	VCC	GND	GND	GND	GND	NVCC3	I

Table 6. Pad Settings (continued)

ы	
4	

Table 6. Pad Settings (continued)

MGND -	in Name	Pad	Slew Ra	ate	Loopb	ack	Drive Stre Enable (I		Drive Stre Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec)	Pull/ Keep En		Oper Drair		Schmitt Tr	igger	Supply Group	Valu Afte Rese
CLUSS regular sets fest onto OND OND OND OND Pull pull <th< th=""><th>_RESET r</th><th>regular</th><th>I_ata_rese</th><th>slow</th><th>GND</th><th>GND</th><th>l_ata_rese</th><th>GND</th><th>l_ata_rese</th><th>GND</th><th>pu100</th><th>pu100</th><th>pull</th><th>pull</th><th>l_ata_rese</th><th>VCC</th><th>GND</th><th>GND</th><th>GND</th><th>GND</th><th>NVCC3</th><th>I</th></th<>	_RESET r	regular	I_ata_rese	slow	GND	GND	l_ata_rese	GND	l_ata_rese	GND	pu100	pu100	pull	pull	l_ata_rese	VCC	GND	GND	GND	GND	NVCC3	I
CSPI3_MOSI regular (words) (usp) stow GND GN		regular	fast	fast	-	-	-	-	-	-	•		pull		-	-	-	-	-	-		I
Lepip.m osl(0) Lepip.m (Lepip.m) (Lepip.m) Lepip.m (Lepip.m) (Lepip.m) Lepip.m (Lepip.m) MI W.pad.ct (Lepip.m) MU MU W.pad.ct (Lepip.m) MU W.pad.ct (Lepip.m) MU W.pad.ct (Lepip.m) MU W.pad.ct (Lepip.m) MU MU W.pad.ct (Lepip.m) MU		0			-	-	-	-	-	-				<u> </u>	-	-	-	-	-	-		
Image: Constraint of the spin o	PI3_MOSI r	regular	I_cspi3_m	slow	GND	GND	I_cspi3_m	GND	l_cspi3_m	GND	pu100	pu100	pull	pull	l_cspi3_m	VCC	GND	GND	GND	GND	NVCC3	
Image: Sepiol:	PI3_MISO r	regular	I_cspi3_mi	slow	GND	GND	I_cspi3_mi	GND	I_cspi3_mi	GND	pu100	pu100	pull	pull	I_cspi3_mi	VCC	GND	GND	GND	GND	NVCC3	I
DY S Legn3 sp Legn3 Legn3 sp Legn4 Legn3 sp Legn4 S S Legn4 sp Legn4 S Legn3 sp Legn4 S	PI3_SCLK r	regular	I_cspi3_sc	slow	GND	GND	I_cspi3_sc	GND	l_cspi3_sc	GND	pu100	pu100	pull	pull	I_cspi3_sc	VCC	GND	GND	I_cspi3_sc	VCC	NVCC3	I
DOVDD - <td></td> <td></td> <td>l_cspi3_sp</td> <td>slow</td> <td>GND</td> <td>GND</td> <td>I_cspi3_sp</td> <td>GND</td> <td>l_cspi3_sp</td> <td></td> <td>pu100</td> <td>pu100</td> <td>pull</td> <td>pull</td> <td>I_cspi3_sp</td> <td>VCC</td> <td>GND</td> <td>GND</td> <td>GND</td> <td>GND</td> <td>NVCC3</td> <td>I</td>			l_cspi3_sp	slow	GND	GND	I_cspi3_sp	GND	l_cspi3_sp		pu100	pu100	pull	pull	I_cspi3_sp	VCC	GND	GND	GND	GND	NVCC3	I
MVCC -	M_PAD r	regular	slow	slow	GND	GND	GND	GND	GND	GND	pu100	pu100	pull	pull	GND	GND	GND	GND	GND	GND	NVCC7	N
MGND di MGND moce_rd UVCC <	DQVDD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NVCC22	N
M M	NVCC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	mvcc_vd di	N
UGND -	MGND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	mvcc_vd di	N
FVCC -	UVCC	-	-	-	-	-	-	I	-	I	-	-	-	-	-	I	-	-	-	I	NVCC7	N/
FGND -	JGND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NVCC7	N
SVCC -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		N
Image:	FGND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NVCC2	N
NVCC1 NVCC2	SVCC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		N
NVCC2 - <td>SGND</td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>N</td>	SGND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		N
NVCC3 - <td>IVCC1</td> <td>-</td> <td>N</td>	IVCC1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	N
NVCC4 - <td></td> <td>-</td> <td>N</td>		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	N
NVCC5 - <td></td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>N</td>		-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	N
NVCC6 - <td></td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td>-</td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>N</td>		-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	N
NVCC7 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>N</td>						-																N
NVCC8 - <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>N.</td>																		-				N.
NVCC9 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>N</td>						-							-	-				-				N
NVCC10 - <td></td> <td>N/</td>																						N/
NVCC10 - <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>N.</td>														-				-				N.
NVCC21						-												-				N
						-																N
																		-				N.
NGND1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	N/

Preliminary

Freescale Semiconductor

Preliminary	

i.MX31/i.MX31L	
. Advance I	
Information,	
Rev. 1.4	

Table 6. Pad Settings (continued)

Pin Name	Name Pad Slew Rate Loc		Loopba	ack	Drive Stre Enable (I		Drive Stro Enable0 (Norma	High/	Pull	Value	Pull/ Keep Selec)	Pull/ Keep En		Oper Drair		Schmitt T	rigger	Supply Group	Value After Reset	
NGND2	-	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	NA
NGND3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
NGND22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
QVCC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
QVCC1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA
QVCC4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	NA

3.1.3 EMI Pins Multiplexing

This section discusses the multiplexing of EMI signals. The EMI signals' multiplexing is done inside the EMI. Table 7 lists the i.MX31 and i.MX31L pin names, pad types, and the memory devices' equivalent pin names.

Pin Name	Pad Type	WEIM	SDRAM	PCMCIA	DDR	NFC
A0	regular	A0	MA0	A0	MA0	_
A1	regular	A1	MA1	A1	MA1	_
A2	regular	A2	MA2	A2	MA2	_
A3	regular	A3	MA3	A3	MA3	_
A4	regular	A4	MA4	A4	MA4	_
A5	regular	A5	MA5	A5	MA5	_
A6	regular	A6	MA6	A6	MA6	_
A7	regular	A7	MA7	A7	MA7	_
A8	regular	A8	MA8	A8	MA8	_
A9	regular	A9	MA9	A9	MA9	-
A10	regular	A10	-	A10	-	-
MA10	regular	-	MA10	-	MA10	-
A11	regular	A11	MA11	A11	MA11	-
A12	regular	A12	MA12	A12	MA12	-
A13	regular	A13	MA13	A13	MA13	-
A14	regular	A14	_	A14	-	-
A15	regular	A15	-	A15	-	-
A16	regular	A16	-	A16	-	-
A17	regular	A17	_	A17	-	-
A18	regular	A18	_	A18	-	-
A19	regular	A19	_	A19	-	-
A20	regular	A20	_	A20	-	-
A21	regular	A21	_	A21	-	-
A22	regular	A22	-	A22	-	_
A23	regular	A23	-	A23	-	-
A24	regular	A24	-	A24	-	-
A25	regular	A25	-	A25	-	_
SDBA1	regular	SDBA1	-	CE1	-	-
SDBA0	regular	SDBA0	-	CE2	-	-

Table 7. EMI Multiplexing

Table 7	FMI	Multip	lexina ((continued)
Table 1.		munup	iening ((continueu)

Pin Name Pad Type WEIM SDRAM PCMCIA DDR NFC							
SD0	ddr	_	SD0	_	-	_	
SD1	ddr	_	SD1	_	-	_	
SD2	ddr	_	SD2	_	_	_	
SD3	ddr	_	SD3	_	-	_	
SD4	ddr	_	SD4	_	_	_	
SD5	ddr	_	SD5	_	-	_	
SD6	ddr	_	SD6	_	_	_	
SD7	ddr	-	SD7	_	-	_	
SD8	ddr	-	SD8	-	-	-	
SD9	ddr	_	SD9	-	-	_	
SD10	ddr	-	SD10	-	-	_	
SD11	ddr	-	SD11	-	-	_	
SD12	ddr	_	SD12	_	-	_	
SD13	ddr	_	SD13	_	-	_	
SD14	ddr	_	SD14	_	_	_	
SD15	ddr	_	SD15	_	_	_	
SD16	ddr	_	SD16	_	_	_	
SD17	ddr	_	SD17	_	_	_	
SD18	ddr	_	SD18	_	_	_	
SD19	ddr	_	SD19	_	_	_	
SD20	ddr	_	SD20	_	_	_	
SD21	ddr	_	SD21	_	_	_	
SD22	ddr	_	SD22	_	_	_	
SD23	ddr	_	SD23	_	_	_	
SD24	ddr	_	SD24	_	_	_	
SD25	ddr	_	SD25	_	_	_	
SD26	ddr	_	SD26	_	_	_	
SD27	ddr	_	SD27	_	_	_	
SD28	ddr	_	SD28	_	_	_	
SD29	ddr	_	SD29	_	_	_	
SD30	ddr	_	SD30	_	_	_	
SD31	ddr	_	SD31	_	_	_	
DQM0	ddr	_	DQM0	_	_	_	

Table 7. EMI Multiplexing (continued)

Pin Name	Pad Type	WEIM	SDRAM	PCMCIA	DDR	NFC
DQM1	ddr	_	DQM1	_	_	-
DQM2	ddr	_	DQM2	_	_	-
DQM3	ddr	_	DQM3	_	_	_
EB0	regular	EB0	_	REG	_	_
EB1	regular	EB1	_	IORD	_	-
OE	regular	OE	-	IOWR	-	-
CS0	regular	CS0	-	_	-	-
CS1	regular	CS1	-	_	-	-
CS2	regular	CS2	CSD0	_	_	_
CS3	regular	CS3	CSD1	_	_	_
CS4	regular	CS4	_	_	_	_
CS5	regular	CS5	_	_	_	-
ECB	regular	ECB	-	_	_	_
LBA	regular	LBA	-	ŌĒ	_	_
BCLK	regular	BCLK	_	_	_	-
RW	regular	RW	_	WE	_	-
RAS	regular	_	RAS	_	_	-
CAS	regular	_	CAS	_	_	-
SDWE	regular	_	SDWE	_	-	-
SDCKE0	regular	_	SDCKE0	_	_	-
SDCKE1	regular	_	SDCKE1	_	_	-
SDCLK	ddr	_	SDCLK	_	_	-
SDCLK	ddr	_	SDCLK	_	_	-
SDQS0	ddr	_	-	_	SDQS0	-
SDQS1	ddr	_	-	-	SDQS1	-
SDQS2	ddr	_	-	_	SDQS2	-
SDQS3	ddr	_	-	_	SDQS3	-
NFWE	regular	_	-	_	-	WE
NFRE	regular	_	_	_	_	RE
NFALE	regular	_	_	_	_	ALE
NFCLE	regular	_	-	_	-	CLE
NFWP	regular	_	_	_	_	WP
NFCE	regular	_	-	-	-	CE

Table 7. EMI Multiplexing (continued)								
Pin Name	Pad Type	WEIM	SDRAM	PCMCIA	DDR	NFC		
NFRB	regular	-	_	-	-	R/B		
D15	regular	D15	-	D15	-	D15		
D14	regular	D14	-	D14	-	D14		
D13	regular	D13	-	D13	-	D13		
D12	regular	D12	-	D12	-	D12		
D11	regular	D11	-	D11	-	D11		
D10	regular	D10	-	D10	-	D10		
D9	regular	D9	-	D9	-	D9		
D8	regular	D8	-	D8	-	D8		
D7	regular	D7	-	D7	-	D7		
D6	regular	D6	-	D6	-	D6		
D5	regular	D5	-	D5	-	D5		
D4	regular	D4	-	D4	-	D4		
D3	regular	D3	-	D3	-	D3		
D2	regular	D2	_	D2	_	D2		
D1	regular	D1	-	D1	-	D1		
D0	regular	D0	-	D0	-	D0		
PC_CD1	regular	-	-	CD1	-	-		
PC_CD2	regular	-	-	CD2	-	_		
PC_WAIT	regular	-	-	WAIT	-	_		
PC_READY	regular	-	-	READY	-	_		
PC_PWRON	regular	-	-	PC_PWRON	-	-		
PC_VS1	regular	-	-	VS1	-	-		
PC_VS2	regular	-	-	VS2	-	-		
PC_BVD1	regular	-	-	BVD1	-	-		
PC_BVD2	regular	-	-	BVD2	-	-		
PC_RST	regular	-	-	RST	-	-		
IOIS16	regular	-	-	IOIS16/WP	-	-		
PC_RW	regular	-	-	RW	-	-		
PC_POE	regular	-	_	POE	-	-		
M_REQUEST	regular	-	-	-	-	-		
M_GRANT	regular	-	-	-	-	-		

Table 7. EMI Multiplexing (continued)

This section provides the chip-level and module-level electrical characteristics for the i.MX31 and i.MX31L:

- Section 4.1, "i.MX31 and i.MX31L Chip-Level Conditions" on page 60
 Section 4.1.1, "Power Specifications" on page 63
- Section 4.2, "Supply Power-Up Requirements and Restrictions" on page 66
- Section 4.3, "Module-Level Electrical Specifications" on page 66
 - Section 4.3.1, "I/O Pad (PADIO) Electrical Specifications" on page 66
 - Section 4.3.3, "Clock Amplifier Module (CAMP) Electrical Characteristics" on page 70
 - Section 4.3.4, "1-Wire Electrical Specifications" on page 70
 - Section 4.3.5, "ATA Electrical Specifications (ATA Bus, Bus Buffers)" on page 72
 - Section 4.3.6, "AUDMUX Electrical Specifications" on page 80
 - Section 4.3.7, "CSPI Electrical Specifications" on page 80
 - Section 4.3.8, "DPLL Electrical Specifications" on page 82
 - Section 4.3.9, "EMI Electrical Specifications" on page 83
 - Section 4.3.9.1, "NAND Flash Controller Interface (NFC)" on page 83
 - Section 4.3.9.2, "Wireless External Interface Module (WEIM)" on page 88
 - Section 4.3.9.3, "SDRAM (DDR and SDR) Memory Controller" on page 93
 - Section 4.3.11, "FIR Electrical Specifications" on page 101
 - Section 4.3.12, "Fusebox Electrical Specifications" on page 101
 - Section 4.3.13, "I2C Electrical Specifications" on page 102
 - Section 4.3.14, "IPU—Sensor Interfaces" on page 106
 - Section 4.3.15, "IPU—Display Interfaces" on page 106
 - Section 4.3.16, "Memory Stick Host Controller (MSHC)" on page 131
 - Section 4.3.17, "Personal Computer Memory Card International Association (PCMCIA)" on page 133
 - Section 4.3.18, "PWM Electrical Specifications" on page 135
 - Section 4.3.19, "SDHC Electrical Specifications" on page 137
 - Section 4.3.20, "SIM Electrical Specifications" on page 138
 - Section 4.3.21, "SJC Electrical Specifications" on page 141
 - Section 4.3.22, "SSI Electrical Specifications" on page 143
 - Section 4.3.23, "USB Electrical Specifications" on page 151

4.1 i.MX31 and i.MX31L Chip-Level Conditions

This section provides the chip-level electrical characteristics for the IC. See Table 8 for a quick reference to the individual tables and sections.

For these characteristics,	Topic appears
Table 9, "DC Recommended Operating Conditions"	on page 61
Table 10, "Voltage versus Core Frequency"	on page 62
Table 11, "Interface Frequency"	on page 62
Table 12, "DC Absolute Maximum Operating Conditions"	on page 63
Section 4.1.1, "Power Specifications"	on page 63

Table 8. i.MX31/i.MX31L Chip-Level Conditions

Table 9 provides the DC recommended operating conditions.

NOTE

The use of the terms OVDD and OVSS in this section refers to VDD/VSS Power rails of I/O pads, which are supplied by the nearest noisy ($V_{DDIOL/H}$ and $V_{DD\ DDR}$) supply pads, and are in the range of 1.75 to 3.1 V.

ID	Parameter	Symbol	Min	Max	Units
1	Core Supply Voltage ^{1, 2} (QVCC, QVCC1, QVCC4)	V _{DD}	1.22	1.65 ³	V
2	State Retention (SR) Operating Voltage ⁴	V _{SR}	0.95	-	V
3	I/O Supply Voltage NVCC1, NVCC3, NVCC4-10	V _{DDIOL}	1.75	1.9	V
4	I/O Supply Voltage NVCC1, NVCC3, NVCC4-10	V _{DDIOH}	2.7 ⁵	3.1 ^{6,7,8}	V
5	Supply Voltage (DDR Output Drive Supply) NVCC2, NVCC21, NVCC22	V _{DD_DDR}	1.75	1.95	V
6	PLL/FPM supplies: FVCC, MVCC, SVCC, UVCC ⁹	V _{PLL}	1.3	1.6	V
7	Fusebox read Supply Voltage on the VDD_FUSE pin	V _{FUSE}	1.65	1.95	V
8	Fusebox Program Supply Voltage on the VDD_FUSE pin ¹⁰	V _{FUSE_PGM}	3.0	3.3	V
9	Operating Ambient Temperature	T _A	0	70	°C

¹ Measured at supply pins, including peripherals, ARM, and L2 cache supplies (QVCC, QVCC1, QVCC4, respectively).

² Min voltage listed is for the lower frequency. See Table 10 for correlation of voltage range and associated frequencies.

³ Core voltage supply is considered "Overdrive" for 1.45–1.65 V range. Duty cycles in core overdrive—whether switching or not—must be limited to a cumulative duration of 1.25 years or less (25% duty cycle for a 5-year rated part) to sustain a maximum core VDD operating voltage of 1.65 V without significant device degradation.

⁴ The SR voltage (Quiet supplies QVCC, QVCC1, QVCC4), is applied after IC is put in SR mode. NOTE: Applying low voltage point is dependent on noisy (NVCC) supplies being less than or equal to 1.95 V.

⁵ The range—1.9 V to 2.7 V—is a valid voltage range; however, the voltage ranges given in this table align to more common industry voltage ranges.

- ⁶ Recommended maximum OVDD operating voltage is 3.1 V for GPIO in either slow or fast mode. Switching duty cycles must be limited to a cumulative duration of 1 year or less (20% duty cycle for a 5yr rated part) to sustain a MAX OVDD operating voltage of 3.3V without significant device degradation. A switching cycle is defined as the period of time that the pad is powered to OVDD and actively switching. Switching cycles exceeding this limit may affect device performance or cause permanent damage to the device.
- ⁷ The performance at 1.8 V of GPIO devices that are operated at 3.3 V over an extended period of time (for example. 2 years or longer at a 20% duty cycle) is not guaranteed. Reliability degradation may render the device too slow or inoperable.
- ⁸ Overshoot and undershoot conditions (transitions above OVDD and below OVSS) on switching pads must be held below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
- ⁹ For normal operating conditions, PLLs' and core supplies must maintain the following relation: PLL ≥ Core 100 mV. In other words, for a 1.6 V core supply, PLL supplies must be set to 1.5 V or higher.

¹⁰ Providing a voltage that is lower than specified does not prevent the fuses from being blown if attempting to program a fuse.

Table 10 gives details of the applied voltages to the i.MX31/i.MX31L Core Supply I/O versus the frequencies of the ARM11 core.

ID	Core	Symbol	Min (V)	Max (V)	Frequency (MHz)
1	ARM11 (V _{DD})	f _{ARM}	1.22 ¹	1.65 ^{1, 2}	0–400
2		f _{ARM}	1.55 ³	1.65 ³	401–532

Table 10. Voltage versus Core Frequency

¹ As measured at the ball. Recommended settings for PMIC (Power Management IC) is 1.275 V.

² All overdrive/25% duty-cycles restrictions apply, as specified in Table 9.

³ As measured at the ball. Recommended voltage settings for PMIC is 1.6 V.

Table 11 provides information for interface frequency limits. For more details about clocks characteristics, see Section 4.3.8, "DPLL Electrical Specifications" on page 82.

Table 11. Interface Frequency

ID	Parameter	Symbol	Min	Тур	Max	Units
1	JTAG TCK Frequency	f _{JTAG}	DC	5	10	MHz
2	CKIL Frequency	f _{CKIL}	32	32.768	38.4	kHz
3	CKIH Frequency	fcкiн	10	26	100	MHz

Table 12 provides the DC absolute maximum operating conditions.

CAUTION

Stresses beyond those listed under "DC Absolute Maximum Operating Conditions," (Table 12) may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Ref. Num	Parameter	Symbol	Min	Мах	Units
1	Supply Voltage	V _{DDmax}	-0.5	1.65	V
2	Supply Voltage (Level Shift I/O)	V _{DDIOmax}	-0.5	3.3	V
3	Input Voltage Range	V _{Imax}	-0.5	V _{DDIOH} +0.3	V
4	Storage Temperature	T _{storage}	-40	125	°C
5	Absolute Maximum HBM (Human Body Model) ESD stress voltage.	V _{esd}	-	±2500	V
6	Absolute Maximum offset voltage allowed in run mode between core supplies.	V _{coers_offset} ¹	_	+15	mV

Table 12. DC Absolute Maximum Operating Conditions

¹ The offset is any difference between all core voltages for supply pads—QVCC, QVCC1, and QVCC4.

4.1.1 Power Specifications

Table 13 shows the power consumption for the i.MX31 and i.MX31L.

Mode	Conditions	Peripheral Current ¹	ARM Current ²	PLL Current	Total Power
State Retention	 Core VDD (QVCC) = 0.95 V ARM supply QVCC1 = QVCC = 0.95 V ARM in well bias L2 caches are power gated (QVCC4 = 0 V) All PLLs are Off FPM is off 32 kHz Input on CKIH input is off CAMP is off TCK input is off All the modules are off No external resistive loads RNGA oscillator is off T_A = 25°C 	200 μΑ	150 μΑ	40 μΑ	0.4 mW
Doze	• All Vdds = 1.2 V (QVCC=QVCC1=QVCC4 = 1.2 V) • ARM in wait for interrupt mode • ARM is in well bias • MAX is stopped • L2 cache is stopped but powered • MCU PLL is on (532 MHz) • USB PLL and SPLL are off • FPM is on • CKIH input is off • CAMP is off • 32 kHz Input on • All the modules are off (by programming CGR[2:0] registers) • RNGA oscillator is off • No external resistive loads • $T_A = 25^{\circ}C$	7 mA	1.0 mA	3 mA for each PLL	13.0 mW

Table 13. Power Consumption (Typical Values)

Mode	Conditions	Peripheral Current ¹	ARM Current ²	PLL Current	Total Power
WAIT (all clocks gated off)	• All Vdds = 1.2 V (QVCC=QVCC1=QVCC4 = 1.2 V) • ARM in wait for interrupt mode • MAX is active • L2 cache is stopped but powered • MCU PLL is on (532 MHz) • USB PLL and SPLL are off • FPM is on • CKIH input is off • CAMP is off • 32 kHz Input on • All the modules are off (by programming CGR[2:0] registers) • RNGA oscillator is off • No external resistive loads • $T_A = 25^{\circ}C$	7 mA	3 mA	3 mA for each PLL	15.0 mW
Deep Sleep	• Core VDD (QVCC) = 0.95 V • ARM (QVCC1) & L2 caches (QVCC4) are power gate • All PLLs are off • FPM is off • 32 kHz Input on • CKIH input is off • CAMP is off • TCK input is off • All the modules are off • No external resistive loads • RNGA oscillator is off • $T_A = 25^{\circ}C$	200 μA	0 μΑ	40 μΑ	0.22 mW

Table 13. Power Consumptio	n (Typical Values) (continued)
----------------------------	--------------------------------

¹ QVCC supply.

² QVCC1 supply.

4.2 Supply Power-Up Requirements and Restrictions

Any i.MX31/i.MX31L board design must comply with the power-up sequence guideline, as described in this section, to guarantee proper power-up of the device. Any deviation from this sequence may result in any or all of the following situations:

- Cause excessive current.
- Prevent the device from booting.
- Cause irreversible damage to the i.MX31/i.MX31L (worst-case scenario).

The Power On Reset (\overline{POR}) pin must be kept asserted (low) throughout the power up sequence. Power up logic must guarantee that all power sources must be on prior to the release (de-assertion) of \overline{POR} . Figure 2 depicts the power supply power up sequence. (Power management logic should guarantee 90% supply before transitional to the next state.) The sequence is as follows:

- 1. Quiet supplies—QVCC, QVCC1, QVCC4 (peripherals, ARM, L2 cache)
- 2. NVCC1 and IOQVDD—for assuring reset signals are propagating into core

- 3. Powering up of the remainder of noisy and PLL supplies, which can be done simultaneously. The order within the noisy supplies must be maintained, as follows:
 - a) Remainder of noisy supplies (all except for the NVCC2, 21,22, and NVCC1 supplies)
 - b) NVCC2, NVCC21, NVCC22.
- 4. FUSE_VDD—the last supply to be powered up

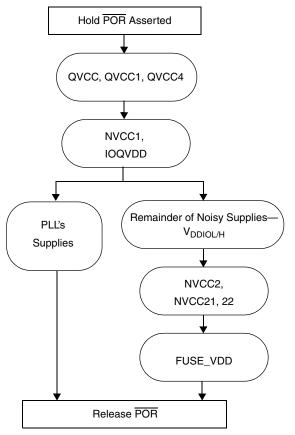


Figure 2. Power-Up Sequence

4.3 Module-Level Electrical Specifications

This section contains the i.MX31 and i.MX31L electrical information including timing specifications, arranged in alphabetical order by module name.

4.3.1 I/O Pad (PADIO) Electrical Specifications

This section specifies the AC/DC characterization of functional I/O pads of the i.MX31. There are two main types of pads: regular and DDR. In this document, the "Regular" type is referred to as GPIO.

4.3.1.1 DC Electrical Characteristics

The i.MX31/i.MX31L pad I/O operating characteristics appear in Table 14 for GPIO pads and Table 15 for DDR (Double Data Rate) pads.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
High-level output voltage	V _{OH}	I _{OH} = -1 mA	OVDD -0.15 ¹	_	-	V
		I _{OH} = spec'ed Drive	0.8*OVDD	-	-	V
Low-level output voltage	V _{OL}	I _{OL} = 1 mA	_	-	0.15	VV
		I _{OL} = spec'ed Drive	_	-	0.2*OVDD	
High-level output current, slow slew rate ²	I _{OH_S}	V _{OH} =0.8*OVDD Std Drive High Drive Max Drive	-2 -4 -8	_	_	mA
High-level output current, fast slew rate ²	I _{OH_F}	V _{OH} =0.8*OVDD Std Drive High Drive Max Drive	-4 -6 -8	_	-	mA
Low-level output current, slow slew rate ²	I _{OL_S}	V _{OL} =0.2*OVDD Std Drive High Drive Max Drive	2 4 8	_	_	mA
Low-level output current, fast slew rate ²	I _{OL_F}	V _{OL} =0.2*OVDD Std Drive High Drive Max Drive	4 6 8	_	_	mA
High-Level DC input voltage ³	V _{IH}	_	0.7*OVDD	_	OVDD	V
Low-Level DC input voltage ³	V _{IL}	_	0	_	0.3*VDD	V
Input Hysteresis	V _{HYS}	_	0.25	_	_	V
Schmitt trigger VT+ ^{1, 4}	V _T +	_	0.5*VDD	_	_	V
Schmitt trigger VT-	V _T -	_	_	_	0.5*VDD	V
Pull-up resistor (100 K Ω PU)	R _{PU}	_	70	100	268	KΩ
Pull-down resistor (100 K Ω PD)	R _{PD}	_	61	100	343	
Input current (no PU/PD) ⁵	I _{IN}	$V_I = 0$ $V_I = OVDD$	_	0.33	250 100	nA
Input current (100 KΩ PU)	I _{IN}	V _I = 0 V _I = OVDD	-	_	25 0.1	μΑ μΑ
Input current (100 KΩ PD)	I _{IN}	V _I = 0 V _I = OVDD	_	_	0.25 28	μΑ μΑ
Tri-state Hi-Z input current	Ι _Ζ	V _I = OVDD or 0	-	-	2	μA

Table 14. GPIO Pads DC Electrical Parameters

¹ Power rail for output driver 1.75 - 3.1 V.

² Tested per I/O pad.

 $^3~V_{IH}, V_{IL}, V_{T+}$ and V_{T-} for the pads in supply groups NVCC3-NVCC10 are referenced to OVDD.

⁴ Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.

⁵ Typ condition: typ model, 1.875 V and 25°C. Max condition: bcs model, 3.3 V and 105°C.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
High-level output voltage ¹	V _{OH}	I _{OH} = -1 mA	OVDD -0.12	_	_	V
		I _{OH} = spec'ed Drive	0.8*OVDD	-	-	V
Low-level output voltage	V _{OL}	I _{OL} = 1 mA	_	-	0.08	V
		I _{OL} = spec'ed Drive	_	-	0.2*OVDD	V
High-level output current ²	I _{ОН}	V _{OH} =0.8*OVDD Std Drive High Drive Max Drive DDR Drive	-3.6 -7.2 -10.8 -14.4	_	-	mA
Low-level output current ²	I _{OL}	V _{OL} =0.2*OVDD Std Drive High Drive Max Drive DDR Drive	3.6 7.2 10.8 14.4	-	_	mA
High-Level DC input voltage of CMOS receiver	V _{IH}	_	0.7*OVDD	OVDD	OVDD+0.3	V
Low-Level DC input voltage of CMOS receiver	V _{IL}	_	-0.3	0	0.3*OVDD	V
Low-level input current ³	IIL	V ₁ = 0	_	-	900	nA
High-level input current	I _{IH}	V _I = OVDD	_	-	140	nA
Tri-state Hi-Z current	Ι _Ζ	$V_{I} = OVDD \text{ or } 0$	-	_	2	μA

 Table 15. DDR (Double Data Rate) I/O Pads DC Electrical Parameters

¹ Max operating voltage for DDR pads with all drive strengths is 1.95 V.

² Tested per I/O pad.

³ Input current conditions: Typical condition: typ model, 1.875 V and 25°C. Max condition: bcs model, 3.3 V and 105°C

4.3.2 AC Electrical Characteristics

Figure 3 depicts the load circuit for output pads. Figure 4 depicts the output pad transition time waveform. The range of operating conditions appears in Table 16 for slow general I/O, Table 17 for fast general I/O, and Table 18 for DDR I/O (unless otherwise noted).

CL includes package, probe and jig capacitance

Figure 3. Load Circuit for Output Pad

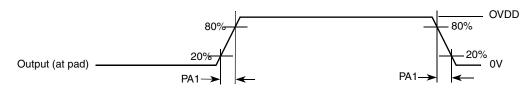


Figure 4. Output Pad Transition Time Waveform

ID	Parameter	Symbol	Test Condition	Min	Тур	Max	Units
PA1	Output Pad Transition Times (Max Drive)	tpr	25 pF 50 pF	0.92 1.5	1.95 2.98	3.17 4.75	ns
	Output Pad Transition Times (High Drive)	tpr	25 pF 50 pF	1.52 2.75		4.81 8.42	ns
	Output Pad Transition Times (Std Drive)	tpr	25 pF 50 pF	2.79 5.39		8.56 16.43	ns

Table 16. AC Electrical Characteristics of Slow¹ General I/O Pads

¹ Fast/slow characteristic is selected per GPIO I/O pad (where available) by "slew rate" control. See Table 6.

Table 17. AC Electrical Characteristics of Fast¹ General I/O Pads²

ID	Parameter	Symbol	Test Condition	Min	Тур	Max	Units
PA1	Output Pad Transition Times (Max Drive)	tpr	25 pF 50 pF	0.68 1.34	1.33 2.6	2.07 4.06	ns
	Output Pad Transition Times (High Drive)	tpr	25 pF 50 pF	.91 1.79	1.77 3.47	2.74 5.41	ns
	Output Pad Transition Times (Std Drive)	tpr	25 pF 50 pF	1.36 2.68	2.64 5.19	4.12 8.11	ns

¹ Fast/slow characteristic is selected per GPIO I/O pad (where available) by "slew rate" control. See Table 6.

² Recommended max operating voltage for GPIO in fast mode with all drive strengths is 1.95 V. Absolute maximum is described in Table 9.

Table 18. AC Electrical Characteristics of DI	OR I/O Pads ¹
---	--------------------------

ID	Parameter	Symbol	Test Condition	Min	Тур	Max	Units
PA1	Output Pad Transition Times (DDR Drive)	tpr	25 pF 50 pF	0.51 0.97	0.82 1.58	1.28 2.46	ns
	Output Pad Transition Times (Max Drive)	tpr	25 pF 50 pF	0.67 1.29	1.08 2.1	1.69 3.27	ns
	Output Pad Transition Times (High Drive)	tpr	25 pF 35 pF	.99 1.93	1.61 3.13	2.51 4.89	ns
	Output Pad Transition Times (Std Drive)	tpr	25 pF 50 pF	1.96 3.82	3.19 6.24	4.99 9.73	ns

¹ Absolute max operating voltage for DDR pads with all drive strengths is 1.95 V.

4.3.3 Clock Amplifier Module (CAMP) Electrical Characteristics

This section outlines the Clock Amplifier Module (CAMP) specific electrical characteristics. Table 19 shows clock amplifier electrical characteristics.

Parameter	Min	Тур	Max	Units
Input Frequency	8.0	_	34.0	MHz
VIL (for square input)	0	-	0.3	V
VIH (for square input)	(VDD ¹ - 0.25)	_	3	V
Sinusoidal Input Amplitude	0.4 ²	_	VDD	Vp-p
Duty Cycle	45	50	55	%

Table 19. Clock Amplifier Electrical Characteristics

¹ VDD is the supply voltage of CAMP

² This value of the sinusoidal input will be measured through characterization.

4.3.4 1-Wire Electrical Specifications

Figure 5 depicts the RPP timing, and Table 20 lists the RPP timing parameters.

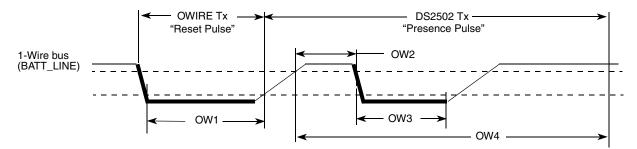


Figure 5. Reset and Presence Pulses (RPP) Timing Diagram

Table 20. RPP Sequence Delay	Comparisons 1	Timing Parameters
------------------------------	---------------	-------------------

ID	Parameters	Symbol	Min	Тур	Мах	Units
OW1	Reset Time Low	t _{RSTL}	480	511	_	μs
OW2	Presence Detect High	t _{PDH}	15	-	60	μs
OW3	Presence Detect Low	t _{PDL}	60	-	240	μs
OW4	Reset Time High	t _{RSTH}	480	512	_	μs

Figure 6 depicts Write 0 Sequence timing, and Table 21 lists the timing parameters.

Figure 6. Write 0 Sequence Timing Diagram

Table 21	. WR0	Sequence	Timing	Parameters
----------	-------	----------	--------	------------

ID	Parameter	Symbol	Min	Тур	Max	Units
OW5	Write 0 Low Time	t _{WR0_low}	60	100	120	μs
OW6	Transmission Time Slot	t _{SLOT}	OW5	117	120	μs

Figure 7 depicts Write 1 Sequence timing, Figure 8 depicts the Read Sequence timing, and Table 22 lists the timing parameters.

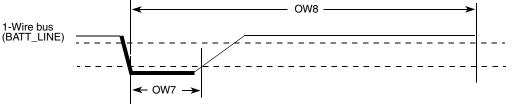


Figure 7. Write 1 Sequence Timing Diagram

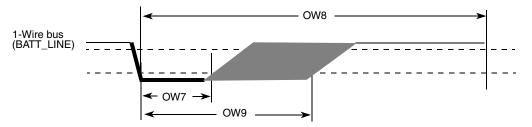


Figure 8. Read Sequence Timing Diagram

Table 22. WR1 /RD	Timing Parameters
-------------------	-------------------

ID	Parameter	Symbol	Min	Тур	Max	Units
OW7	Write 1 / Read Low Time	t _{LOW1}	1	5	15	μs
OW8	Transmission Time Slot	t _{SLOT}	60	117	120	μs
OW9	Release Time	t _{RELEASE}	15	_	45	μs

i.MX31/i.MX31L Advance Information, Rev. 1.4

4.3.5 ATA Electrical Specifications (ATA Bus, Bus Buffers)

This section discusses ATA electricals and explains how to make sure the ATA interface meets timing. To meet electrical spec on the ATA bus, several requirements must be met. For a detailed description, refer to the ATA specification.

This electrical spec must be met for the pads used on the ATA I/Os if no bus buffers and bus transceivers are used.

Alternative is to use bus buffers. This is the only way to operate the ATA interface if 3.3 Volt or 5.0 Volt compatibility on the ATA bus is wanted, and no 3.3 Volt or 5.0 Volt tolerant pads on the device are available.

The use of bus buffers introduces delay on the bus and introduces skew between signal lines. These factors make it difficult to operate the bus at the highest speed (UDMA-5) when bus buffers are used. If fast UDMA mode operation is needed, this may not be compatible with bus buffers.

Another area of attention is the slew rate limit imposed by the ATA specification on the ATA bus. According to this limit, any signal driven on the bus should have a slew rate between 0.4 and 1.2 V/ns with a 40 pF load. Not many vendors of bus buffers specify slew rate of the outgoing signals.

When bus buffers are used, the ata_data bus buffer is special. This is a bidirectional bus buffer, so a direction control signal is needed. This direction control signal is ata_buffer_en. When its high, the bus should drive from host to device. When its low, the bus should drive from device to host. Steering of the signal is such that contention on the host and device tri-state busses is always avoided.

4.3.5.1 Timing Parameters

In the timing equations, some timing parameters are used. These parameters depend on the implementation of the ATA interface on silicon, the bus buffer used, the cable delay and cable skew. Table 23 shows ATA timing parameters.

Name	Description	Value/ Contributing Factor ¹	
т	Bus clock period (ipg_clk_ata)	peripheral clock frequency	
ti_ds	Set-up time ata_data to ata_iordy edge (UDMA-in only)	11 ns	
ti_dh	hold time ata_iordy edge to ata_data (UDMA-in only)	6 ns	
tco	propagation delay bus clock L-to-H to ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data, ata_buffer_en	15 ns	
tsu	set-up time ata_data to bus clock L-to-H	19 ns	
tsui	set-up time ata_iordy to bus clock H-to-L	9 ns	
thi	hold time ata_iordy to bus clock H to L	5 ns	

Table 23. ATA Timing Parameters

Name	Description	Value/ Contributing Factor ¹
tskew1	Max difference in propagation delay bus clock L-to-H to any of following signals ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data (write), ata_buffer_en	7 ns
tskew2	Max difference in buffer propagation delay for any of following signals ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_dior, ata_diow, ata_dmack, ata_data (write), ata_buffer_en	transceiver
tskew3	Max difference in buffer propagation delay for any of following signals ata_iordy, ata_data (read)	transceiver
tbuf	Max buffer propagation delay	transceiver
tcable1	cable propagation delay for ata_data	cable
tcable2	cable propagation delay for control signals ata_dior, ata_diow, ata_iordy, ata_dmack	cable
tskew4	Max difference in cable propagation delay between ata_iordy and ata_data (read)	cable
tskew5	Max difference in cable propagation delay between (ata_dior, ata_diow, ata_dmack) and ata_cs0, ata_cs1, ata_da2, ata_da1, ata_da0, ata_data(write)	cable
tskew6	Max difference in cable propagation delay without accounting for ground bounce	cable

Table 23. ATA Timing Parameters (continued)

¹ Values provided where applicable.

4.3.5.2 PIO Mode Timing

Figure 9 shows timing for PIO read, and Table 24 lists the timing parameters for PIO read.

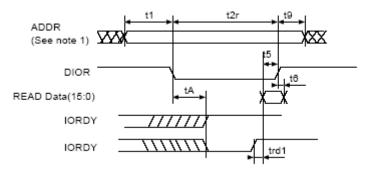


Figure 9. PIO Read Timing Diagram

ATA Parameter	Parameter from Figure 9	Value	Controlling Variable
t1	t1	t1 (min) = time_1 * T - (tskew1 + tskew2 + tskew5)	time_1
t2	t2r	t2 min) = time_2r * T - (tskew1 + tskew2 + tskew5)	time_2r
t9	t9	t9 (min) = time_9 * T - (tskew1 + tskew2 + tskew6)	time_3

ATA Parameter	Parameter from Figure 9	Value	Controlling Variable
t5	t5	t5 (min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2	If not met, increase time_2.
t6	t6	0	-
tA	tA	$tA (min) = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf)$	time_ax
trd	trd1	trd1 (max) = (-trd) + (tskew3 + tskew4) trd1 (min) = (time_pio_rdx - 0.5)*T - (tsu + thi) (time_pio_rdx - 0.5) * T > tsu + thi + tskew3 + tskew4	time_pio_rdx
t0	-	t0 (min) = (time_1 + time_2 + time_9) * T	time_1, time_2r, time_9

Figure 10 shows timing for PIO write, and Table 25 lists the timing parameters for PIO write.

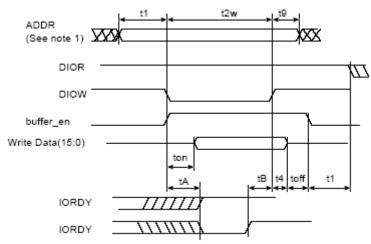


Figure 10. Multiword DMA (MDMA) Timing

ATA Parameter	Parameter from Figure 10	Value	Controlling Variable
t1	t1	t1 (min) = time_1 * T - (tskew1 + tskew2 + tskew5)	time_1
t2	t2w	t2 (min) = time_2w * T - (tskew1 + tskew2 + tskew5)	time_2w
t9	t9	t9 (min) = time_9 * T - (tskew1 + tskew2 + tskew6)	time_9
t3	_	t3 (min) = (time_2w - time_on)* T - (tskew1 + tskew2 +tskew5)	If not met, increase time_2w.
t4	t4	t4 (min) = time_4 * T - tskew1	time_4
tA	tA	$tA = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf)$	time_ax
tO	_	t0(min) = (time_1 + time_2 + time_9) * T	time_1, time_2r, time_9

ATA Parameter	Parameter from Figure 10	Value	Controlling Variable
_	_	Avoid bus contention when switching buffer on by making ton long enough.	_
_	_	Avoid bus contention when switching buffer off by making toff long enough.	_

Table 25. PIO Write Timing Parameters (continued)

Figure 11 shows timing for MDMA read, Figure 12 shows timing for MDMA write, and Table 26 lists the timing parameters for MDMA read and write.

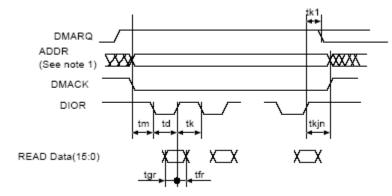
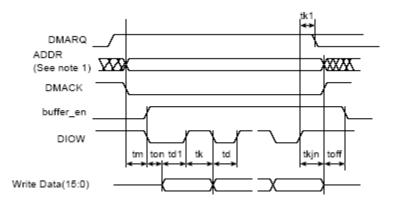



Figure 11. MDMA Read Timing Diagram

Table 26. MDM	Read and	Write Timing	Parameters
---------------	----------	--------------	------------

ATA Parameter	Parameter from Figure 11, Figure 12	Value	Controlling Variable
tm, ti	tm	tm (min) = ti (min) = time_m * T - (tskew1 + tskew2 + tskew5)	time_m
td	td, td1	td1.(min) = td (min) = time_d * T - (tskew1 + tskew2 + tskew6)	time_d
tk	tk	tk.(min) = time_k * T - (tskew1 + tskew2 + tskew6)	time_k

ATA Parameter	Parameter from Figure 11, Figure 12	Value	Controlling Variable
tO	_	t0 (min) = (time_d + time_k) * T	time_d, time_k
tg(read)	tgr	tgr (min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2 tgr.(min-drive) = td - te(drive)	time_d
tf(read)	tfr	tfr (min-drive) = 0	-
tg(write)	-	tg (min-write) = time_d * T - (tskew1 + tskew2 + tskew5)	time_d
tf(write)	-	tf (min-write) = time_k * T - (tskew1 + tskew2 + tskew6)	time_k
tL	-	$tL (max) = (time_d + time_k-2)^{T} - (tsu + tco + 2^{tbuf} + 2^{tcable2})$	time_d, time_k
tn, tj	tkjn	tn= tj= tkjn = (max(time_k,. time_jn) * T - (tskew1 + tskew2 + tskew6)	time_jn
_	ton toff	ton = time_on * T - tskew1 toff = time_off * T - tskew1	-

Table 26. MDMA Read and Write Timing Parameters (continued)

4.3.5.3 UDMA In Timing

Figure 13 shows timing when the UDMA in transfer starts, Figure 14 shows timing when the UDMA in host terminates transfer, Figure 15 shows timing when the UDMA in device terminates transfer, and Table 27 lists the timing parameters for UDMA in burst.

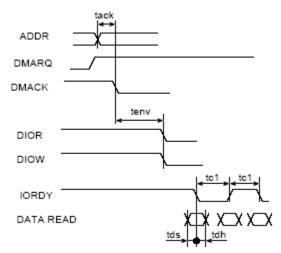


Figure 13. UDMA In Transfer Starts Timing Diagram

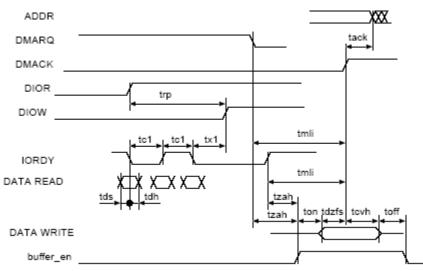


Figure 14. UDMA In Host Terminates Transfer Timing Diagram

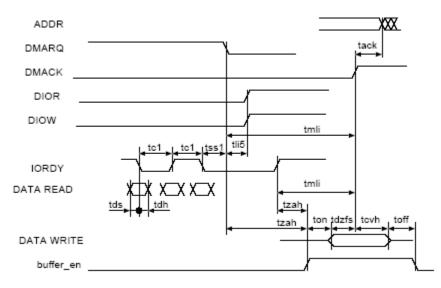


Figure 15. UDMA In Device Terminates Transfer Timing Diagram

Table 27	. UDMA In	Burst	Timing	Parameters
----------	-----------	-------	--------	------------

ATA Parameter	Parameter from Figure 13, Figure 14, Figure 15	Description	Controlling Variable
tack	tack	tack (min) = (time_ack * T) - (tskew1 + tskew2)	time_ack
tenv	tenv	tenv (min) = (time_env * T) - (tskew1 + tskew2) tenv (max) = (time_env * T) + (tskew1 + tskew2)	time_env
tds	tds1	tds - (tskew3) - ti_ds > 0	tskew3, ti_ds, ti_dh
tdh	tdh1	tdh - (tskew3) -ti_dh > 0	should be low enough

ATA Parameter	Parameter from Figure 13, Figure 14, Figure 15	Description	Controlling Variable
tcyc	tc1	(tcyc - tskew) > T	T big enough
trp	trp	trp (min) = time_rp * T - (tskew1 + tskew2 + tskew6)	time_rp
-	tx1 ¹	(time_rp * T) - (tco + tsu + 3T + 2 *tbuf + 2*tcable2) > trfs (drive)	time_rp
tmli	tmli1	tmli1 (min) = (time_mlix + 0.4) * T	time_mlix
tzah	tzah	$tzah (min) = (time_zah + 0.4) * T$	time_zah
tdzfs	tdzfs	tdzfs = (time_dzfs * T) - (tskew1 + tskew2)	time_dzfs
tcvh	tcvh	tcvh = (time_cvh *T) - (tskew1 + tskew2)	time_cvh
_	ton toff	ton = time_on * T - tskew1 toff = time_off * T - tskew1	_

Table 27. UDMA In Burst Timing Parameters (continued)

¹ There is a special timing requirement in the ATA host that requires the internal DIOW to go only high 3 clocks after the last active edge on the DSTROBE signal. The equation given on this line tries to capture this constraint.

2. Make ton and toff big enough to avoid bus contention

4.3.5.4 UDMA Out Timing

Figure 16 shows timing when the UDMA out transfer starts, Figure 17 shows timing when the UDMA out host terminates transfer, Figure 18 shows timing when the UDMA out device terminates transfer, and Table 28 lists the timing parameters for UDMA out burst.

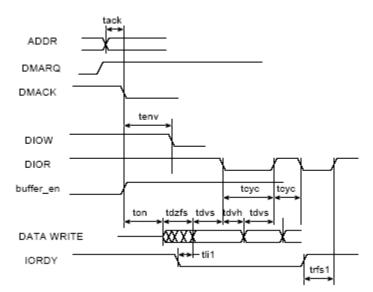
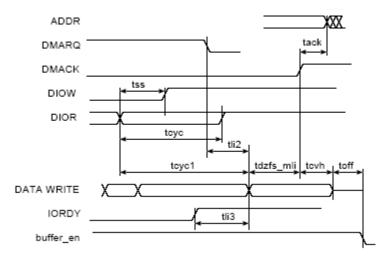
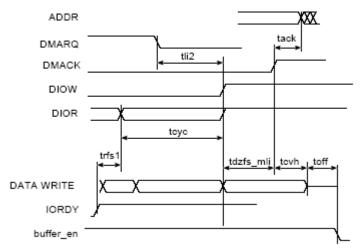




Figure 16. UDMA Out Transfer Starts Timing Diagram

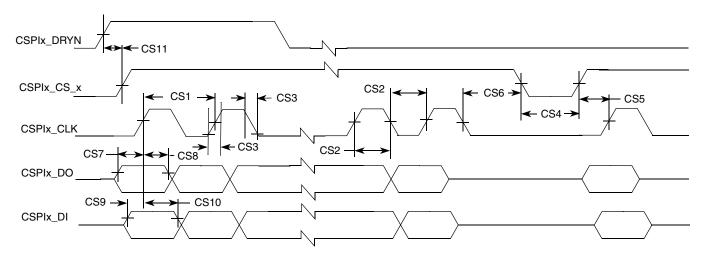
Table 28.	. UDMA	Out Burst	Timing	Parameters
-----------	--------	------------------	--------	------------

ATA Parameter	Parameter from Figure 16, Figure 17, Figure 18	Value	Controlling Variable
tack	tack	tack (min) = (time_ack * T) - (tskew1 + tskew2)	time_ack
tenv	tenv	tenv (min) = (time_env * T) - (tskew1 + tskew2) tenv (max) = (time_env * T) + (tskew1 + tskew2)	time_env
tdvs	tdvs	tdvs = (time_dvs * T) - (tskew1 + tskew2)	time_dvs
tdvh	tdvh	tdvs = (time_dvh * T) - (tskew1 + tskew2)	time_dvh
tcyc	tcyc	tcyc = time_cyc * T - (tskew1 + tskew2)	time_cyc
t2cyc	_	t2cyc = time_cyc * 2 * T	time_cyc

ATA Parameter	Parameter from Figure 16, Figure 17, Figure 18	Value	Controlling Variable
trfs1	trfs	trfs = 1.6 * T + tsui + tco + tbuf + tbuf	-
-	tdzfs	tdzfs = time_dzfs * T - (tskew1)	time_dzfs
tss	tss	tss = time_ss * T - (tskew1 + tskew2)	time_ss
tmli	tdzfs_mli	tdzfs_mli =max (time_dzfs, time_mli) * T - (tskew1 + tskew2)	-
tli	tli1	tli1 > 0	-
tli	tli2	tli2 > 0	-
tli	tli3	tli3 > 0	-
tcvh	tcvh	tcvh = (time_cvh *T) - (tskew1 + tskew2)	time_cvh
_	ton toff	ton = time_on * T - tskew1 toff = time_off * T - tskew1	-

Table 28. UDMA Out Burst Timing Parameters (continued)

4.3.6 AUDMUX Electrical Specifications


The AUDMUX provides a programmable interconnect logic for voice, audio and data routing between internal serial interfaces (SSI) and external serial interfaces (audio and voice codecs). The AC timing of AUDMUX external pins is hence governed by the SSI module. Please refer to their respective electrical specifications.

4.3.7 CSPI Electrical Specifications

This section describes the electrical information of the CSPI.

4.3.7.1 CSPI Timing

Figure 19 and Figure 20 depict the master mode and slave mode timings of CSPI, and Table 29 lists the timing parameters.

Figure 19. CSPI Master Mode Timing Diagram

NOTE

CSPI1_DRYN is connected to CSPI1_CS_1, CSPI2_DRYN is connected to DAM2_T_CLK

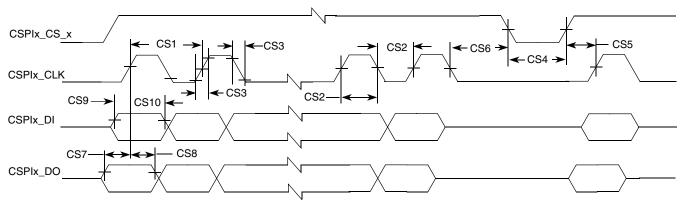


Figure 20. CSPI Slave Mode Timing Diagram

Table 29.	CSPI	Interface	Timing	Parameters
-----------	------	-----------	--------	------------

ID	Parameter	Symbol	Min	Max	Units
CS1	CSPIx_CLK Cycle Time	t _{clk}	60	_	ns
CS2	CSPIx_CLK High or Low Time	t _{SW}	30	_	ns
CS3	CSPIx_CLK Rise or Fall	t _{RISE/FALL}	_	7.6	ns
CS4	CSPIx_CS_x pulse width	t _{CSLH}	25	_	ns
CS5	CSPIx_CS_x Lead Time (CS setup time)	t _{SCS}	25	_	ns
CS6	CSPIx_CS_x Lag Time (CS hold time)	t _{HCS}	25	_	ns
CS7	CSPIx_DO Setup Time	t _{Smosi}	5	_	ns
CS8	CSPIx_DO Hold Time	t _{Hmosi}	5	_	ns

ID	Parameter	Symbol	Min	Мах	Units
CS9	CSPIx_DI Setup Time	t _{Smiso}	5	_	ns
CS10	CSPIx_DI Hold Time	t _{Hmiso}	5	_	ns
CS11	CSPIx_DRYN Setup Time	t _{SDRY}	5	_	ns

Table 29. CSPI Interface Timing Parameters (continued)

4.3.8 DPLL Electrical Specifications

The three PLL's of the MX31/MX31L (MCU, USB, and Serial PLL) are all based on same DPLL design. The characteristics provided herein apply to all of them, except where noted explicitly. The PLL characteristics are provided based on measurements done for both sources—external clock source (CKIH), and FPM (Frequency Pre-Multiplier) source.

4.3.8.1 Electrical Specifications

Table 30 lists the DPLL specification.

Parameter	Min	Тур	Max	Unit	Comments
CKIH reference frequency	10	-	100	MHz	_
CKIL referencer frequency (FPM enable mode)		32; 32.768, 38.4	_	MHz	-
Predivision factor	1	_	16		_
PLL reference frequency range after Predivider	10	-	35	MHz	-
Maximum allowed reference clock phase noise.	10	-	± 100	μs	-
Frequency lock time (FOL mode or non-integer MF)	-	-	398	μs	Cycles of divided reference clock.
Phase lock time	_	-	100	μs	In addition to the frequency
PLL Power supply voltage	1.4	-	1.6	V	-
Single PLL current consumption	_	-	4.4	mA	_
Maximum allowed PLL supply voltage ripple	-	-	25	mV	F _{modulation} < 50 kHz
Maximum allowed PLL supply voltage ripple	_	-	20	mV	F _{modulation} < 300 kHz
Maximum allowed PLL supply voltage ripple	-	-	25	mV	F _{modulation} < 300 kHz
PLL output clock phase jitter	_	_	5.2	ns	Measured on CKO pin
PLL output clock phase jitter	_	_	420	ns	Measured on CKO pin

Table 30. DPLL Specifications

4.3.9 EMI Electrical Specifications

This section provides electrical parametrics and timings for EMI module.

4.3.9.1 NAND Flash Controller Interface (NFC)

There are two modes of operations for the NFC-default and ONE_CYCLE.

Normal NFC mode—using two flash clock cycles for one access of $\overline{\text{RE}}$ and $\overline{\text{WE}}$. AC parameters calculation for this mode assume the flash clock cycle frequency is 22.5 MHz (as an example).

One-Cycle NFC mode—using one flash cycle for one access of $\overline{\text{RE}}$ and $\overline{\text{WE}}$. AC parameters calculation for this mode assume the flash clock cycle frequency that is 33.5 MHz (as an example).

4.3.9.1.1 Normal NFC Mode (Default)

The flash clock maximum frequency goes up to 50 MHz. Figure 21, Figure 22, Figure 23, and Figure 24 depict the relative timing requirements among different signals of the NFC at module level, for normal mode, and Table 31 lists the timing parameters.

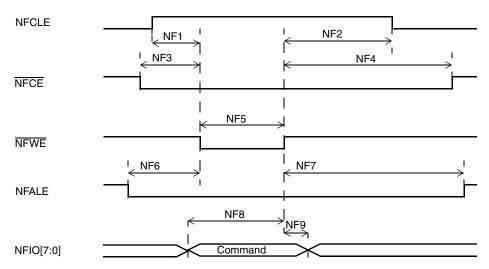


Figure 21. Command Latch Cycle Timing Dlagram

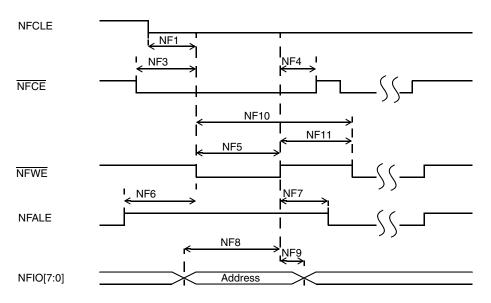


Figure 22. Address Latch Cycle Timing Dlagram

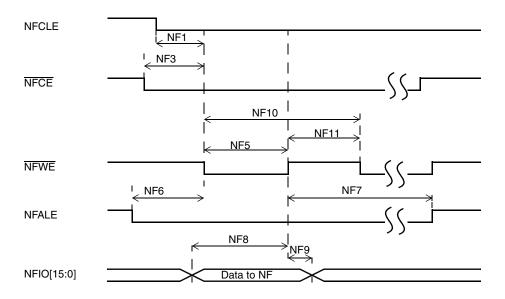
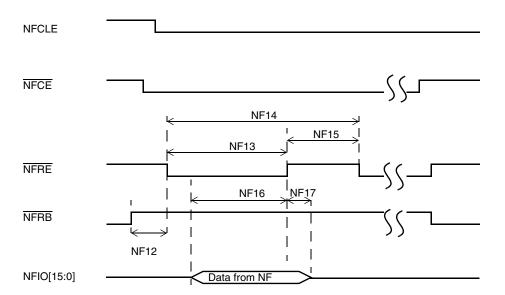



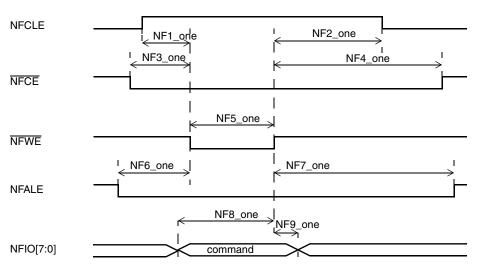
Figure 23. Write Data Latch Cycle Timing Dlagram

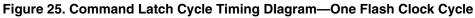
Figure 24. Read Data Latch Cycle Timing Dlagram

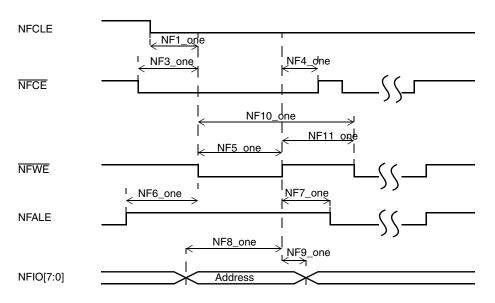
ID	Parameter	Parameter Symbol		Relationship to NFC clock Period (T)			Unit
			Min	Max	Min	Max	
NF1	NFCLE Setup Time	tCLS	Т	_	45	_	ns
NF2	NFCLE Hold Time	tCLH	Т	-	45	-	ns
NF3	NFCE Setup Time	tCS	Т	-	90	—	ns
NF4	NFCE Hold Time	tCH	Т	-	45	-	ns
NF5	NF_WP Pulse Width	tWP	Т	-	45	-	ns
NF6	NFALE Setup Time	tALS	Т	-	45	-	ns
NF7	NFALE Hold Time	tALH	Т	-	45	-	ns
NF8	Data Setup Time	tDS	Т	-	90	_	ns
NF9	Data Hold Time	tDH	Т	-	45	-	ns
NF10	Write Cycle Time	tWC	2T	-	90	-	ns
NF11	NFWE Hold Time	tWH	Т	-	45	-	ns
NF12	Ready to NFRE Low	tRR	6T	-	270	_	ns
NF13	NFRE Pulse Width	tRP	1.5T	-	67.5	-	ns
NF14	READ Cycle Time	tRC	2T	_	90	-	ns
NF15	NFRE High Hold Time	tREH	0.5T	_	22.5	—	ns
NF16	Data Setup on READ	tDSR	-	-	15	-	ns
NF17	Data Hold on READ	tDHR	_	_	5	_	ns

Table 31. NFC Target Timing Parameters

NOTE


High is defined as 80% of signal value and low is defined as 20% of signal value.


NOTE


Timing for HCLK is 133 MHz and internal LCLK (flash clock) is 22.5 MHz (45 ns). All timings are listed according to this LCLK frequency (multiples of LCLK phases) except NF16, which is not LCLK related.

4.3.9.1.2 One-Cycle NFC Mode

Figure 25, Figure 26, Figure 27, and Figure 28 depict the relative timing requirements among different signals of the NFC at module level for one-cycle mode, and Table 32 lists the timing parameters.

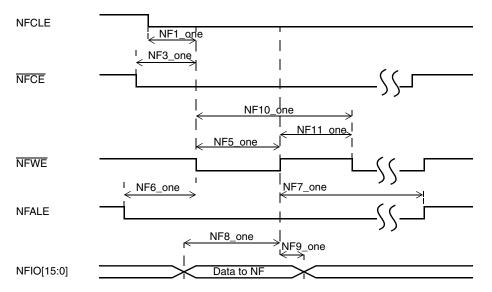
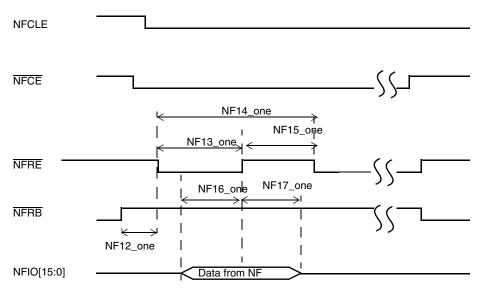



Figure 27. Write Data Latch Cycle Timing Dlagram—One Flash Clock Cycle

ID	Parameter	Symbol	Min	Max	Unit
NF1_one	NFCLE Setup Time	tCLS	30	-	ns
NF2_one	NFCLE Hold Time	tCLH	30	-	ns
NF3_one	NFCE Setup Time	tCS	60	-	ns
NF4_one	NFCE Hold Time	tCH	45	-	ns
NF5_one	NF_WP Pulse Width	tWP	15	-	ns

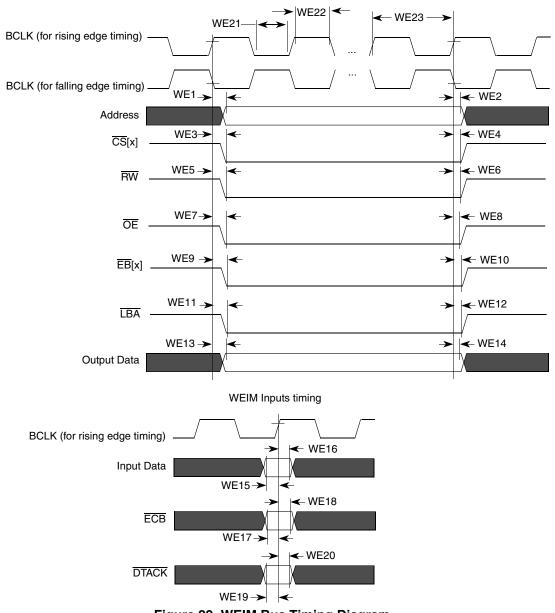
ID	Parameter	Symbol	Min	Max	Unit
NF6_one	NFALE Setup Time	tALS	30	_	ns
NF7_one	NFALE Hold Time	tALH	30	_	ns
NF8_one	Data Setup Time	tDS	15	_	ns
NF9_one	Data Hold Time	tDH	15	_	ns
NF10_one	Write Cycle Time	tWC	30	_	ns
NF11_one	NFWE Hold Time	tWH	15	_	ns
NF12_one	Ready to NFRE Low	tRR	180	_	ns
NF13_one	NFRE Pulse Width	tRP	15	_	ns
NF14_one	READ Cycle Time	tRC	30	_	ns
NF15_one	NFRE High Hold Time	tREH	15	_	ns
NF16_one	Data Setup on READ	tDSR	12	_	ns
NF17_one	Data Hold on READ	tDHR	5	_	ns

Table 32. NFC Target Timing Parameters—One Flash Clock Cycle (continued)

NOTE

High is defined as 80% of signal value and low is defined as 20% of signal value.

NOTE


Timing for HCLK is 133 MHz and internal LCLK (flash clock) is 33.25 MHz (30 ns). All timings are listed according to this LCLK frequency.

4.3.9.2 Wireless External Interface Module (WEIM)

All WEIM output control signals may be asserted and deasserted by internal clock related to BCLK rising edge or falling edge according to corresponding assertion/negation control fields. Address always begins related to BCLK falling edge but may be ended both on rising and falling edge in muxed mode according to control register configuration. Output data begins related to BCLK rising edge except in muxed mode where both rising and falling edge may be used according to control register configuration. Input data, ECB and DTACK all captured according to BCLK rising edge time. Figure 29 depicts the timing of the WEIM module, and Table 33 lists the timing parameters.

NOTE

 $\overline{\text{ECB}}$ and $\overline{\text{DTACK}}$ signals mentioned in this section can be connected to one input pad— $\overline{\text{ECB}}$, although the WEIM design has those two signals as individual inputs. In this case, this PAD will be connected to the 2 WEIM inputs.

WEIM Outputs Timing

Figure 29. WEIM Bus Timing Diagram

ID	Parameter		1.8 V		
			Min	Мах	Unit
	WE1	Clock fall to address valid	-2	7	ns
	WE2	Clock rise/fall to address invalid	-2	7	ns
	WE3	Clock rise/fall to $\overline{CS}[x]$ valid	-3	3	ns

Table 33. WEIM Bus Timing Parameters

ID	Parameter	1.8	1.8 V	
U	Parameter	Min	Max	Unit
WE4	Clock rise/fall to $\overline{CS}[x]$ invalid	-3	3	ns
WE5	Clock rise/fall to RW Valid	-3	3	ns
WE6	Clock rise/fall to RW Invalid	-3	3	ns
WE7	Clock rise/fall to OE Valid	-3	3	ns
WE8	Clock rise/fall to OE Invalid	-3	3	ns
WE9	Clock rise/fall to $\overline{EB}[x]$ Valid	-3	3	ns
WE10	Clock rise/fall to $\overline{EB}[x]$ Invalid	-3	3	ns
WE11	Clock rise/fall to LBA Valid	-3	3	ns
WE12	Clock rise/fall to LBA Invalid	-3	3	ns
WE13	Clock rise/fall to Output Data Valid	-3.5	10	ns
WE14	Clock rise to Output Data Invalid	-3.5	10	ns
WE15	Input Data Valid to Clock rise, FCE=0	-2	10	ns
WE16	Cloc/k rise to Input Data Invalid, FCE=0	-7	0	ns
WE15	Input Data Valid to Clock rise, FCE=1	-2	10	ns
WE16	Clock rise to Input Data Invalid, FCE=1	-7	0	ns
WE17	ECB setup time, FCE=0	-2	10	ns
WE18	ECB hold time, FCE=0	-7	0	ns
WE17	ECB setup time, FCE=1	-2	10	ns
WE18	ECB hold time, FCE=1	-7	0	ns
WE19	DTACK setup time ¹	_	-	ns
WE20	DTACK hold time	0	4	ns
WE20	DTACK hold time (Level sensitive mode, EW=1 implies wsc < 111111)	6	12	ns
WE21	BCLK High Level Width ^{2, 3}	-	Tcycle/ 2-3	ns
WE22	BCLK Low Level Width ^{2, 3}	-	Tcycle/ 2-3	ns
WE23	BCLK Cycle time ²			

Table 33. WEIM Bus Timing Parameters (continued)

¹ Not required.

 $^2\,$ BCLK parameters are being measured from the 50% VDD.

³ The actual cycle time is derived from the AHB bus clock frequency.

NOTE

High is defined as 80% of signal value and low is defined as 20% of signal value.

NOTE

Test conditions: pad voltage, 1.75 V-1.95 V; pad capacitance, 25 pF. Recommended drive strength for all controls, address, and BCLK is Max drive.

Figure 30, Figure 31, Figure 32, Figure 33, Figure 34, and Figure 35 depict some examples of basic WEIM accesses to external memory devices with the timing parameters mentioned in Table 33 for specific control parameter settings.

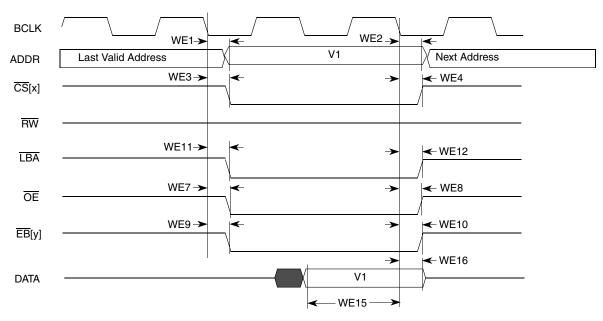
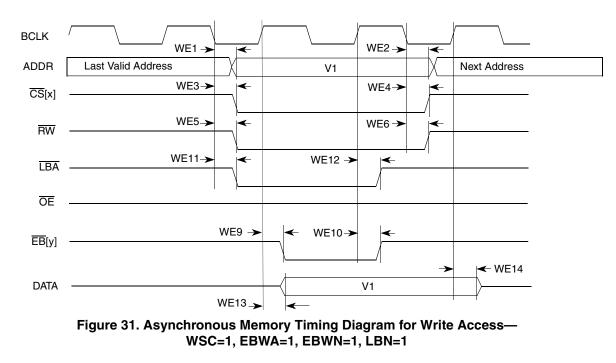



Figure 30. Asynchronous Memory Timing Diagram for Read Access—WSC=1

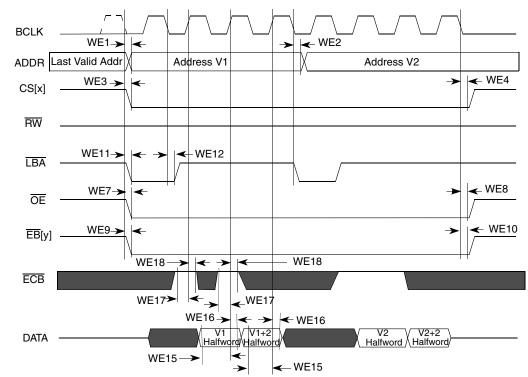


Figure 32. Synchronous Memory Timing Diagram for Two Non-Sequential Read Accesses— WSC=2, SYNC=1, DOL=0

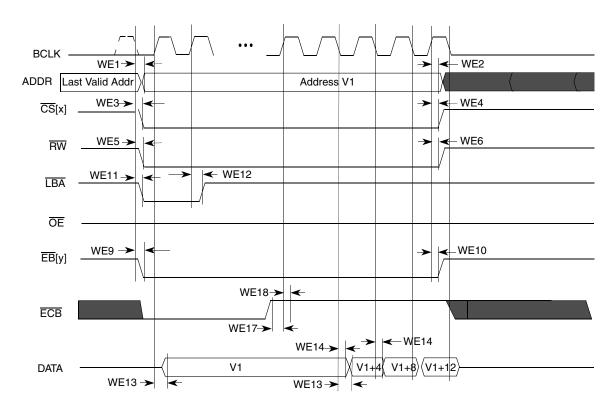
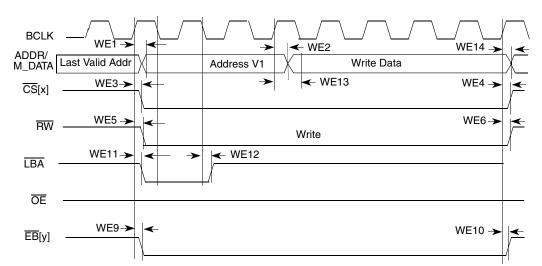
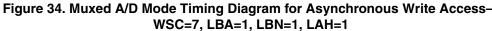




Figure 33. Synchronous Memory TIming Diagram for Burst Write Access-BCS=1, WSC=4, SYNC=1, DOL=0, PSR=1

Electrical Characteristics

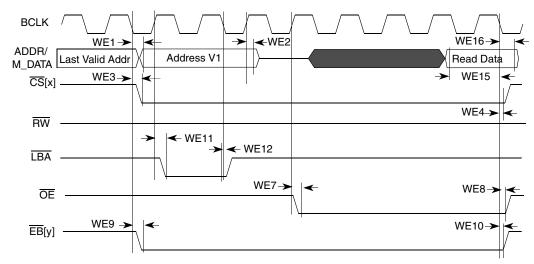


Figure 35. Muxed A/D Mode Timing Diagram for Asynchronous Read Access-WSC=7, LBA=1, LBN=1, LAH=1, OEA=7

4.3.9.3 SDRAM (DDR and SDR) Memory Controller

Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, and Figure 41 depict the timings pertaining to the SDRAMC module, which interfaces Mobile DDR or SDR SDRAM. Table 34, Table 35, Table 36, Table 37, Table 38, and Table 39 list the timing parameters.

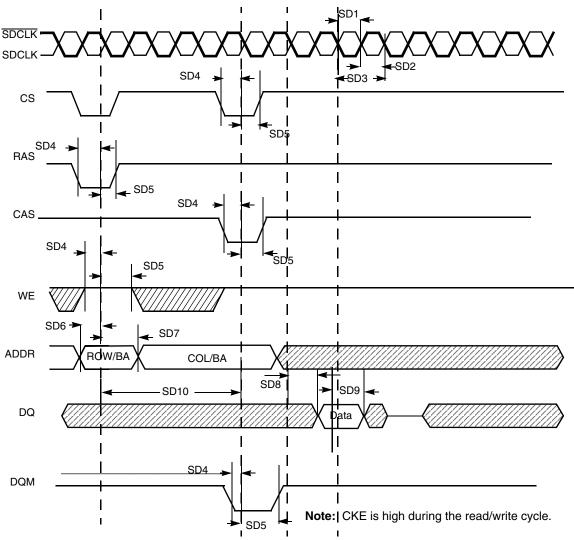


Figure 36. SDRAM Read Cycle Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
SD1	SDRAM clock high-level width	tCH	3.4	4.1	ns
SD2	SDRAM clock low-level width	tCL	3.4	4.1	ns
SD3	SDRAM clock cycle time	tCK	7.5	-	ns
SD4	CS, RAS, CAS, WE, DQM, CKE setup time	tCMS	2.0	-	ns
SD5	CS, RAS, CAS, WE, DQM, CKE hold time	tCMH	1.8	-	ns
SD6	Address output delay time	tAS	2.0	-	ns
SD7	Address output hold time	tAH	1.8	-	ns
SD8	SDRAM access time	tAC	-	6.47	ns

Table 34. DDR/SDR SDRAM Read Cycle Timing Parameters

ID	Parameter	Symbol	Min	Max	Unit
SD9	Data out hold time ¹	tOH	1.5	_	ns
SD10	Active to read/write command period	tRC	10	-	clock

Table 34. DDR/SDR SDRAM Read Cycle Timing Parameters (continued)

Timing parameters are relevant only to SDR SDRAM. For the specific DDR SDRAM data related timing parameters, see Table 38 and Table 39.

NOTE

SDR SDRAM CLK parameters are being measured from the 50% point–that is, high is defined as 50% of signal value and low is defined as 50% of signal value. SD1 + SD2 does not exceed 7.5 ns for 133 MHz.

NOTE

The timing parameters similar to the ones used in the regular SDRAM data sheet. All output signals are driven by the ESDCTL at the negative edge of SDCLK and the parameters are measured at maximum memory frequency.

1



Figure 37. SDR SDRAM Write Cycle Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
SD1	SDRAM clock high-level width	tCH	3.4	4.1	ns
SD2	SDRAM clock low-level width	tCL	3.4	4.1	ns
SD3	SDRAM clock cycle time	tCK	7.5	-	ns
SD4	CS, RAS, CAS, WE, DQM, CKE setup time	tCMS	2.0	-	ns
SD5	CS, RAS, CAS, WE, DQM, CKE hold time	tCMH	1.8	-	ns
SD6	Address setup time	tAS	2.0	-	ns
SD7	Address hold time	tAH	1.8	-	ns
SD11	Precharge cycle period ¹	tRP	1	4	clock
SD12	Active to read/write command delay ¹	tRCD	1	8	clock

Table 35. SDR SDRAM Write Timing Parameters

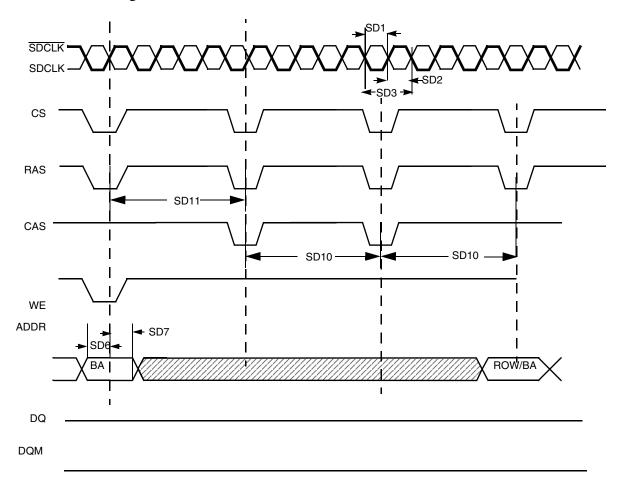

ID	Parameter	Symbol	Min	Max	Unit
SD13	Data setup time	tDS	2.0	_	ns
SD14	Data hold time	tDH	1.3	_	ns

Table 35. SDR SDRAM Write Timing Parameters (continued)

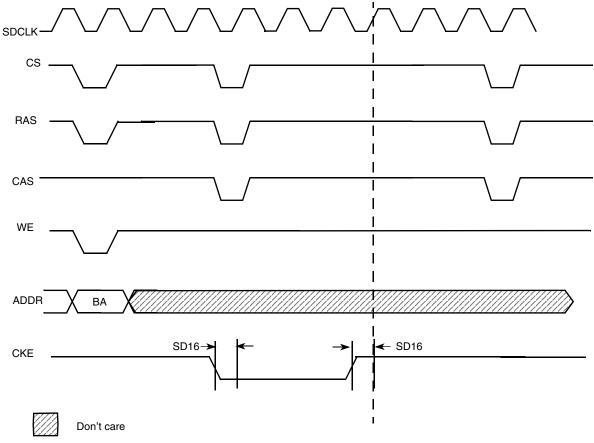
¹ SD11 and SD12 are determined by SDRAM controller register settings.

NOTE

SDR SDRAM CLK parameters are being measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value.

Figure 38. SDRAM Refresh Timing Diagram

Table 36. SDRAM Refresh Timing Parameters


ID	Parameter	Symbol	Min	Max	Unit
SD1	SDRAM clock high-level width	tCH	3.4	4.1	ns
SD2	SDRAM clock low-level width	tCL	3.4	4.1	ns

ID	Parameter	Symbol	Min	Мах	Unit
SD3	SDRAM clock cycle time	tCK	7.5	-	ns
SD6	Address setup time	tAS	1.8	-	ns
SD7	Address hold time	tAH	1.8	-	ns
SD10	Precharge cycle period ¹	tRP	1	4	clock
SD11	Auto precharge command period ¹	tRC	2	20	clock

¹ SD10 and SD11 are determined by SDRAM controller register settings.

NOTE

SDR SDRAM CLK parameters are being measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value.

Figure 39. SDRAM Self-Refresh Cycle Timing Diagram

NOTE

The clock will continue to run unless both CKEs are low. Then the clock will be stopped in low state.

i.MX31/i.MX31L Advance Information, Rev. 1.4

ID	Parameter	Symbol	Min	Max	Unit
SD16	CKE output delay time	tCKS	1.8	-	ns

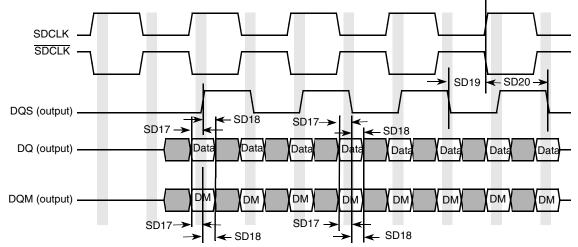


Figure 40. Mobile DDR SDRAM Write Cycle Timing Diagram

ID	Parameter	Symbol	Min	Max	Unit
SD17	DQ & DQM setup time to DQS	tDS	1.2	_	ns
SD18	DQ & DQM hold time to DQS	tDH	1.2	_	ns
SD19	Write cycle DQS falling edge to SDCLK output delay time.	tDSS	1.8	-	ns
SD20	Write cycle DQS falling edge to SDCLK output hold time.	tDSH	1.8	-	ns

NOTE

SDRAM CLK and DQS related parameters are being measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value.

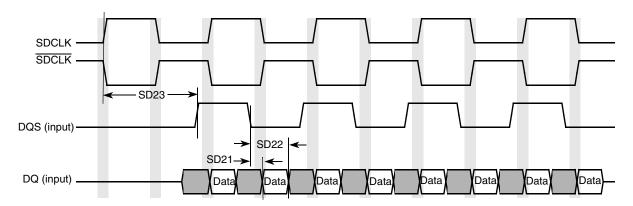


Figure 41. Mobile DDR SDRAM DQ versus DQS and SDCLK Read Cycle Timing Diagram

Table 39. Mobile DDR SDRAM Read Cycle Timing Parameters						
	Parameter	Symbol	Min	Max		

ID	Parameter	Symbol	Min	Мах	Unit
SD21	SD21 DQS - DQ Skew (defines the Data valid window in read cycles related to DQS).		-	.85	ns
SD22	DQS DQ HOLD time from DQS	tQH	2.3	_	ns
SD23	DQS output access time from SDCLK posedge	tDQSCK	-	6.7	ns

NOTE

SDRAM CLK and DQS related parameters are being measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value.

4.3.10 ETM Electrical Specifications

ETM is an ARM protocol. There are no inherent restrictions on operating frequency, other than ASIC pad technology and TPA limitations. ASIC designers must provide a TRACECLK as symmetrical as possible, and with set-up and hold times as large as possible. TPA designers must conversely be able to support a TRACECLK as asymmetrical as possible, and require set up and hold times as short as possible. The timing specifications in this section are given as a guide for a TPA that supports TRACECLK frequencies up to around 100 MHz.

NOTE

Actual processor clock frequencies vary according to application requirements and the silicon process technologies used. The maximum operating clock frequencies attained by ARM devices increases over time as a result.

If a designer adheres to the timing described here, he or she can use any ARM-approved TPA. Figure 42 depicts the TRACECLK timings of ETM, and Table 40 lists the timing parameters.

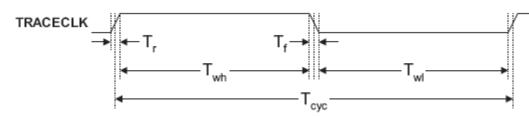


Figure 42. ETM TRACECLK Timing Diagram

Table 40. ETM TRACECLK Timing Parameters

ID	Parameter	Min	Max	Unit
T _{cyc}	Clock period	Frequency dependent	-	ns
T _{wl}	Low pulse width	2	_	ns
T _{wh}	High pulse width	2	_	ns
T _r	Clock and data rise time	-	3	ns
Τ _f	Clock and data fall time	-	3	ns

Figure 43 depicts the setup and hold requirements of the trace data pins with respect to TRACECLK, and Table 41 lists the timing parameters.

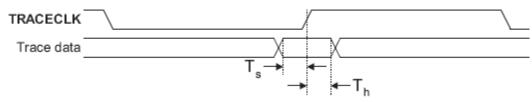


Figure 43. Trace Data Timing Diagram

Table 41. ETM Trace Data Timing Parameters

ID	Parameter	Min	Max	Unit
Τ _s	Data setup	2	-	ns
Т _h	Data hold	1	_	ns

4.3.10.1 Half-Rate Clocking Mode

When half-rate clocking is used, the trace data signals are sampled by the TPA on both the rising and falling edges of TRACECLK, where TRACECLK is half the frequency of the clock shown in Figure 43.

4.3.11 FIR Electrical Specifications

FIR implements asynchronous infrared protocols (FIR, MIR) that are defined by IrDA[®] (Infrared Data Association). Refer to http://www.IrDA.org for details on FIR and MIR protocols.

i.MX31/i.MX31L Advance Information, Rev. 1.4

4.3.12 Fusebox Electrical Specifications

Ref. Num	Description	Symbol	Minimum	Typical	Maximum	Units
1	eFuse Program Current. ¹ Current to program one eFuse bit efuse_pgm = 3.0V	I _{program}	-	35	60	mA
2	eFuse Read Current ² Current to read an 8-bit eFuse word vdd_fusebox = 1.875V	I _{read}	-	5	8	mA

Table 42. Fusebox Supply Current Parameters

 $^{1}~$ The current $I_{program}$ is during program time (t_{program}).

 $^2\,$ The current I_{read} is present for approximately 50nS of the read access to the 8 bit word

Table 43. Fusebox Timing Characteristics	
--	--

Ref. Num	Description	Symbol	Minimum	Typical	Maximum	Units
1	Program time for eFuse ¹	t _{program}	125	_	_	μs

¹ The program length is defined by the value defined in the epm_pgm_length[2:0] bits of the IIM module. The value to program is based on a 32 kHz clock source (4 * 1/32 kHz = 125 µs)

4.3.13 I2C Electrical Specifications

This section describes the electrical information of the I2C Module.

4.3.13.1 I2C Module Timing

Figure 44 depicts the timing of I2C module. Table 44 lists the I2C module timing parameters where the I/O supply is 2.7 V. 1

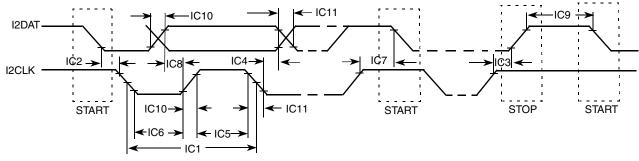


Figure 44. I2C Bus Timing Diagram

ID	Devemeter	Standard Mode		Fast Mode		Unit
	Parameter	Min	Max	Min	Max	Unit
IC1	I2CLK cycle time	10	-	2.5	Ι	μs
IC2	IC2 Hold time (repeated) START condition		-	0.6	_	μs
IC3	Set-up time for STOP condition	4.0	-	0.6	-	μs
IC4	Data hold time	0 ¹	3.45 ²	01	0.9 ²	μs
IC5	HIGH Period of I2CLK Clock	4.0	-	0.6	-	μs
IC6	LOW Period of the I2CLK Clock	4.7	-	1.3	_	μs
IC7	Set-up time for a repeated START condition	4.7	-	0.6	_	μs
IC8	Data set-up time	250	-	100 ³	-	ns
IC9	Bus free time between a STOP and START condition	4.7	-	1.3	_	μs
IC10	Rise time of both I2DAT and I2CLK signals	-	1000	20+0.1C _b ⁴	300	ns
IC11	Fall time of both I2DAT and I2CLK signals	-	300	20+0.1C _b ⁴	300	ns
IC12	Capacitive load for each bus line (C_b)	_	400	_	400	pF

Table 44. I2C Module Timing Parameters—I2C Pin I/O Supply=2.7 V

¹ A device must internally provide a hold time of at least 300 ns for I2DAT signal in order to bridge the undefined region of the falling edge of I2CLK.

² The maximum hold time has to be met only if the device does not stretch the LOW period (ID IC6) of the I2CLK signal.

³ A Fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement of set-up time (ID IC7) of 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the I2CLK signal. If such a device does stretch the LOW period of the I2CLK signal, it must output the next data bit to the I2DAT line max_rise_time (ID No IC10) + data_setup_time (ID No IC8) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the I2CLK line is released.

⁴ C_b = total capacitance of one bus line in pF.

4.3.14 IPU—Sensor Interfaces

4.3.14.1 Supported Sensors

Table 45 lists the supported camera sensors by vendor and model.

Vendor	Model
Conexant	CX11646, CX20490, CX20450
Agilant	HDCP-2010, ADCS-1021, ADCS-1021
Toshiba	TC90A70
ICMedia	ICM202A, ICM102
iMagic	IM8801
Transchip	TC5600, TC5600J, TC5640, TC5700, TC6000

Table 45. Supported Camera Sensors

Vendor	Model
Fujitsu	MB86S02A
Micron	MI-SOC-0133
Matsushita	MN39980
STMicro	W6411, W6500, W6501, W6600, W6552, STV0974
OmniVision	OV7620, OV6630
Sharp	LZ0P3714 (CCD)
Motorola	MC30300 (Python), SCM20014, SCM20114, SCM22114, SCM20027
National Semiconductor	LM9618

Table 45. Supported Camera Sensors (continued)

4.3.14.2 Functional Description

There are three timing modes supported by the IPU.

4.3.14.2.1 Pseudo BT.656 Video Mode

Smart camera sensors, which include imaging processing, usually support video mode transfer. They use an embedded timing syntax to replace the SENSB_VSYNC and SENSB_HSYNC signals. The timing syntax is defined by the BT.656 standard.

This operation mode follows the recommendations of ITU BT.656 specifications. The only control signal used is SENSB_PIX_CLK. Start-of-frame and active-line signals are embedded in the data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data stream, thus recovering SENSB_VSYNC and SENSB_HSYNC signals for internal use.

4.3.14.2.2 Gated Clock Mode

The SENSB_VSYNC, SENSB_HSYNC, and SENSB_PIX_CLK signals are used in this mode. See Figure 45.

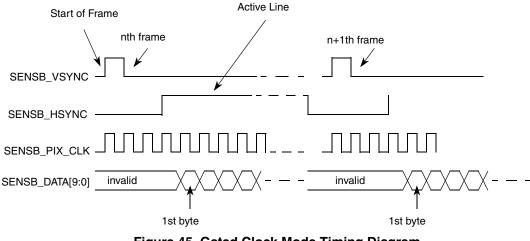


Figure 45. Gated Clock Mode Timing Diagram

A frame starts with a rising edge on SENSB_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then SENSB_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as SENSB_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. SENSB_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI stops receiving data from the stream. For next line the SENSB_HSYNC timing repeats. For next frame the SENSB_VSYNC timing repeats.

4.3.14.2.3 Non-Gated Clock Mode

The timing is the same as the gated-clock mode (described in Section 4.3.14.2.2, "Gated Clock Mode" on page 104), except for the SENSB_HSYNC signal, which is not used. See Figure 46. All incoming pixel clocks are valid and will cause data to be latched into the input FIFO. The SENSB_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.

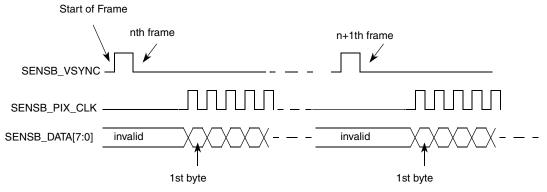


Figure 46. Non-Gated Clock Mode Timing Diagram

The timing described in Figure 46 is that of a Motorola sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered SENSB_VSYNC; active-high/low SENSB_HSYNC; and rising/falling-edge triggered SENSB_PIX_CLK.

4.3.14.3 Electrical Characteristics

Figure 47 depicts the sensor interface timing, and Table 46 lists the timing parameters.

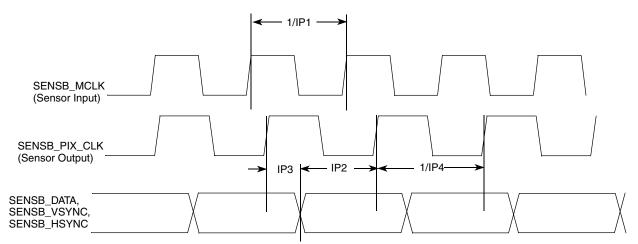


Figure 47. Sensor Interface Timing Diagram

Table 46. S	Sensor I	nterface	Timing	Parameters
-------------	----------	----------	--------	------------

ID	Parameter	Symbol	Min.	Max.	Units
IP1	Sensor input clock frequency	Fmck	0.01	133	MHz
IP2	Data and control setup time	Tsu	5	_	ns
IP3	Data and control holdup time	Thd	3	_	ns
IP4	Sensor output (pixel) clock frequency	Fpck	0.01	133	MHz

4.3.15 IPU–Display Interfaces

4.3.15.1 Supported Displays

Table 47 lists the supported displays by type, vendor, and model.

Table 47. Supported Displays

Туре	Vendor	Model
TFT displays (memory-less)	Sharp (HR-TFT Super Mobile LCD family)	LQ035Q7 DB02, LM019LC1Sxx
	Samsung (QSIF and QVGA TFT modules for mobile phones)	LTS180S1-HF1, LTS180S3-HF1, LTS350Q1-PE1, LTS350Q1-PD1, LTS220Q1-HE1
	Toshiba (LTM series)	LTM022P806, LTM04C380K, LTM018A02A, LTM020P332, LTM021P337, LTM019P334, LTM022A783, LTM022A05ZZ

Туре	Vendor	Model	
Display controllers	Epson	S1D15xxx series, S1D19xxx series, S1D13713, S1D13715	
	Solomon Systech	SSD1301 (OLED), SSD1828 (LDCD)	
	Hitachi	HD66766, HD66772	
	ATI	W2300	
Smart display modules	Epson	L1F10043 T, L1F10044 T, L1F10045 T, L2D22002, L2D20014, L2F50032, L2D25001 T	
	Hitachi	120 160 65K/4096 C-STN (#3284 LTD-1398-2) based on HD 66766 controller	
	Densitron Europe LTD	All displays with MPU 80/68K series interface and serial peripheral interface	
	Sharp	LM019LC1Sxx	
	Sony	ACX506AKM	
Digital video encoders	Analog Devices	ADV7174/7179	
(for TV)	Crystal (Cirrus Logic)	CS49xx series	
	Focus	FS453/4	

Table 47. Supported Displays (continued)

4.3.15.2 Synchronous Interfaces

4.3.15.2.1 Interface to Active Matrix TFT LCD Panels, Functional Description

Figure 48 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with negative polarity. The sequence of events for active matrix interface timing is:

- DISPB_D3_CLK latches data into the panel on its negative edge (when positive polarity is selected). In active mode, DISPB_D3_CLK runs continuously. This signal frequency could be from 5 to 10 MHz depending on the panel type.
- DISPB_D3_HSYNC causes the panel to start a new line.
- DISPB_D3_VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.
- DISPB_D3_DRDY acts like an output enable signal to the CRT display. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off.

	DISPB_D3_VSYNC		
$\left(\right)$	DISPB_D3_HSYNC		
	DISPB_D3_DRDY		
	DISPB_D3_CLK	1 2 3 	
	DISPB_D3_DATA		XXX

Figure 48. Interface Timing Diagram for TFT (Active Matrix) Panels

4.3.15.2.2 Interface to Active Matrix TFT LCD Panels, Electrical Characteristics

Figure 49 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and the data. All figure parameters shown are programmable. The timing images correspond to inverse polarity of the DISPB_D3_CLK signal and active-low polarity of the DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals.

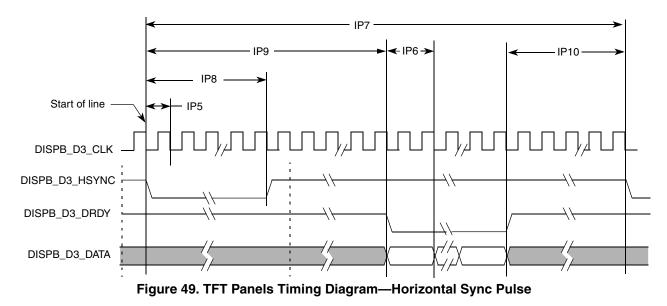


Figure 50 depicts the vertical timing (timing of one frame). All figure parameters shown are programmable.

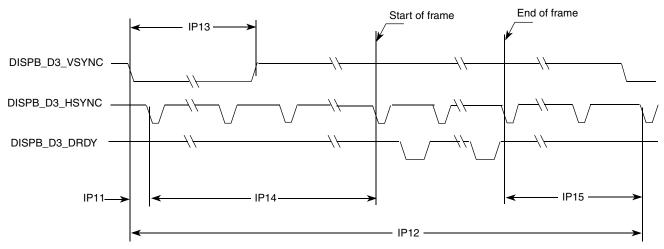


Table 48 shows timing parameters of signals presented in Figure 49 and Figure 50.

ID	Parameter	Symbol	Value	Units
IP5	Display interface clock period	Tdicp	(1)	ns
IP6	Display pixel clock period	Tdpcp	(DISP3_IF_CLK_CNT_D+1) * Tdicp	ns
IP7	Screen width	Tsw	(SCREEN_WIDTH+1) * Tdpcp	ns
IP8	HSYNC width	Thsw	(H_SYNC_WIDTH+1) * Tdpcp	ns
IP9	Horizontal blank interval 1	Thbi1	BGXP * Tdpcp	ns
IP10	Horizontal blank interval 2	Thbi2	(SCREEN_WIDTH - BGXP - FW) * Tdpcp	ns
IP12	Screen height	Tsh	(SCREEN_HEIGHT+1) * Tsw	ns
IP13	VSYNC width	Tvsw	if V_SYNC_WIDTH_L = 0 than (V_SYNC_WIDTH+1) * Tdpcp else (V_SYNC_WIDTH+1) * Tsw	ns
IP14	Vertical blank interval 1	Tvbi1	BGYP * Tsw	ns
IP15	Vertical blank interval 2	Tvbi2	(SCREEN_HEIGHT - BGYP - FH) * Tsw	ns

Table 48.	Synchronous	Display I	nterface	Timing P	arameters-	-Pixel Level

¹ Display interface clock period immediate value.

$$Tdicp = \begin{cases} T_{HSP_CLK} \cdot \frac{DISP3 \text{ IF } CLK \text{ PER } WR}{HSP_CLK_PERIOD}, & \text{for integer } \frac{DISP3 \text{ IF } CLK \text{ PER } WR}{HSP_CLK_PERIOD} \\ T_{HSP_CLK} \cdot \left(\text{floor} \left[\frac{DISP3 \text{ IF } CLK \text{ PER } WR}{HSP_CLK_PERIOD} \right] + 0.5 \pm 0.5 \right), & \text{for fractional } \frac{DISP3 \text{ IF } CLK \text{ PER } WR}{HSP_CLK_PERIOD} \end{cases}$$

Display interface clock period average value.

 $\overline{T}dicp = T_{HSP_CLK} \cdot \frac{DISP3_IF_CLK_PER_WR}{HSP_CLK_PERIOD}$

The SCREEN_WIDTH, SCREEN_HEIGHT, H_SYNC_WIDTH, V_SYNC_WIDTH, BGXP, BGYP and V_SYNC_WIDTH_L parameters are programmed via the SDC_HOR_CONF, SDC_VER_CONF, SDC_BG_POS Registers. The FW and FH parameters are programmed for the corresponding DMA channel. The DISP3_IF_CLK_PER_WR, HSP_CLK_PERIOD and DISP3_IF_CLK_CNT_D parameters are programmed via the DI_DISP3_TIME_CONF, DI_HSP_CLK_PER and DI_DISP_ACC_CC Registers.

Figure 51 depicts the synchronous display interface timing for access level, and Table 49 lists the timing parameters. The DISP3_IF_CLK_DOWN_WR and DISP3_IF_CLK_UP_WR parameters are set via the DI_DISP3_TIME_CONF Register.

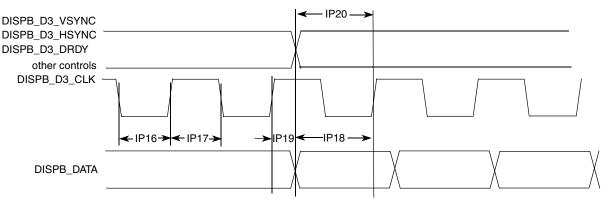


Figure 51. Synchronous Display Interface Timing Diagram—Access Level

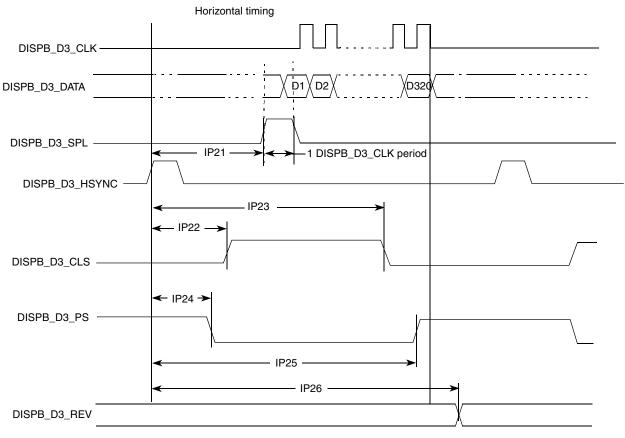
ID	Parameter	Symbol	Min	Typ ¹	Мах	Units
IP16	Display interface clock low time	Tckl	Tdicd-Tdicu-1.5	Tdicd ² -Tdicu ³	Tdicd-Tdicu+1.5	ns
IP17	Display interface clock high time	Tckh	Tdicp-Tdicd+Tdicu-1.5	Tdicp-Tdicd+Tdicu	Tdicp-Tdicd+Tdicu+1.5	ns
IP18	Data setup time	Tdsu	Tdicd-3.5	Tdicu	-	ns
IP19	Data holdup time	Tdhd	Tdicp-Tdicd-3.5	Tdicp-Tdicu		ns
IP20	Control signals setup time to display interface clock	Tcsu	Tdicd-3.5	Tdicu		ns

Table 49. Synchronous Display Interface Timing Parameters—Access Level

¹The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.

² Display interface clock down time

$$Tdicd = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP3_IF_CLK_DOWN_WR}{HSP_CLK_PERIOD}\right]$$


³ Display interface clock up time

$$Tdicu = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP3_IF_CLK_UP_WR}{HSP_CLK_PERIOD}\right]$$

where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

4.3.15.3 Interface to Sharp HR-TFT Panels

Figure 52 depicts the Sharp HR-TFT panel interface timing, and Table 50 lists the timing parameters. The CLS_RISE_DELAY, CLS_FALL_DELAY, PS_FALL_DELAY, PS_RISE_DELAY, REV_TOGGLE_DELAY parameters are defined in the SDC_SHARP_CONF_1 and SDC_SHARP_CONF_2 registers. For other Sharp interface timing characteristics, refer to Section 4.3.15.2.2, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics" on page 108. The timing images correspond to straight polarity of the Sharp signals.

Example is drawn with FW+1=320 pixel/line, FH+1=240 lines. SPL pulse width is fixed and aligned to the first data of the line. REV toggles every HSYNC period.

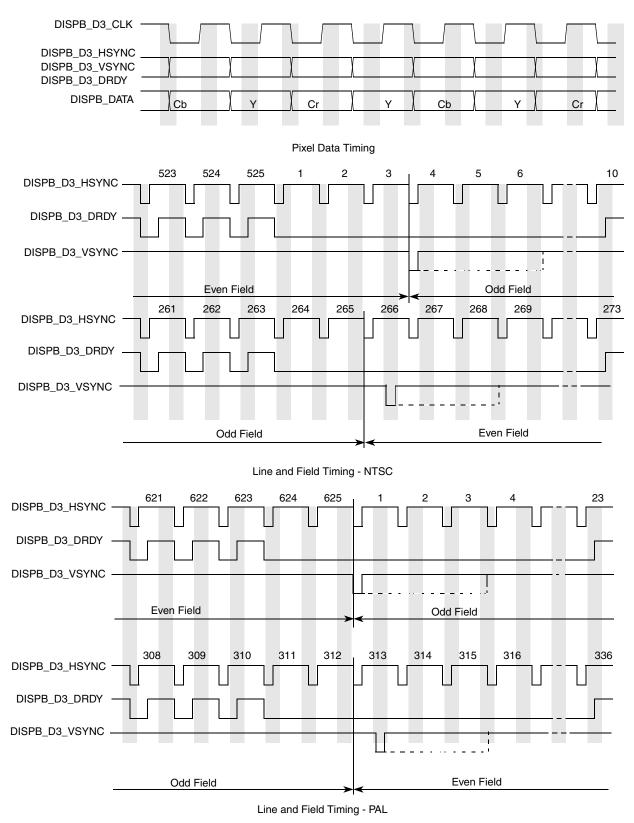
Figure 52. Sharp HR-TFT Panel Interface Timing Diagram—Pixel Level

Table 50. Sharp Synchronous Display Interface Timing Parameters—Pixel Level

ID	Parameter	Symbol	Value	Units
IP21	SPL rise time	Tsplr	(BGXP - 1) * Tdpcp	ns
IP22	CLS rise time	Tclsr	CLS_RISE_DELAY * Tdpcp	ns
IP23	CLS fall time	Tclsf	CLS_FALL_DELAY * Tdpcp	ns
IP24	CLS rise and PS fall time	Tpsf	PS_FALL_DELAY * Tdpcp	ns

ID	Parameter	Symbol	Value	Units
IP25	PS rise time	Tpsr	PS_RISE_DELAY * Tdpcp	ns
IP26	REV toggle time	Trev	REV_TOGGLE_DELAY * Tdpcp	ns

 Table 50. Sharp Synchronous Display Interface Timing Parameters—Pixel Level (continued)


4.3.15.4 Synchronous Interface to Dual-Port Smart Displays

Functionality and electrical characteristics of the synchronous interface to dual-port smart displays are identical to parameters of the synchronous interface. See Section 4.3.15.2.2, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics" on page 108.

4.3.15.4.1 Interface to a TV Encoder, Functional Description

The interface has an 8-bit data bus, transferring a single 8-bit value (Y/U/V) in each cycle. The bits D7–D0 of the value are mapped to bits LD17–LD10 of the data bus, respectively. Figure 53 depicts the interface timing,

- The frequency of the clock DISPB_D3_CLK is 27 MHz (within 10%).
- The DISPB_D3_HSYNC, DISPB_D3_VSYNC and DISPB_D3_DRDY signals are active low.
- The transition to the next row is marked by the negative edge of the DISPB_D3_HSYNC signal. It remains low for a single clock cycle.
- The transition to the next field/frame is marked by the negative edge of the DISPB_D3_VSYNC signal. It remains low for at least one clock cycle.
 - At a transition to an odd field (of the next frame), the negative edges of DISPB_D3_VSYNC and DISPB_D3_HSYNC coincide.
 - At a transition to an even field (of the same frame), they do not coincide.
- The active intervals—during which data is transferred—are marked by the DISPB_D3_HSYNC signal being high.

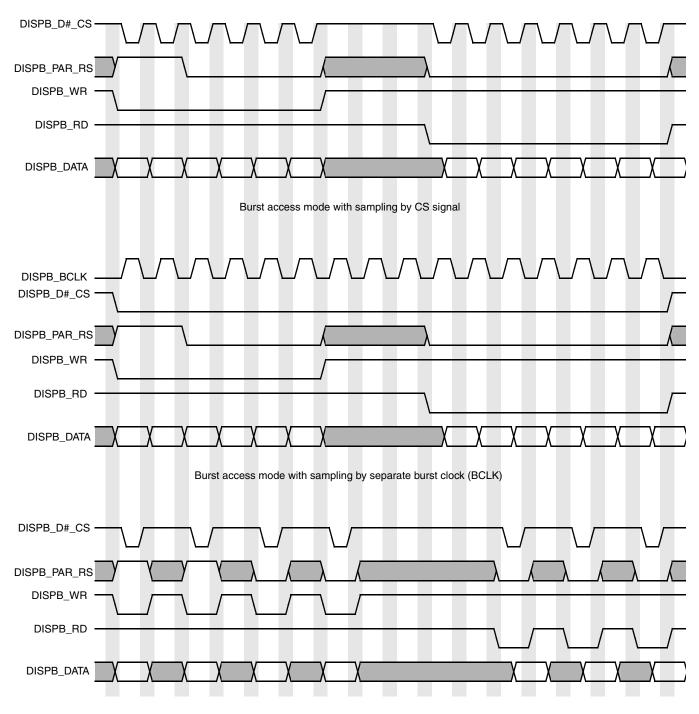
4.3.15.4.2 Interface to a TV Encoder, Electrical Characteristics

The timing characteristics of the TV encoder interface are identical to the synchronous display characteristics. See Section 4.3.15.2.2, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics" on page 108.

4.3.15.5 Asynchronous Interfaces

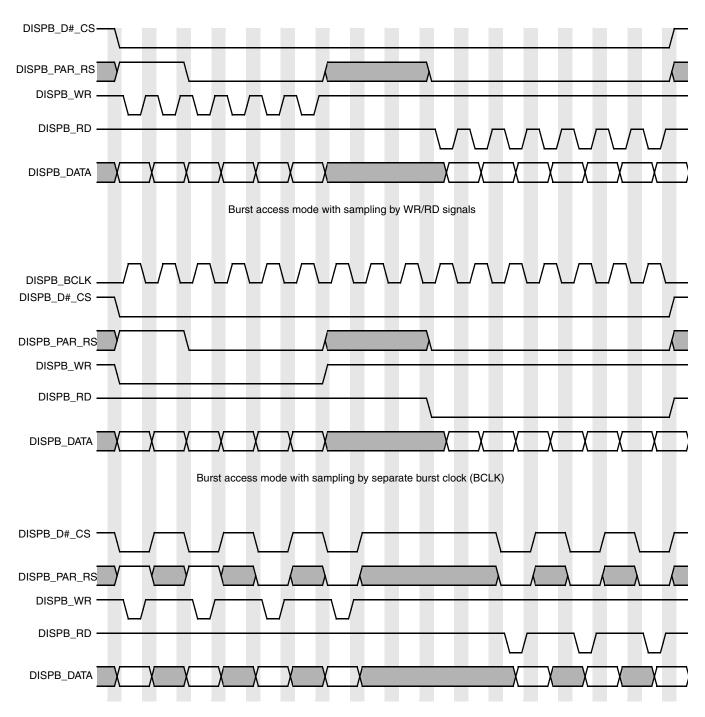
4.3.15.5.1 Parallel Interfaces, Functional Description

The IPU supports the following asynchronous parallel interfaces:

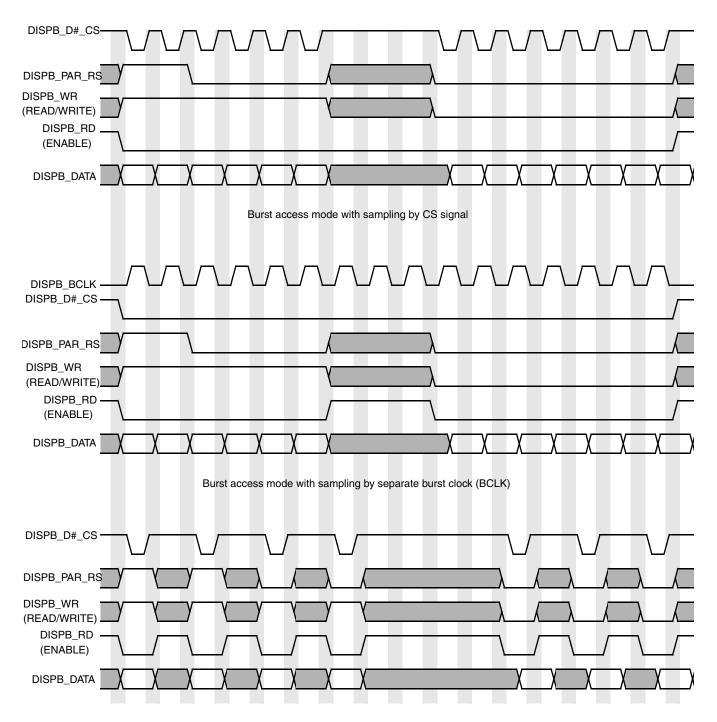

- System 80 interface
 - Type 1 (sampling with the chip select signal) with and without byte enable signals.
 - Type 2 (sampling with the read and write signals) with and without byte enable signals.
- System 68k interface
 - Type 1 (sampling with the chip select signal) with or without byte enable signals.
 - Type 2 (sampling with the read and write signals) with or without byte enable signals.

For each of four system interfaces, there are three burst modes:

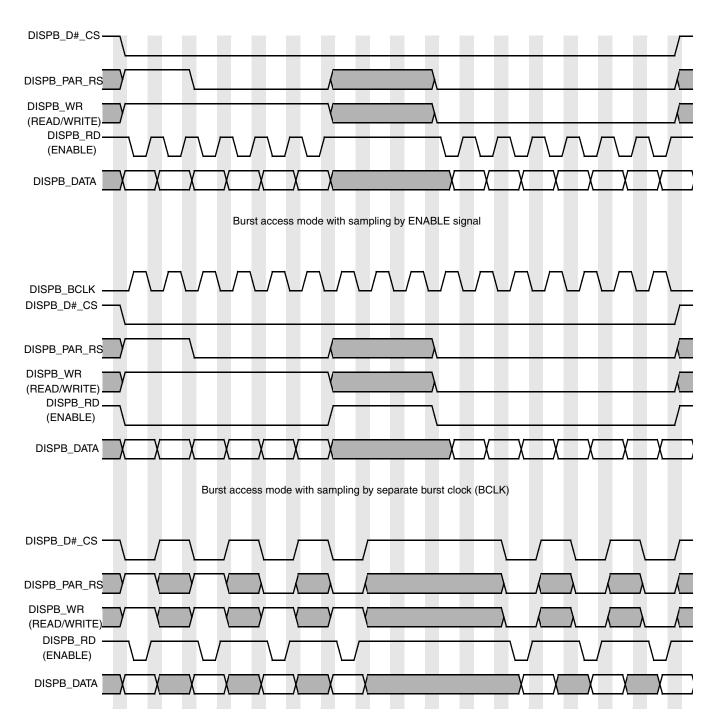
- 1. Burst mode without a separate clock. The burst length is defined by the corresponding parameters of the IDMAC (when data is transferred from the system memory) of by the HBURST signal (when the MCU directly accesses the display via the slave AHB bus). For system 80 and system 68k type 1 interfaces, data is sampled by the CS signal and other control signals changes only when transfer direction is changed during the burst. For type 2 interfaces, data is sampled by the WR/RD signals (system 80) or by the ENABLE signal (system 68k) and the CS signal stays active during the whole burst.
- 2. Burst mode with the separate clock DISPB_BCLK. In this mode, data is sampled with the DISPB_BCLK clock. The CS signal stays active during whole burst transfer. Other controls are changed simultaneously with data when the bus state (read, write or wait) is altered. The CS signals and other controls move to non-active state after burst has been completed.
- 3. Single access mode. In this mode, slave AHB and DMA burst are broken to single accesses. The data is sampled with CS or other controls according the interface type as described above. All controls (including CS) become non-active for one display interface clock after each access. This mode corresponds to the ATI single access mode.


Both system 80 and system 68k interfaces are supported for all described modes as depicted in Figure 54, Figure 55, Figure 56, and Figure 57. These timing images correspond to active-low DISPB_D#_CS, DISPB_D#_WR and DISPB_D#_RD signals.

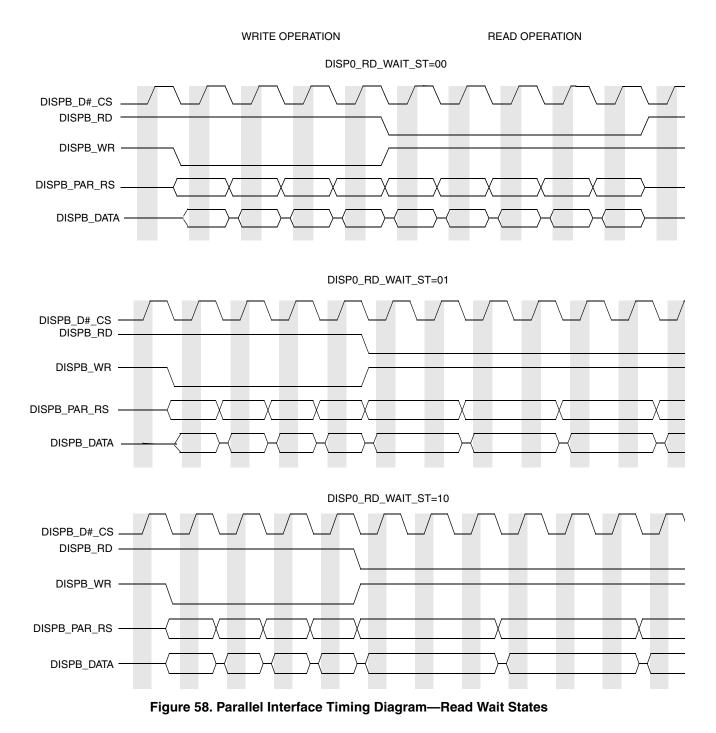
Additionally, the IPU allows a programmable pause between two burst. The pause is defined in the HSP_CLK cycles. It allows to avoid timing violation between two sequential bursts or two accesses to different displays. The range of this pause is from 4 to 19 HSP_CLK cycles.


Single access mode (all control signals are not active for one display interface clock after each display access)

Single access mode (all control signals are not active for one display interface clock after each display access)


Figure 55. Asynchronous Parallel System 80 Interface (Type 2) Burst Mode Timing Diagram

Single access mode (all control signals are not active for one display interface clock after each display access)



Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 57. Asynchronous Parallel System 68k Interface (Type 2) Burst Mode TIming Diagram

Display read operation can be performed with wait states when each read access takes up to 4 display interface clock cycles according to the DISP0_RD_WAIT_ST parameter in the DI_DISP0_TIME_CONF_3, DI_DISP1_TIME_CONF_3, DI_DISP2_TIME_CONF_3 Registers. Figure 58 shows timing of the parallel interface with read wait states.

4.3.15.5.2 Parallel Interfaces, Electrical Characteristics

Figure 59, Figure 61, Figure 60, and Figure 62 depict timing of asynchronous parallel interfaces based on the system 80 and system 68k interfaces. Table 51 lists the timing parameters at display access level. All timing images are based on active low control signals (signals polarity is controlled via the DI_DISP_SIG_POL Register).

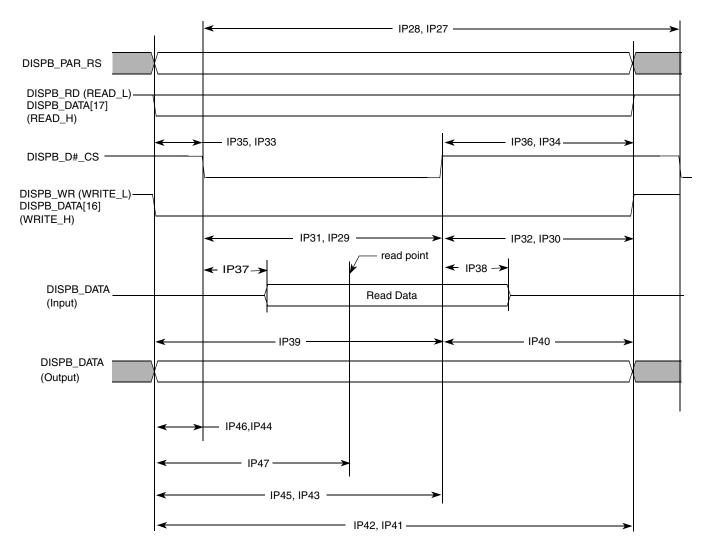


Figure 59. Asynchronous Parallel System 80 Interface (Type 1) Timing Diagram

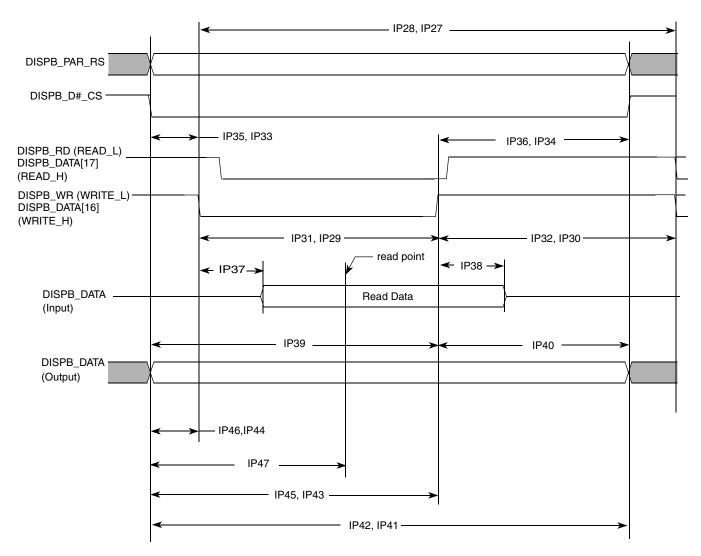


Figure 60. Asynchronous Parallel System 80 Interface (Type 2) Timing Diagram

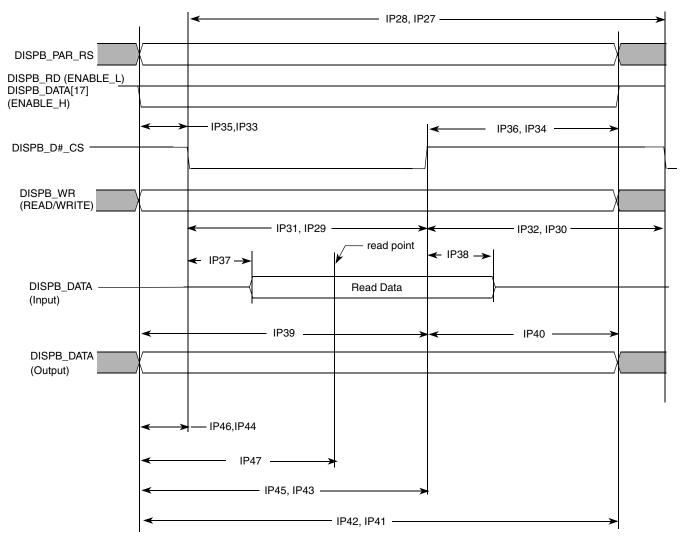
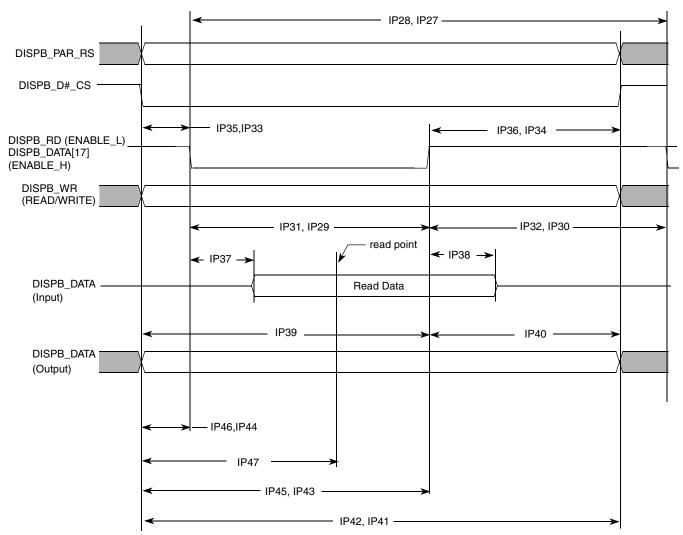



Figure 61. Asynchronous Parallel System 68k Interface (Type 1) Timing Diagram

Table 51. Asynchronous Parallel Interfac	e Timing Parameters—Access Level
--	----------------------------------

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP27	Read system cycle time	Tcycr	Tdicpr-1.5	Tdicpr ²	Tdicpr+1.5	ns
IP28	Write system cycle time	Tcycw	Tdicpw-1.5	Tdicpw ³	Tdicpw+1.5	ns
IP29	Read low pulse width	Trl	Tdicdr-Tdicur-1.5	Tdicdr ⁴ -Tdicur ⁵	Tdicdr-Tdicur+1.5	ns
IP30	Read high pulse width	Trh	Tdicpr-Tdicdr+Tdicur-1.5	Tdicpr-Tdicdr+ Tdicur	Tdicpr-Tdicdr+Tdicur+1.5	ns
IP31	Write low pulse width	Twl	Tdicdw-Tdicuw-1.5	Tdicdw ⁶ -Tdicuw ⁷	Tdicdw-Tdicuw+1.5	ns
IP32	Write high pulse width	Twh	Tdicpw-Tdicdw+ Tdicuw-1.5	Tdicpw-Tdicdw+ Tdicuw	Tdicpw-Tdicdw+ Tdicuw+1.5	ns
IP33	Controls setup time for read	Tdcsr	Tdicur-1.5	Tdicur	-	ns
IP34	Controls hold time for read	Tdchr	Tdicpr-Tdicdr-1.5	Tdicpr-Tdicdr	-	ns
IP35	Controls setup time for write	Tdcsw	Tdicuw-1.5	Tdicuw	-	ns

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP36	Controls hold time for write	Tdchw	Tdicpw-Tdicdw-1.5	Tdicpw-Tdicdw	-	ns
IP37	Slave device data delay ⁸	Tracc	0	-	Tdrp ⁹ -Tlbd ¹⁰ -Tdicur-1.5	ns
IP38	Slave device data hold time ⁸	Troh	Tdrp-Tlbd-Tdicdr+1.5	-	Tdicpr-Tdicdr-1.5	ns
IP39	Write data setup time	Tds	Tdicdw-1.5	Tdicdw	-	ns
IP40	Write data hold time	Tdh	Tdicpw-Tdicdw-1.5	Tdicpw-Tdicdw	-	ns
IP41	Read period ²	Tdicpr	Tdicpr-1.5	Tdicpr	Tdicpr+1.5	ns
IP42	Write period ³	Tdicpw	Tdicpw-1.5	Tdicpw	Tdicpw+1.5	ns
IP43	Read down time ⁴	Tdicdr	Tdicdr-1.5	Tdicdr	Tdicdr+1.5	ns
IP44	Read up time ⁵	Tdicur	Tdicur-1.5	Tdicur	Tdicur+1.5	ns
IP45	Write down time ⁶	Tdicdw	Tdicdw-1.5	Tdicdw	Tdicdw+1.5	ns
IP46	Write up time ⁷	Tdicuw	Tdicuw-1.5	Tdicuw	Tdicuw+1.5	ns
IP47	Read time point ⁹	Tdrp	Tdrp-1.5	Tdrp	Tdrp+1.5	ns

Table 51. Asynchronous Parallel Interface Timing Parameters—Access Level (continued)

¹The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.

²Display interface clock period value for read:

 $Tdicpr = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_IF_CLK_PER_RD}{HSP_CLK_PERIOD} \right]$

³Display interface clock period value for write:

 $Tdicpw = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\# IF CLK PER WR}{HSP_CLK PERIOD} \right]$

⁴Display interface clock down time for read:

 $Tdicdr = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\# IF_CLK_DOWN_RD}{HSP_CLK_PERIOD}\right]$

⁵Display interface clock up time for read: $Tdicur = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_UP_RD}{HSP_CLK_PERIOD}\right]$

⁶Display interface clock down time for write:

 $Tdicdw = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\# IF CLK_DOWN_WR}{HSP_CLK_PERIOD}\right]$

⁷Display interface clock up time for write:

 $Tdicuw = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_UP_WR}{HSP_CLK_PERIOD}\right]$

⁸This parameter is a requirement to the display connected to the IPU ⁹Data read point

 $Tdrp = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_READ_EN}{HSP_CLK \ PERIOD} \right]$

¹⁰Loopback delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a chip-level output delay, board delays, a chip-level input delay, an IPU input delay. This value is chip specific.

The DISP#_IF_CLK_PER_WR, DISP#_IF_CLK_PER_RD, HSP_CLK_PERIOD, DISP#_IF_CLK_DOWN_WR, DISP#_IF_CLK_UP_WR, DISP#_IF_CLK_DOWN_RD, DISP#_IF_CLK_UP_RD and DISP#_READ_EN parameters are programmed via the DI_DISP#_TIME_CONF_1, DI_DISP#_TIME_CONF_2 and DI_HSP_CLK_PER Registers.

4.3.15.5.3 Serial Interfaces, Functional Description

The IPU supports the following types of asynchronous serial interfaces:

- 3-wire (with bidirectional data line)
- 4-wire (with separate data input and output lines)
- 5-wire type 1 (with sampling RS by the serial clock)
- 5-wire type 2 (with sampling RS by the chip select signal)

Figure 63 depicts timing of the 3-wire serial interface. The timing images correspond to active-low DISPB_D#_CS signal and the straight polarity of the DISPB_SD_D_CLK signal.

For this interface, a bidirectional data line is used outside the chip. The IPU still uses separate input and output data lines (IPP_IND_DISPB_SD_D and IPP_DO_DISPB_SD_D). The I/O mux should provide joining the internal data lines to the bidirectional external line according to the IPP_OBE_DISPB_SD_D signal provided by the IPU.

Each data transfer can be preceded by an optional preamble with programmable length and contents. The preamble is followed by read/write (RW) and address (RS) bits. The order of the these bits is programmable. The RW bit can be disabled. The following data can consist of one word or of a whole burst. The interface parameters are controlled by the DI_SER_DISP1_CONF and DI_SER_DISP2_CONF Registers.

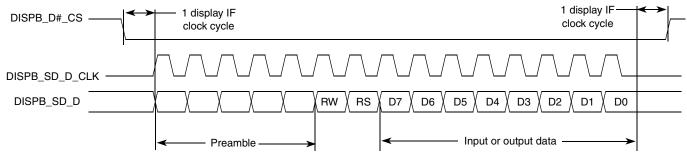


Figure 63. 3-wire Serial Interface Timing Diagram

Figure 64 depicts timing of the 4-wire serial interface. For this interface, there are separate input and output data lines both inside and outside the chip.

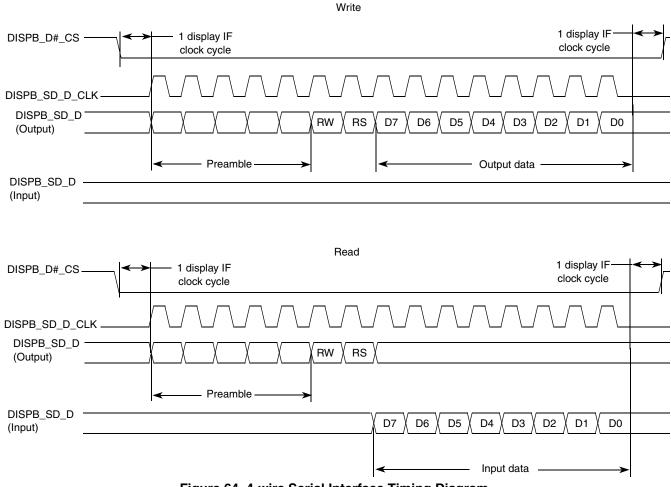


Figure 64. 4-wire Serial Interface Timing Diagram

Figure 65 depicts timing of the 5-wire serial interface (Type 1). For this interface, a separate RS line is added. When a burst is transmitted within single active chip select interval, the RS can be changed at boundaries of words.

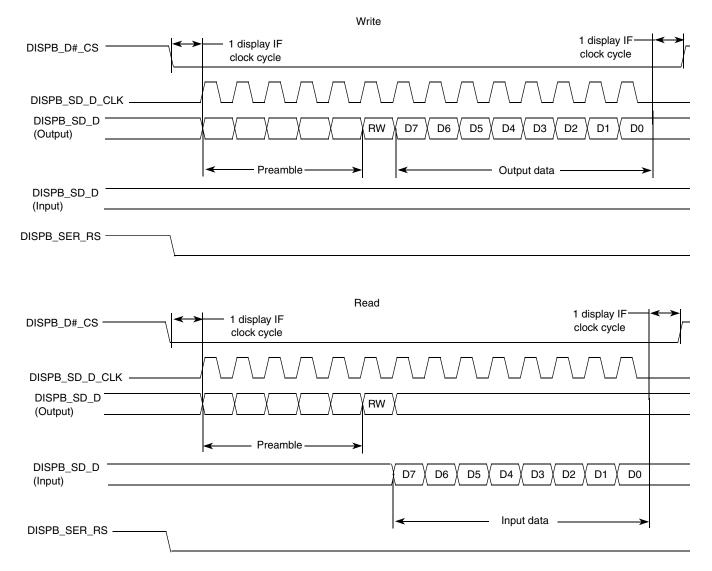


Figure 65. 5-wire Serial Interface (Type 1) Timing Diagram

Figure 66 depicts timing of the 5-wire serial interface (Type 2). For this interface, a separate RS line is added. When a burst is transmitted within single active chip select interval, the RS can be changed at boundaries of words.

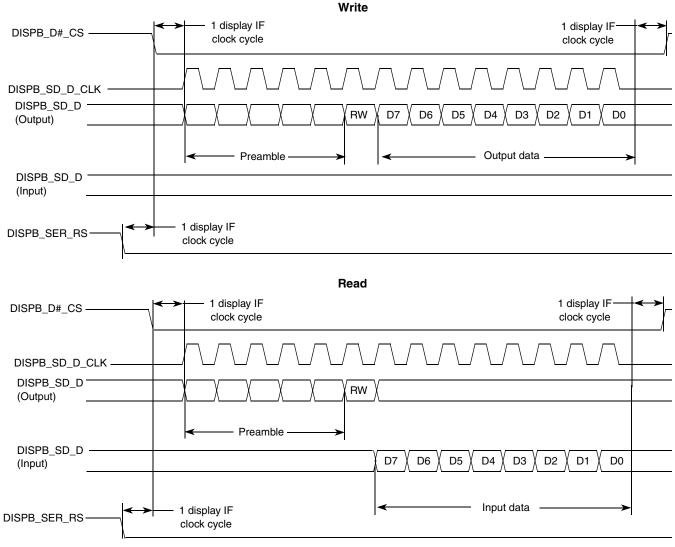


Figure 66. 5-wire Serial Interface (Type 2) Timing Diagram

4.3.15.5.4 Serial Interfaces, Electrical Characteristics

Figure 67 depicts timing of the serial interface. Table 52 lists the timing parameters at display access level.

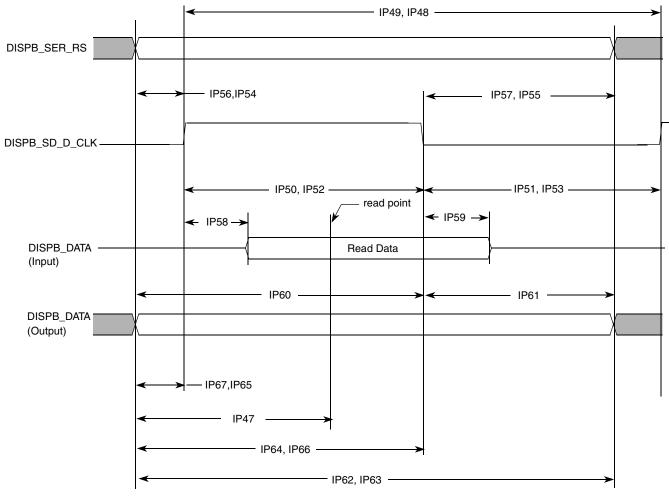


Figure 67. Asynchronous Serial Interface Timing Diagram

Table 52 Act	Inchronous	Sorial Interface	Timing Parameter	
Table 52. AS	ynchionous	Senai internace	Tinning Parameter	S-ALLESS LEVEL

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP48	Read system cycle time	Tcycr	Tdicpr-1.5	Tdicpr ²	Tdicpr+1.5	ns
IP49	Write system cycle time	Tcycw	Tdicpw-1.5	Tdicpw ³	Tdicpw+1.5	ns
IP50	Read clock low pulse width	Trl	Tdicdr-Tdicur-1.5	Tdicdr ⁴ -Tdicur ⁵	Tdicdr-Tdicur+1.5	ns
IP51	Read clock high pulse width	Trh	Tdicpr-Tdicdr+Tdicur- 1.5	Tdicpr-Tdicdr+ Tdicur	Tdicpr-Tdicdr+Tdicur+1.5	ns
IP52	Write clock low pulse width	Twl	Tdicdw-Tdicuw-1.5	Tdicdw ⁶ -Tdicuw ⁷	Tdicdw-Tdicuw+1.5	ns
IP53	Write clock high pulse width	Twh	Tdicpw-Tdicdw+ Tdicuw-1.5	Tdicpw-Tdicdw+ Tdicuw	Tdicpw-Tdicdw+ Tdicuw+1.5	ns
IP54	Controls setup time for read	Tdcsr	Tdicur-1.5	Tdicur	-	ns
IP55	Controls hold time for read	Tdchr	Tdicpr-Tdicdr-1.5	Tdicpr-Tdicdr	-	ns

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP56	Controls setup time for write	Tdcsw	Tdicuw-1.5	Tdicuw	-	ns
IP57	Controls hold time for write	Tdchw	Tdicpw-Tdicdw-1.5	Tdicpw-Tdicdw	-	ns
IP58	Slave device data delay ⁸	Tracc	0	-	Tdrp ⁹ -Tlbd ¹⁰ -Tdicur-1.5	ns
IP59	Slave device data hold time ⁸	Troh	Tdrp-Tlbd-Tdicdr+1.5	-	Tdicpr-Tdicdr-1.5	ns
IP60	Write data setup time	Tds	Tdicdw-1.5	Tdicdw	-	ns
IP61	Write data hold time	Tdh	Tdicpw-Tdicdw-1.5	Tdicpw-Tdicdw	-	ns
IP62	Read period ²	Tdicpr	Tdicpr-1.5	Tdicpr	Tdicpr+1.5	ns
IP63	Write period ³	Tdicpw	Tdicpw-1.5	Tdicpw	Tdicpw+1.5	ns
IP64	Read down time ⁴	Tdicdr	Tdicdr-1.5	Tdicdr	Tdicdr+1.5	ns
IP65	Read up time ⁵	Tdicur	Tdicur-1.5	Tdicur	Tdicur+1.5	ns
IP66	Write down time ⁶	Tdicdw	Tdicdw-1.5	Tdicdw	Tdicdw+1.5	ns
IP67	Write up time ⁷	Tdicuw	Tdicuw-1.5	Tdicuw	Tdicuw+1.5	ns
IP68	Read time point ⁹	Tdrp	Tdrp-1.5	Tdrp	Tdrp+1.5	ns

Table 52. Asynchronous Serial Interface Timing Parameters—Access Level (continued)

¹The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be chip specific.

²Display interface clock period value for read:

$$Tdicpr = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\# IF CLK PER RD}{HSP_CLK_PERIOD} \right]$$

³Display interface clock period value for write:

 $Tdicpw = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\# IF_CLK_PER_WR}{HSP_CLK_PERIOD} \right]$

⁴Display interface clock down time for read:

$$Tdicdr = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_DOWN_RD}{HSP_CLK_PERIOD}\right]$$

⁵Display interface clock up time for read:

$$Tdicur = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_UP_RD}{HSP_CLK_PERIOD}\right]$$

⁶Display interface clock down time for write:

$$Tdicdw = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\# \ IF_CLK_DOWN_WR}{HSP_CLK_PERIOD}\right]$$

⁷Display interface clock up time for write:

$$Tdicuw = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\# IF_CLK_UP_WR}{HSP_CLK_PERIOD}\right]$$

⁸This parameter is a requirement to the display connected to the IPU. ⁹Data read point:

 $Tdrp = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_READ_EN}{HSP_CLK_PERIOD} \right]$

¹⁰Loopback delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a chip-level output delay, board delays, a chip-level input delay, an IPU input delay. This value is chip specific.

The DISP#_IF_CLK_PER_WR, DISP#_IF_CLK_PER_RD, HSP_CLK_PERIOD, DISP#_IF_CLK_DOWN_WR, DISP#_IF_CLK_UP_WR, DISP#_IF_CLK_DOWN_RD, DISP#_IF_CLK_UP_RD and DISP#_READ_EN parameters are programmed via the DI_DISP#_TIME_CONF_1, DI_DISP#_TIME_CONF_2 and DI_HSP_CLK_PER Registers.

4.3.16 Memory Stick Host Controller (MSHC)

Figure 68, Figure 69, and Figure 70 depict the MSHC timings, and Table 53 and Table 54 list the timing parameters.

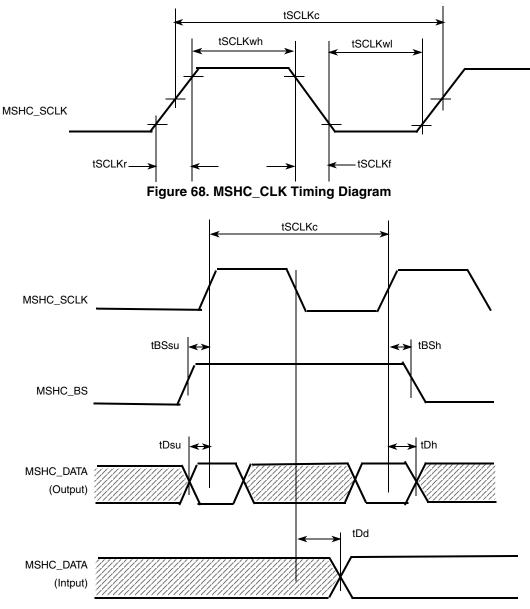


Figure 69. Transfer Operation Timing Diagram (Serial)

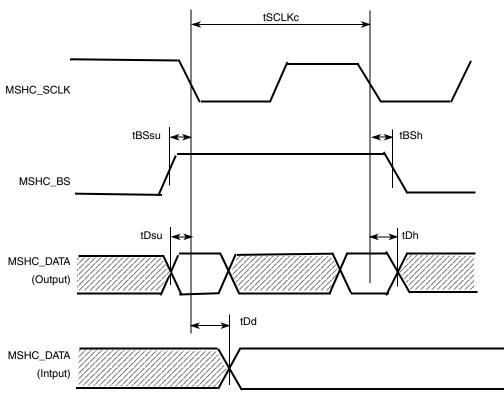


Figure 70. Transfer Operation Timing Diagram (Parallel)

NOTE

The Memory Stick Host Controller is designed to meet the timing requirements per Sony's *Memory Stick Pro Format Specifications* document. Tables in this section details the specifications requirements for parallel and serial modes, and not the i.MX31/i.MX31L timing. The timing will be provided once IC characterization is complete.

Signal	Parameter	Symbol	Standards		Unit
Signal	Parameter Symbol		Min.	Max.	Unit
	Cycle	tSCLKc	50	-	ns
	H pulse length	tSCLKwh	15	-	ns
MSHC_SCLK	L pulse length	tSCLKwl	15	-	ns
	Rise time	tSCLKr	-	10	ns
	Fall time	tSCLKf	-	10	ns
MSHC_BS	Setup time	tBSsu	5	-	ns
	Hold time	tBSh	5	_	ns

Table 53. Serial Interface Timing Parameters

Signal	Parameter Symbol		Stand	Unit	
	Falameter	Symbol	Min.	Max.	Onit
MSHC_DATA	Setup time	tDsu	5	-	ns
	Hold time	tDh	5	_	ns
	Output delay time	tDd	_	15	ns

Table 53. Serial Interface Timing Parameters (continued)

Signal	Parameter	Symbol	Stand	Standards	
Signal	Farameter	Symbol	Min	Мах	Unit
	Cycle	tSCLKc	25	_	ns
	H pulse length	tSCLKwh	5	-	ns
MSHC_SCLK	L pulse length	tSCLKwl	5	-	ns
	Rise time	tSCLKr	-	10	ns
	Fall time	tSCLKf	-	10	ns
MSHC_BS	Setup time	tBSsu	8	-	ns
	Hold time	tBSh	1	-	ns
MSHC_DATA	Setup time	tDsu	8	-	ns
	Hold time	tDh	1	-	ns
	Output delay time	tDd	-	15	ns

Table 54. Parallel Interface Timing Parameters

4.3.17 Personal Computer Memory Card International Association (PCMCIA)

Figure 71 and Figure 72 depict the timings pertaining to the PCMCIA module, each of which is an example of one clock of strobe set-up time and one clock of strobe hold time. Table 55 lists the timing parameters.

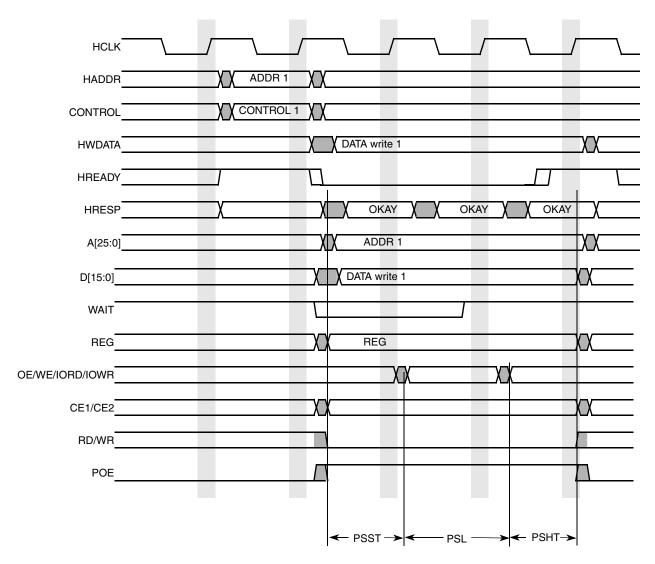


Figure 71. Write Accesses Timing Diagram—PSHT=1, PSST=1

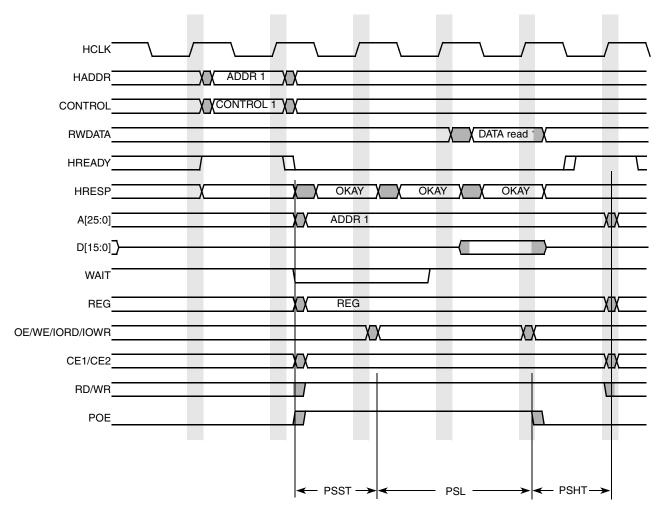
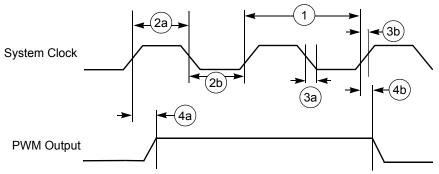


Figure 72. Read Accesses Timing Diagram—PSHT=1, PSST=1

Table 55. PCMCIA Write and Read	Timing Parameters
---------------------------------	-------------------


Symbol	Parameter	Min	Max	Unit
PSHT	PCMCIA strobe hold time	0	63	clock
PSST	PCMCIA strobe set up time	1	63	clock
PSL	PCMCIA strobe length	1	128	clock

4.3.18 **PWM Electrical Specifications**

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

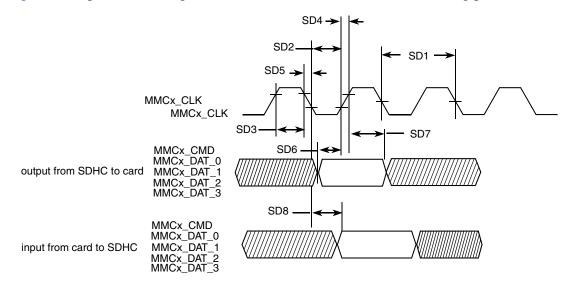
4.3.18.1 PWM Timing

Figure 73 depicts the timing of the PWM, and Table 56 lists the PWM timing characteristics.

Figure 73. PWM Timing

Table 56. PWM Output Timing Parameters

ID	Parameter	Min Max		Unit
1	System CLK frequency ¹	0	ipg_clk	MHz
2a	Clock high time	12.29	_	ns
2b	Clock low time	9.91	_	ns
3a	Clock fall time	-	0.5	ns
Зb	Clock rise time	-	0.5	ns
4a	Output delay time	-	9.37	ns
4b	Output setup time	8.71	_	ns


¹ CL of PWMO = 30 pF

4.3.19 SDHC Electrical Specifications

This section describes the electrical information of the SDHC.

4.3.19.1 SDHC Timing

Figure 74 depicts the timings of the SDHC, and Table 57 lists the timing parameters.

Figure 74. SDHC Timing Diagram

Table 57. SDHC Interface Timing Parameters						
ID	Parameter Syr		Min	Мах	Unit	
Card In	put Clock			1	1	
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz	
	Clock Frequency (SD/SDIO Full Speed)	f _{PP} ²	0	25	MHz	
	Clock Frequency (MMC Full Speed)	f _{PP} ³	0	20	MHz	
	Clock Frequency (Identification Mode)	f _{OD} ⁴	100	400	kHz	
SD2	Clock Low Time	t _{WL}	10	_	ns	
SD3	Clock High Time	t _{WH}	10	-	ns	
SD4	Clock Rise Time	t _{TLH}	_	10	ns	
SD5	Clock Fall Time	t _{THL}	_	10	ns	
SDHC o	putput / Card Inputs CMD, DAT (Reference to CLK)					
SD6	SDHC output / Card input Set-up Time	t _{ISU}	5	-	ns	
SD7	SDHC output / Card input Hold Time	t _{IH}	5	-	ns	

Table 57. SDHC Interface Timing Parameters

ID	Parameter	Symbol	Min	Мах	Unit		
SDHC in	SDHC input / Card Outputs CMD, DAT (Reference to CLK)						
SD8	Card Output Delay Time during Data Transfer Mode	t _{ODLY} ⁵	0	14	ns		
	Output Delay time during Identification Mode	t _{ODLY} ⁶	0	50	ns		

Table 57. SDHC Interface Timing Parameters (continued)

¹ In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

 2 In normal data transfer mode for SD/SDIO card, clock frequency can be any value between 0 ~ 25 MHz.

 3 In normal data transfer mode for MMC card, clock frequency can be any value between 0 ~ 20 MHz.

⁴ In card identification mode, card clock must be I100 kHz ~ 400 kHz, voltage ranges from 2.7 to 3.6 V.

 $^{5}\,$ In identification mode, card output delay time should be less than 50 ns.

⁶ In data transfer mode, card output delay time should be less than 14 ns.

4.3.20 SIM Electrical Specifications

Each SIM card interface consist of a total of 12 pins (for 2 separate ports of 6 pins each. Mostly one port with 5 pins is used).

The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM card to use. The frequency of this clock is normally 372 times the data rate on the TX/RX pins, however SIM module can work with CLK equal to 16 times the data rate on TX/RX pins.

There is no timing relationship between the clock and the data. The clock that the SIM module provides to the aim card will be used by the SIM card to recover the clock from the data much like a standard UART. All six (or 5 in case bi directional TXRX is used) of the pins for each half of the SIM module are asynchronous to each other.

There are no required timing relationships between the pads in normal mode, but there are some in two specific cases: reset and power down sequences.

4.3.20.1 General Timing Requirements

Figure 75 shows the timing of the SIM module, and Figure 58 lists the timing parameters.

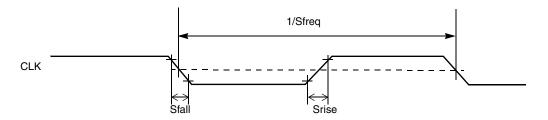


Figure 75. SIM Clock Timing Diagram

Table 58	3. SIM Timing	Specification-	-High Drive	Strength
----------	---------------	----------------	-------------	----------

Num	Description	Symbol	Min	Мах	Unit
1	SIM Clock Frequency (CLK) ¹	S _{freq}	0.01	5 (Some new cards may reach 10)	MHz
2	SIM CLK Rise Time ²	S _{rise}	_	20	ns
3	SIM CLK Fall Time ³	S _{fall}	_	20	ns
4	SIM Input Transition Time (RX, SIMPD)	S _{trans}	_	25	ns

¹ 50% duty cycle clock

² With C = 50pF

³ With C = 50pF

4.3.20.2 Reset Sequence

4.3.20.2.1 Cards with Internal Reset

The sequence of reset for this kind of SIM Cards is as follows (see Figure 76):

- After powerup, the clock signal is enabled on SGCLK (time T0)
- After 200 clock cycles, RX must be high.
- The card must send a response on RX acknowledging the reset between 400 and 40000 clock cycles after T0.

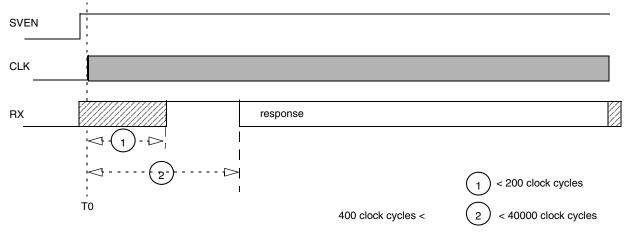


Figure 76. Internal-Reset Card Reset Sequence

4.3.20.2.2 Cards with Active Low Reset

The sequence of reset for this kind of card is as follows (see Figure 77):

- 1. After powerup, the clock signal is enabled on CLK (time T0)
- 2. After 200 clock cycles, RX must be high.
- 3. RST must remain Low for at least 40000 clock cycles after T0 (no response is to be received on RX during those 40000 clock cycles)
- 4. RST is set High (time T1)

5. RST must remain High for at least 40000 clock cycles after T1 and a response must be received on RX between 400 and 40000 clock cycles after T1.

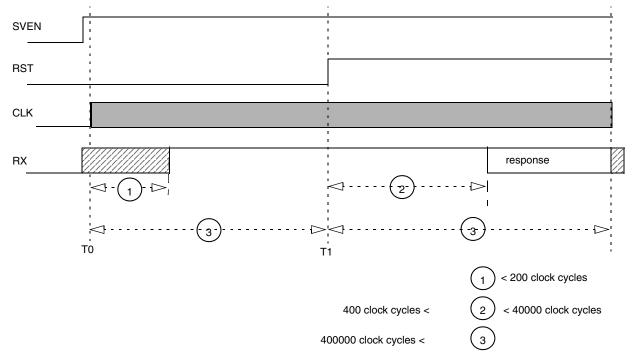


Figure 77. Active-Low-Reset Card Reset Sequence

4.3.20.3 Power Down Sequence

Power down sequence for SIM interface is as follows:

- 1. SIMPD port detects the removal of the SIM Card
- 2. RST goes Low
- 3. CLK goes Low
- 4. TX goes Low
- 5. VEN goes Low

Each of this steps is done in one CKIL period (usually 32 kHz). Power down can be started because of a SIM Card removal detection or launched by the processor. Figure 78 and Table 59 show the usual timing requirements for this sequence, with Fckil = CKIL frequency value.

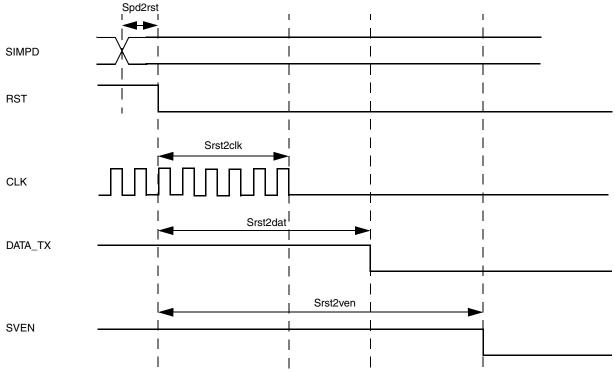


Figure 78. SmartCard Interface Power Down AC Timing

 Table 59. Timing Requirements for Power Down Sequence

Num	Description	Symbol	Min	Мах	Unit
1	SIM reset to SIM clock stop	S _{rst2clk}	0.9*1/FCKIL	0.8	μs
2	SIM reset to SIM TX data low	S _{rst2dat}	1.8*1/FCKIL	1.2	μs
3	SIM reset to SIM Voltage Enable Low	S _{rst2ven}	2.7*1/FCKIL	1.8	μs
4	SIM Presence Detect to SIM reset Low	S _{pd2rst}	0.9*1/FCKIL	25	ns

4.3.21 SJC Electrical Specifications

This section details the electrical characteristics for the SJC module. Figure 79 depicts the SJC test clock input timing. Figure 80 depicts the SJC boundary scan timing, Figure 81 depicts the SJC test access port, Figure 82 depicts the SJC TRST timing, and Table 60 lists the SJC timing parameters.

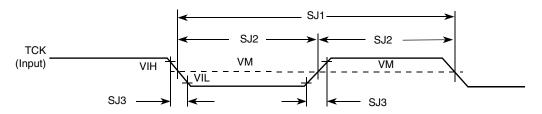
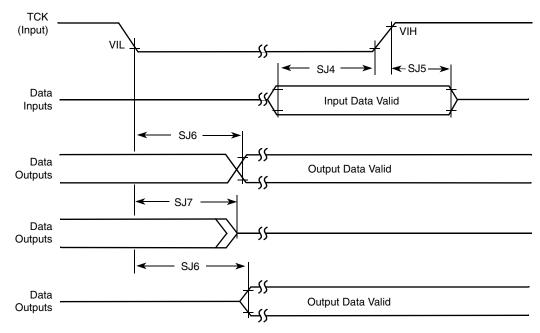



Figure 79. Test Clock Input Timing Diagram

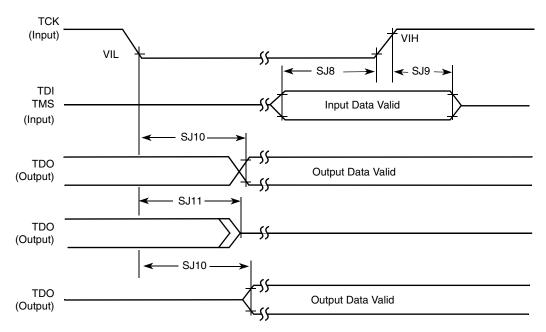
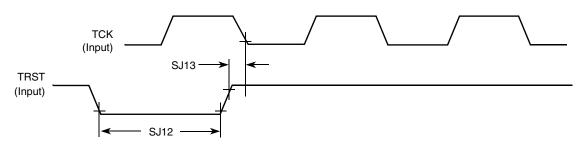
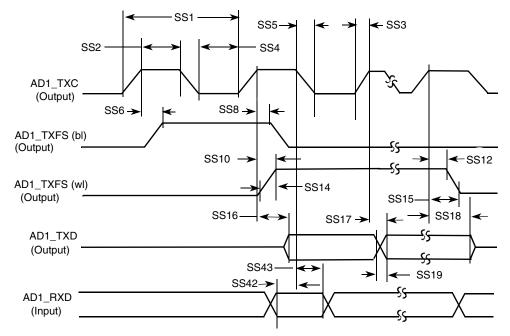



Figure 81. Test Access Port Timing Diagram

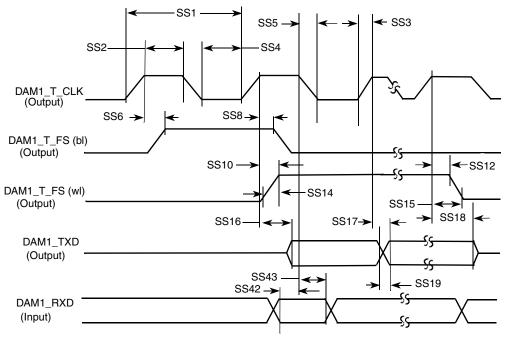
Figure 82. TRST Timing Diagram

Table 60. SJC Timing Parameters

ID	Parameter ¹	All Freq	Unit	
	Faialleter	Min	Max	Onit
SJ1	TCK cycle time	100.0	-	ns
SJ2	TCK clock pulse width measured at V_M^{-1}	40.0	_	ns
SJ3	TCK rise and fall times	_	3.0	ns
SJ4	Boundary scan input data set-up time	10.0	_	ns
SJ5	Boundary scan input data hold time	50.0	_	ns
SJ6	TCK low to output data valid	_	40.0	ns
SJ7	TCK low to output high impedance	-	40.0	ns
SJ8	TMS, TDI data set-up time	10.0	-	ns
SJ9	TMS, TDI data hold time	50.0	-	ns
SJ10	TCK low to TDO data valid	_	44.0	ns
SJ11	TCK low to TDO high impedance	_	44.0	ns
SJ12	TRST assert time	100.0	_	ns
SJ13	TRST set-up time to TCK low	40.0	_	ns


¹ $V_{M_{-}}$ mid point voltage

4.3.22 SSI Electrical Specifications


This section describes the electrical information of SSI.

4.3.22.1 SSI Transmitter Timing with Internal Clock

Figure 83 depicts the SSI transmitter timing with internal clock, and Table 61 lists the timing parameters.

Note: SRXD Input in Synchronous mode only

Note: SRXD Input in Synchronous mode only

ID	Parameter	Min	Max	Unit
Internal	Clock Operation			
SS1	(Tx/Rx) CK clock period	81.4	_	ns
SS2	(Tx/Rx) CK clock high period	36.0	_	ns
SS3	(Tx/Rx) CK clock rise time	_	6	ns
SS4	(Tx/Rx) CK clock low period	36.0	_	ns
SS5	(Tx/Rx) CK clock fall time	_	6	ns
SS6	(Tx) CK high to FS (bl) high	-	15.0	ns
SS8	(Tx) CK high to FS (bl) low	_	15.0	ns
SS10	(Tx) CK high to FS (wl) high	_	15.0	ns
SS12	(Tx) CK high to FS (wl) low	-	15.0	ns
SS14	(Tx/Rx) Internal FS rise time	_	6	ns
SS15	(Tx/Rx) Internal FS fall time	_	6	ns
SS16	(Tx) CK high to STXD valid from high impedance	-	15.0	ns
SS17	(Tx) CK high to STXD high/low	-	15.0	ns
SS18	(Tx) CK high to STXD high impedance	-	15.0	ns
SS19	STXD rise/fall time	-	6	ns
Synchro	nous Internal Clock Operation			
SS42	SRXD setup before (Tx) CK falling	10.0	_	ns
SS43	SRXD hold after (Tx) CK falling	0	-	ns
SS52	Loading	-	25	pF

Table 61. SSI Transmitter with Internal Clock Timing Parameters

- All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.
- All timings are on AUDMUX pads when SSI is being used for data transfer.
- "Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.
- For internal Frame Sync operation using external clock, the FS timing will be same as that of Tx Data (for example, during AC97 mode of operation).

4.3.22.2 SSI Receiver Timing with Internal Clock

Figure 84 depicts the SSI receiver timing with internal clock, and Table 62 lists the timing parameters.

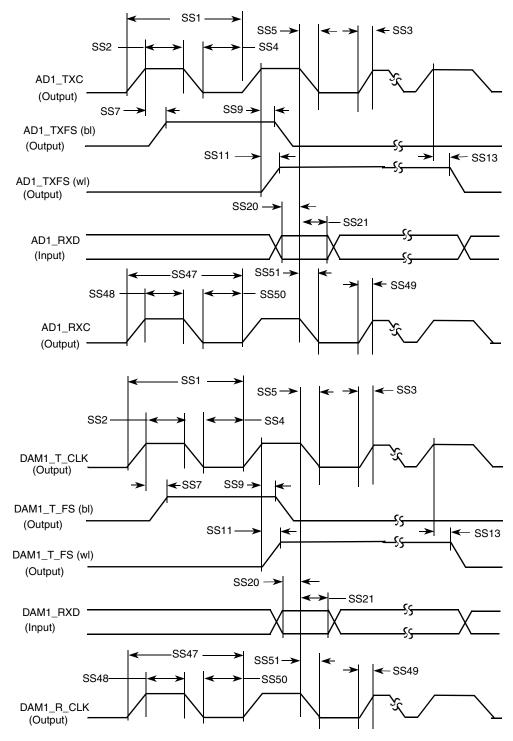


Figure 84. SSI Receiver with Internal Clock Timing Diagram

ID	Parameter	Min	Max	Unit
Internal	Clock Operation		I	I
SS1	(Tx/Rx) CK clock period	81.4	_	ns
SS2	(Tx/Rx) CK clock high period	36.0	-	ns
SS3	(Tx/Rx) CK clock rise time	-	6	ns
SS4	(Tx/Rx) CK clock low period	36.0	-	ns
SS5	(Tx/Rx) CK clock fall time	-	6	ns
SS7	(Rx) CK high to FS (bl) high	-	15.0	ns
SS9	(Rx) CK high to FS (bl) low	-	15.0	ns
SS11	(Rx) CK high to FS (wl) high	-	15.0	ns
SS13	(Rx) CK high to FS (wl) low	_	15.0	ns
SS20	SRXD setup time before (Rx) CK low	10.0	_	ns
SS21	SRXD hold time after (Rx) CK low	0	_	ns
Oversan	npling Clock Operation		•	
SS47	Oversampling clock period	15.04	_	ns
SS48	Oversampling clock high period	6	_	ns
SS49	Oversampling clock rise time	-	3	ns
SS50	Oversampling clock low period	6	_	ns
SS51	Oversampling clock fall time	-	3	ns

Table 62. SSI Receiver with Internal C	Clock Timing Parameters
--	-------------------------

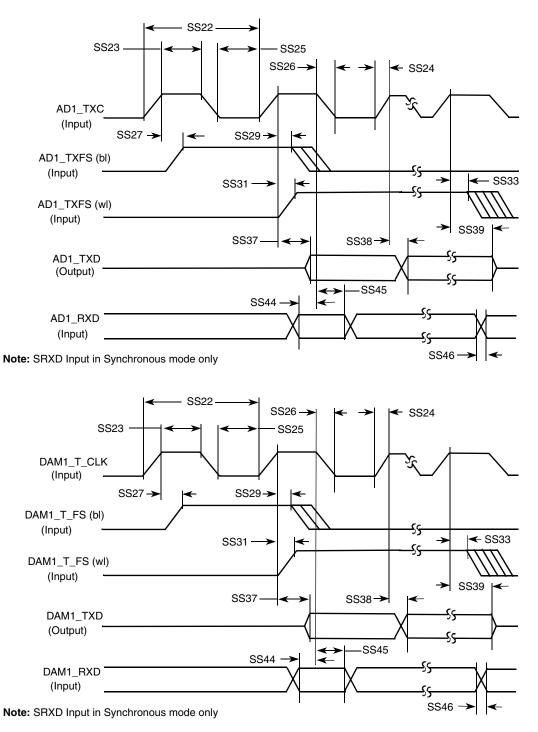
NOTE

All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.

NOTE

All timings are on AUDMUX pads when SSI is being used for data transfer.

NOTE


"Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.

NOTE

For internal Frame Sync operation using external clock, the FS timing is the same as that of Tx Data, for example, during the AC97 mode of operation.

4.3.22.3 SSI Transmitter Timing with External Clock

Figure 85 depicts the SSI transmitter timing with external clock, and Table 63 lists the timing parameters.

			•	
ID	Parameter	Min	Max	Unit
External	Clock Operation	1	1	
SS22	(Tx/Rx) CK clock period	81.4	-	ns
SS23	(Tx/Rx) CK clock high period	36.0	-	ns
SS24	(Tx/Rx) CK clock rise time	-	6.0	ns
SS25	(Tx/Rx) CK clock low period	36.0	-	ns
SS26	(Tx/Rx) CK clock fall time	-	6.0	ns
SS27	(Tx) CK high to FS (bl) high	-10.0	15.0	ns
SS29	(Tx) CK high to FS (bl) low	10.0	-	ns
SS31	(Tx) CK high to FS (wl) high	-10.0	15.0	ns
SS33	(Tx) CK high to FS (wl) low	10.0	-	ns
SS37	(Tx) CK high to STXD valid from high impedance	-	15.0	ns
SS38	(Tx) CK high to STXD high/low	-	15.0	ns
SS39	(Tx) CK high to STXD high impedance	-	15.0	ns
Synchro	nous External Clock Operation			•
SS44	SRXD setup before (Tx) CK falling	10.0	-	ns
SS45	SRXD hold after (Tx) CK falling	2.0	-	ns
SS46	SRXD rise/fall time	-	6.0	ns

Table 63. SSI Transmitter with External Clock Tin	ning Parameters
---	-----------------

NOTE

All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.

NOTE

All timings are on AUDMUX pads when the SSI is being used for data transfer.

NOTE

"Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.

NOTE

For internal Frame Sync operation using external clock, the FS timing will be same as that of Tx Data, for example, during the AC97 mode of operation.

4.3.22.4 SSI Receiver Timing with External Clock

Figure 86 depicts the SSI receiver timing with external clock, and Table 64 lists the timing parameters.



Figure 86. SSI Receiver with External Clock Timing Diagram

. ...

Table 64. SSI Receiver with External	Clock Timing Parameters

. ...

. _. .

ID	Parameter	Min	Max	Unit
External	Clock Operation			
SS22	(Tx/Rx) CK clock period	81.4	_	ns
SS23	(Tx/Rx) CK clock high period	36.0	_	ns
SS24	(Tx/Rx) CK clock rise time	_	6.0	ns

Electrical Characteristics

ID	Parameter	Min	Мах	Unit
SS25	(Tx/Rx) CK clock low period	36.0	-	ns
SS26	(Tx/Rx) CK clock fall time	_	6.0	ns
SS28	(Rx) CK high to FS (bl) high	-10.0	15.0	ns
SS30	(Rx) CK high to FS (bl) low	10.0	_	ns
SS32	(Rx) CK high to FS (wl) high	-10.0	15.0	ns
SS34	(Rx) CK high to FS (wl) low	10.0	_	ns
SS35	(Tx/Rx) External FS rise time	_	6.0	ns
SS36	(Tx/Rx) External FS fall time	-	6.0	ns
SS40	SRXD setup time before (Rx) CK low	10.0	_	ns
SS41	SRXD hold time after (Rx) CK low	2.0	_	ns

Table 64. SSI Receiver with External Clock Timing Parameters (continued)

NOTE

All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.

NOTE

All timings are on AUDMUX pads when the SSI is being used for data transfer.

NOTE

"Tx" and "Rx" refer to the Transmit and Receive sections of the SSI.

NOTE

For internal Frame Sync operation using external clock, the FS timing will be same as that of Tx Data, for example, during the AC97 mode of operation.

4.3.23 USB Electrical Specifications

This section describes the electrical information of the USBOTG port. The OTG port supports both serial and parallel interfaces.

The high speed (HS) interface is supported via the ULPI (Ultra Low Pin Count Interface). Figure 87 depicts the USB ULPI timing diagram, and Table 65 lists the timing parameters.

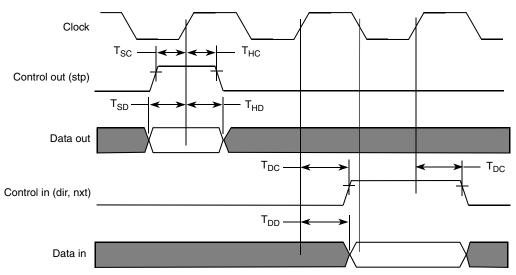


Figure 87. USB ULPI Interface Timing Diagram

Table 65. USB ULPI Interface Timing Specification¹

Parameter	Symbol	Min	Мах	Units
Setup time (control in, 8-bit data in)	TSC, TSD	6.0		ns
Hold time (control in, 8-bit data in)	Тнс, Тнр	0.0		ns
Output delay (control out, 8-bit data out)	Tdc, Tdd	9.0		ns

¹ Timing parameters are given as viewed by transceiver side.

5 Package Information and Pinout

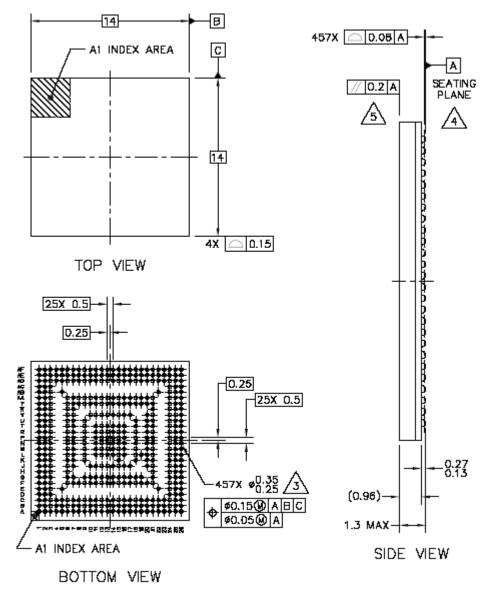
This section includes the following:

• Pin/contact assignment information—usually in the form of a pin-out or contact connection diagram—for every applicable package, unless this information appears in Section 3, "Signal Descriptions."

NOTE:

Either *pin* or *contact* is used throughout the data sheet, as appropriate for the device.

- Mechanical package drawing for every applicable package
- Ordering information (if this information isn't included on page 1).


The i.MX31 and i.MX31L devices are available in the following package:

• 457 MAPBGA 14 x 14 mm 0.5 mm pitch package for production (Figure 88).

5.1 MAPBGA Production Package 457 14 x 14 mm, 0.5 P

See Figure 88 for package drawings and dimensions of the production package.

5.1.1 Production Package Outline Drawing

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3 MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

4 datum a, the seating plane, is determined by the spherical growns of the solder balls.

DARALLEUSM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

Figure 88. Production Package: Mechanical Drawing

5.1.2 MAPBGA Pinout for Production Package

Figure 89 shows the i.MX31/i.MX31L ball map of pad locations.

_
Ø
=
3
<u> </u>
=.
<u>ں</u>
മ
_
<
-

	0
	E
	F
	C
i.M)	ŀ
(31/	
ĩ.M)	ł
(311	L
- Ad	Ν
lvan	N
ce	
Info	F
orm	F
atio	٦
, F	ו נ
/i.MX31L Advance Information, Rev. 1.4	۱ v
4	,

Image Mark Size G DAT DAT A A C C TE1 NTROL STROL OVT ODT PE B DOC N MAD OND STADE STAD STAD <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>10</th> <th>11</th> <th>12</th> <th>13</th> <th>14</th> <th>15</th> <th>16</th> <th>17</th> <th>18</th> <th>19</th> <th>20</th> <th>21</th> <th>22</th> <th>23</th> <th>24</th> <th>25</th> <th>26</th>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Image: Bool Serie Boo	GND	GND	SFS5			G_DAT	G_DAT			RXD1			RXD2						TDO		SVEN0	CAPTU RE	GPIO1_ 6		GND	GND
Line CS1 SLA G_ADT G_ADT G_ADT C TE1 OW2 OUA O.4 D D D D </td <td>GND</td> <td>GND</td> <td>STXD4</td> <td></td> <td></td> <td>SPI_R</td> <td>G_DAT</td> <td>G_DAT</td> <td></td> <td></td> <td>CTS1</td> <td></td> <td></td> <td>RTS2</td> <td></td> <td></td> <td></td> <td></td> <td>тск</td> <td>TRSTB</td> <td>SRX0</td> <td>SCLK0</td> <td>GPIO1_ 1</td> <td>GPIO1_ 5</td> <td>GND</td> <td>GND</td>	GND	GND	STXD4			SPI_R	G_DAT	G_DAT			CTS1			RTS2					тск	TRSTB	SRX0	SCLK0	GPIO1_ 1	GPIO1_ 5	GND	GND
MOSI MOSE MOSE <th< td=""><td>GND</td><td>GND</td><td>SRXD4</td><td>SCK4</td><td>STXD5</td><td></td><td></td><td>G_DAT</td><td></td><td></td><td></td><td></td><td>TXD2</td><td></td><td></td><td></td><td>RTCK</td><td>DE</td><td>SRST0</td><td></td><td></td><td></td><td>CLKO</td><td>GND</td><td>GND</td><td>GND</td></th<>	GND	GND	SRXD4	SCK4	STXD5			G_DAT					TXD2				RTCK	DE	SRST0				CLKO	GND	GND	GND
CALK OR MOSI M	GND		SCK5																						GND	BOOT_ MODE4
MACK S1 C LINE G. AF G. AF C. EP C. EP O A MOCE D A D <thd< th=""> <thd< th=""> <thd< th=""> <</thd<></thd<></thd<>	CSPI3_ SCLK				NVCC5																	GND		GND	DVFS0	POWE
PWMO RC: R SPR12 SPR2 <	ATA_D MACK	ATA_C				NVCC5	_	G_DAT	G_DAT							TDI	STX0				GND			СКІН	GPIO1_ 3	VSTBY
PC_RS PC_RV MTX_F PC_SV MTX_F PC_SV MTX_F PC_SV MTX_F PC_SV PC_SV <th< td=""><td>PWMO</td><td></td><td></td><td></td><td></td><td>SPI_R</td><td>NVCC5</td><td></td><td>G_DAT</td><td></td><td>RTS1</td><td></td><td>CTS2</td><td></td><td></td><td>TMS</td><td>SIMPD 0</td><td></td><td>NVCC1</td><td>-</td><td>NVCC1</td><td></td><td></td><td>DVFS1</td><td>VPG0</td><td>CLKSS</td></th<>	PWMO					SPI_R	NVCC5		G_DAT		RTS1		CTS2			TMS	SIMPD 0		NVCC1	-	NVCC1			DVFS1	VPG0	CLKSS
I ADY I DY I DE PCP I DC PCP I	PC_RS T					ATA_DI															CKIL			POR	I2C_DA T	GPIO3
z xx33 WRON D2 z wron SYNC 0 V/C 0 U/L	PC_VS 1		IOIS16							QVCC1	QVCC1	NVCC8	NVCC8	QVCC	NVCC6	NVCC6	NVCC9			VPG1		-		I2C_CL K		
SD1_LC SD1_LC SD1_LC SD1_LC SD1_LC SD1_LC SD1_LC NVCC3 QVCC1 SD1_D QVCC QVCC SUC2 SUC2 SUC3 CS1_LD SL_LC	PC_CD						PC_VS 2		QVCC1						NVCC6			NVCC1			GPIO3_ 0			-	CSI_D5	CSI_D
DATMO STP DATA K ATA K C <thc< th=""> C C <th< td=""><td></td><td>SD1_C</td><td>SD1_D</td><td></td><td></td><td></td><td>- PC_CD 1</td><td></td><td>NVCC3</td><td></td><td>QVCC1</td><td>GND</td><td>QVCC</td><td>QVCC</td><td>QVCC</td><td>QVCC</td><td></td><td>NVCC4</td><td>NVCC4</td><td></td><td>CSI_D4</td><td></td><td></td><td></td><td>CSI_D9</td><td>CSI_D 1</td></th<></thc<>		SD1_C	SD1_D				- PC_CD 1		NVCC3		QVCC1	GND	QVCC	QVCC	QVCC	QVCC		NVCC4	NVCC4		CSI_D4				CSI_D9	CSI_D 1
CLK SCLK SPLR Image: SPLR<									NVCC3		GND	GND	GND	GND	GND	GND		QVCC		CSI_D1 4	CSI_D1 2			CSI_D1 0	CSI_D1 3	CSI_D 5
SS1 MOSI SS0 SS2 MISO 0 <	USBH2 _CLK		SPI_R						QVCC4		NVCC3	GND	GND	GND	GND	GND		NVCC7		SD_D_I	FPSHIF T				HSYNC	DRDY
Image: Constraint of the state of the s	CSPI1_ SS1										NVCC1 0	GND	GND	GND	GND	GND		NVCC7		READ	LCS1				SD_D_I O	LCS0
NFRE NFRE NFRE NFRE NFRE NFRE D1 D11 QVCC4 QVCC4 QVCC QVCC QVCC QVCC QVCC2 QVCC2 QVCC4 QVCC4 QVCC2 QUCC2	STXD3	SCK3	SRXD3			SFS3	SRXD6		QVCC4		NVCC1 0	GND	GND	GND	GND	GND		NVCC7		D3_CL S	PAR_RS				WRITE	VSYN0 3
NFALE NFRE D13 D19 D5 D10 QVCC QVCC <th< td=""><td>STXD6</td><td>SCK6</td><td>SFS6</td><td></td><td></td><td>NFCE</td><td>NFWE</td><td></td><td>QVCC4</td><td></td><td>NVCC1 0</td><td>GND</td><td>GND</td><td>SGND</td><td>MGND</td><td>UGND</td><td></td><td>NVCC7</td><td></td><td>LD4</td><td>LD2</td><td></td><td></td><td>LD0</td><td>SER_R S</td><td>D3_RI</td></th<>	STXD6	SCK6	SFS6			NFCE	NFWE		QVCC4		NVCC1 0	GND	GND	SGND	MGND	UGND		NVCC7		LD4	LD2			LD0	SER_R S	D3_RI
D14 D12 D7 L D3 NVCC2 L <th< td=""><td>NFRB</td><td>NFWP</td><td>NFCLE</td><td></td><td></td><td>D15</td><td>D11</td><td></td><td>QVCC4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>QVCC</td><td></td><td>_</td><td>LD8</td><td></td><td></td><td>LD6</td><td>D3_SPL</td><td>LD1</td></th<>	NFRB	NFWP	NFCLE			D15	D11		QVCC4									QVCC		_	LD8			LD6	D3_SPL	LD1
Image: Normal state in the image: Normal sta	NFALE					-				QVCC	QVCC	QVCC	QVCC	SVCC	MVCC	UVCC	GND			LD17						-
A A D 2 2 2 2 2 2 2 2 2 1 1 1 0 0 NT 0 0 NT 0 0 NT 0 0 0 0 0 0 0 0 0 NT 0 0 NT 0 0 0 NT 0 </td <td>D14</td> <td>D12</td> <td>D7</td> <td></td> <td></td> <td>D3</td> <td>NVCC2 2</td> <td></td> <td>EB0</td> <td></td> <td></td> <td>LD15</td> <td>LD7</td> <td>LD9</td>	D14	D12	D7			D3	NVCC2 2														EB0			LD15	LD7	LD9
2 2 <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<>	D10	D8	D1			ioqvd D	NVCC2 2	NVCC2 2	NVCC2 2	NVCC2 2	NVCC2 2	NVCC2 2	NVCC2 2	NVCC2 1	NVCC2 1	NVCC2 1	NVCC2	NVCC2	NVCC2	NVCC2				EB1	LD11	LD12
WA10 GND A11 and	D6	D4	A4			NVCC2 2	SD31	SD28	SD27	SD23	SD21	SD18	SD16	SD13	SD9	SD7	SD5	SD3	SD2	DQM2	SDCLK			FVCC	LD14	LD16
SND A12 A13 A8 A0 SDBA0 SD29 SD29 SD29 SD19 SD15 SD12 SD1 SD10 SD4 SD0 DQM1 CAS SDCKE CS3 ECB GND GND A7 A3 SDBA1 SD26 SD24 SD19 SD19 SD14 SD14 SD10 SD6 SD11 CAS SDCKE CS3 ECB GND GND GND A7 A3 SDBA1 SD26 SD24 SD19 SD19 SD14 SD11 SD10 SD6 SD1 DQM3 DQM0 SDCLK CS2 LBA CS0 GND GND GND	D2	D0	_		A2																	RW				BCLK
AND A7 A3 SDBA1 SD26 SD24 SD22 SD20 SD19 SD24 SD14 SD14 SD10 SD6 SD1 DQM3 DQM0 SDCLK CS2 LBA CS0 GND GND GND	MA10	GND	A11																							GND
	GND	GND	A12	A13	A8	A0	SDBA0	SDQS3	SD29	SD25	SDQS2	SD17	SD15	SD12	SD8	SDQS0	SD4	SD0	DQM1	CAS	SDCKE 0	CS3	ECB	GND	GND	GND
SND GND A9 A5 A1 A25 A24 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A10 RAS SDWE SDCKE CS5 CS1 CS4 GND GND		_												-												
	GND	ĠND	A9	A5	A1	A25	A24	A23	A22	A21	A20	A19	A18	A17	A16	A15	A14	A10	RAS	SDWE	SDCKE 1	CS5	CS1	CS4	ĠNĎ	GND

Figure 89. i.MX31/i.MX31L Ball Map

156

Package Information and Pinout

Figure 66 shows the signal color and signal name legend.

Color	Name
None	Signal name as listed
	GND
	NVCC1
	NVCC2
	NVCC3
	NVCC4
1	NVCC5
	NVCC6
	NVCC7
	NVCC8
	NVCC9
	NVCC10
	NVCC21
	NVCC22
	QVCC
	QVCC1
	QVCC4

Table 66. Signal Color/Name Legend

Table 67 shows the device pin list, sorted by signal identification, excluding pad locations for ground and power supply voltages.

Signal ID	Pad Location
A0	AD6
A1	AF5
A10	AF18
A11	AC3
A12	AD3
A13	AD4
A14	AF17
A15	AF16

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

Signal ID	Pad Location
A16	AF15
A17	AF14
A18	AF13
A19	AF12
A2	AB5
A20	AF11
A21	AF10
A22	AF9
A23	AF8
A24	AF7
A25	AF6
A3	AE4
A4	AA3
A5	AF4
A6	AB3
A7	AE3
A8	AD5
A9	AF3
ATA_CS0	J6
ATA_CS1	F2
ATA_DIOR	E2
ATA_DIOW	H6
ATA_DMACK	F1
ATA_RESET	H3
BATT_LINE	F7
BCLK	AB26
BOOT_MODE0	F20
BOOT_MODE1	C21
BOOT_MODE2	D24
BOOT_MODE3	C22
BOOT_MODE4	D26
CAPTURE	A22
CAS	AD20
CE_CONTROL	A14
СКІН	F24
CKIL	H21
CLKO	C23

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

CLKSS G26 COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D5 K25 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI2_MOSI		
COMPARE G18 CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	Signal ID	Pad Location
CONTRAST R24 CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K20 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CLKSS	G26
CS0 AE23 CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D5 K25 CSI_D6 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K20 CSI_NCLK J26 CSI_VSYNC J25 CSI_NCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MISO A4 CSPI2_SPL_R	COMPARE	G18
CS1 AF23 CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CONTRAST	R24
CS2 AE21 CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI1_SS1 P1 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CS0	AE23
CS3 AD22 CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_D8 L20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI1_SS1 P1 CSPI2_MOSI E3 CSPI2_MOSI E3 CSPI2_SPI_RDY B6	CS1	AF23
CS4 AF24 CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI1_SS2 P6 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CS2	AE21
CS5 AF22 CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CS3	AD22
CSI_D10 M24 CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CS4	AF24
CSI_D11 L26 CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CS5	AF22
CSI_D12 M21 CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI2_MOSI E3 CSPI2_MOSI E3 CSPI2_SPL_RDY B6	CSI_D10	M24
CSI_D13 M25 CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSI_D11	L26
CSI_D14 M20 CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SPI_RDY B6	CSI_D12	M21
CSI_D15 M26 CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SPI_RDY B6	CSI_D13	M25
CSI_D4 L21 CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_MCLK K24 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSI_D14	M20
CSI_D5 K25 CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSI_D15	M26
CSI_D6 L24 CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSI_D4	L21
CSI_D7 K26 CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSI_D5	K25
CSI_D8 L20 CSI_D9 L25 CSI_HSYNC K20 CSI_MCLK K24 CSI_PIXCLK J26 CSI_VSYNC J25 CSPI1_MISO P7 CSPI1_MOSI P2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SCLK N2 CSPI1_SS0 P3 CSPI1_SS1 P1 CSPI1_SS2 P6 CSPI2_MISO A4 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSI_D6	L24
CSI_D9L25CSI_HSYNCK20CSI_MCLKK24CSI_PIXCLKJ26CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SCLKN3CSPI1_SS0P3CSPI1_SS1P1CSPI2_MISOA4CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSI_D7	K26
CSI_HSYNCK20CSI_MCLKK24CSI_PIXCLKJ26CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SCLKN3CSPI1_SS0P3CSPI1_SS1P1CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSI_D8	L20
CSI_MCLKK24CSI_PIXCLKJ26CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SCLKN3CSPI1_SPI_RDYN3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSI_D9	L25
CSI_PIXCLKJ26CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SPI_RDYN3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSI_HSYNC	K20
CSI_VSYNCJ25CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SPI_RDYN3CSPI1_SS0P3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSI_MCLK	K24
CSPI1_MISOP7CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SPI_RDYN3CSPI1_SS0P3CSPI1_SS1P1CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSI_PIXCLK	J26
CSPI1_MOSIP2CSPI1_SCLKN2CSPI1_SPI_RDYN3CSPI1_SS0P3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSI_VSYNC	J25
CSPI1_SCLKN2CSPI1_SPI_RDYN3CSPI1_SS0P3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSPI1_MISO	P7
CSPI1_SPI_RDYN3CSPI1_SS0P3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSPI1_MOSI	P2
CSPI1_SS0P3CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSPI1_SCLK	N2
CSPI1_SS1P1CSPI1_SS2P6CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSPI1_SPI_RDY	N3
CSPI1_SS2P6CSPI2_MISOA4CSPI2_MOSIE3CSPI2_SCLKC7CSPI2_SPI_RDYB6	CSPI1_SS0	P3
CSPI2_MISO A4 CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSPI1_SS1	P1
CSPI2_MOSI E3 CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSPI1_SS2	P6
CSPI2_SCLK C7 CSPI2_SPI_RDY B6	CSPI2_MISO	A4
CSPI2_SPI_RDY B6	CSPI2_MOSI	E3
	CSPI2_SCLK	C7
	CSPI2_SPI_RDY	B6
03F12_330 D0	CSPI2_SS0	B5

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

	_
Signal ID	Pad Location
CSPI2_SS1	C6
CSPI2_SS2	A5
CSPI3_MISO	G3
CSPI3_MOSI	D2
CSPI3_SCLK	E1
CSPI3_SPI_RDY	G6
CTS1	B11
CTS2	G13
D0	AB2
D1	Y3
D10	Y1
D11	U7
D12	W2
D13	V3
D14	W1
D15	U6
D2	AB1
D3	W6
D3_CLS	R20
D3_REV	T26
D3_SPL	U25
D4	AA2
D5	V7
D6	AA1
D7	W3
D8	Y2
D9	V6
DCD_DCE1	B12
DCD_DTE1	B13
DE	C18
DQM0	AE19
DQM1	AD19
DQM2	AA20
DQM3	AE18
DRDY0	N26
DSR_DCE1	A11
DSR_DTE1	A12

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

Signal ID	Pad Location
DTR_DCE1	C11
DTR_DCE2	F12
DTR_DTE1	C12
DVFS0	E25
DVFS1	G24
EB0	W21
EB1	Y24
ECB	AD23
FGND	AB24
FPSHIFT	N21
FUSE_VDD	AC24
FVCC	AA24
GPIO1_0	F18
GPIO1_1	B23
GPIO1_2	C20
GPIO1_3	F25
GPIO1_4	F19
GPIO1_5	B24
GPIO1_6	A23
GPIO3_0	K21
GPIO3_1	H26
HSYNC	N25
I2C_CLK	J24
I2C_DAT	H25
IOIS16	J3
IOQVDD	Y6
KEY_COL0	C15
KEY_COL1	B17
KEY_COL2	G15
KEY_COL3	A17
KEY_COL4	C16
KEY_COL5	B18
KEY_COL6	F15
KEY_COL7	A18
KEY_ROW0	F13
KEY_ROW1	B15
KEY_ROW2	C14
L	<u> </u>

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

Signal ID Pad Location KEY_ROW3 A15 KEY_ROW4 G14 KEY_ROW5 B16 KEY_ROW6 F14 KEY_ROW7 A16 LBA AE22 LCS0 P26 LCS1 P21 LD0 T24 LD1 U26 LD10 V24
KEY_ROW4 G14 KEY_ROW5 B16 KEY_ROW6 F14 KEY_ROW7 A16 LBA AE22 LCS0 P26 LCS1 P21 LD0 T24 LD1 U26 LD10 V24
KEY_ROW5 B16 KEY_ROW6 F14 KEY_ROW7 A16 LBA AE22 LCS0 P26 LCS1 P21 LD0 T24 LD1 U26 LD10 V24
KEY_ROW6 F14 KEY_ROW7 A16 LBA AE22 LCS0 P26 LCS1 P21 LD0 T24 LD1 U26 LD10 V24
KEY_ROW7 A16 LBA AE22 LCS0 P26 LCS1 P21 LD0 T24 LD1 U26 LD10 V24
LBA AE22 LCS0 P26 LCS1 P21 LD0 T24 LD1 U26 LD10 V24
LCS0 P26 LCS1 P21 LD0 T24 LD1 U26 LD10 V24
LCS1 P21 LD0 T24 LD1 U26 LD10 V24
LD0 T24 LD1 U26 LD10 V24
LD1 U26 LD10 V24
LD10 V24
LD11 Y25
LD12 Y26
LD13 V21
LD14 AA25
LD15 W24
LD16 AA26
LD17 V20
LD2 T21
LD3 V25
LD4 T20
LD5 V26
LD6 U24
LD7 W25
LD8 U21
LD9 W26
M_GRANT Y21
M_REQUEST AC25
MA10 AC1
MGND T15
MVCC V15
NFALE V1
NFCE T6
NFCLE U3
NFRB U1
NFRE V2
NFWE T7

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

NFWP U2 NVCC9 J17 OE AB25 PAR_RS R21 PC_BVD1 H2 PC_BVD2 K6 PC_CD1 L7 PC_CD2 K1 PC_POE J7 PC_POE J7 PC_READY J2 PC_RST H1 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 RESET_IN J21 RI_DCE1 F11 RI_DCE1 F11 RI_DCE1 F11 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK6 T2 SCLK0 <th></th> <th>Pad Location</th>		Pad Location
NVCC9 J17 OE AB25 PAR_RS R21 PC_BVD1 H2 PC_BVD2 K6 PC_CD1 L7 PC_CD2 K1 PC_POE J7 PC_POE J7 PC_READY J2 PC_READY J2 PC_RST H1 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DCE1 F11 RI_DCE1 G11 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCLK0	Signal ID	
OE AB25 PAR_RS R21 PC_BVD1 H2 PC_BVD2 K6 PC_CD1 L7 PC_CD2 K1 PC_POE J7 PC_PRON K3 PC_READY J2 PC_RST H1 PC_VS1 J1 PC_VS2 K7 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DCE1 F11 RI_DCE1 F11 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCLK0		
PAR_RS R21 PC_BVD1 H2 PC_BVD2 K6 PC_CD1 L7 PC_CD2 K1 PC_POE J7 PC_PVRON K3 PC_READY J2 PC_RST H1 PC_RVS1 J1 PC_VS2 K7 PC_VS2 K7 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DCE1 F11 RI_DCE1 F11 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCK6 T2		J17
PC_BVD1 H2 PC_BVD2 K6 PC_CD1 L7 PC_CD2 K1 PC_POE J7 PC_PRON K3 PC_READY J2 PC_RST H1 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DCE1 F11 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCLK0 B22	OE	AB25
PC_BVD2 K6 PC_CD1 L7 PC_CD2 K1 PC_POE J7 PC_PRON K3 PC_READY J2 PC_RST H1 PC_VS1 J1 PC_VS2 K7 PC_WANT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DCE1 G11 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK6 T2 SCLK0 B22	PAR_RS	R21
PC_CD1 L7 PC_CD2 K1 PC_POE J7 PC_PWRON K3 PC_READY J2 PC_RST H1 PC_RV G2 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DCE1 F11 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCLK0 B22	PC_BVD1	H2
PC_CD2 K1 PC_POE J7 PC_PWRON K3 PC_READY J2 PC_RST H1 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DTE1 G12 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK6 T2 SCLK0 B22	PC_BVD2	K6
PC_POE J7 PC_PWRON K3 PC_READY J2 PC_RST H1 PC_RW G2 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DTE1 G12 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCK6 T2 SCLK0 B22	PC_CD1	L7
PC_PWRON K3 PC_READY J2 PC_RST H1 PC_RW G2 PC_VS1 J1 PC_VS2 K7 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DCE1 F11 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCK6 T2 SCLK0 B22	PC_CD2	K1
PC_READY J2 PC_RST H1 PC_RW G2 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DTE1 G12 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCLK0 B22	PC_POE	J7
PC_RST H1 PC_RW G2 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DCE1 F11 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCLK0 B22	PC_PWRON	КЗ
PC_RW G2 PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DTE1 G12 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCLK0 B22	PC_READY	J2
PC_VS1 J1 PC_VS2 K7 PC_WAIT L6 POR H24 POWER_FAIL E26 PWMO G1 RAS AF19 READ P20 RESET_IN J21 RI_DCE1 F11 RI_DTE1 G12 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCLK0 B22	PC_RST	H1
PC_VS2K7PC_WAITL6PORH24POWER_FAILE26PWMOG1RASAF19READP20RESET_INJ21RI_DCE1F11RI_DTE1G12RTCKC17RTS1G11RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK6T2SCLK0B22	PC_RW	G2
PC_WAITL6PORH24POWER_FAILE26PWMOG1RASAF19READP20RESET_INJ21RI_DCE1F11RI_DTE1G12RTCKC17RTS1G11RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK6T2SCLK0B22	PC_VS1	J1
PORH24POWER_FAILE26PWMOG1RASAF19READP20RESET_INJ21RI_DCE1F11RI_DTE1G12RTCKC17RTS1G11RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK5D3SCLK0B22	PC_VS2	K7
POWER_FAILE26PWMOG1RASAF19READP20RESET_INJ21RI_DCE1F11RI_DTE1G12RTCKC17RTS1G11RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK5D3SCLK0B22	PC_WAIT	L6
PWMOG1RASAF19READP20RESET_INJ21RI_DCE1F11RI_DTE1G12RTCKC17RTS1G11RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK5D3SCK6T2SCLK0B22	POR	H24
RASAF19READP20RESET_INJ21RI_DCE1F11RI_DTE1G12RTCKC17RTS1G11RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK5D3SCLK0B22	POWER_FAIL	E26
READP20RESET_INJ21RI_DCE1F11RI_DTE1G12RTCKC17RTS1G11RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK5D3SCLK0B22	PWMO	G1
RESET_IN J21 RI_DCE1 F11 RI_DTE1 G12 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK5 D3 SCK6 T2 SCLK0 B22	RAS	AF19
RI_DCE1 F11 RI_DTE1 G12 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCK6 T2 SCLK0 B22	READ	P20
RI_DTE1 G12 RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK5 D3 SCK6 T2 SCLK0 B22	RESET_IN	J21
RTCK C17 RTS1 G11 RTS2 B14 RW AB22 RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCK6 T2 SCLK0 B22	RI_DCE1	F11
RTS1G11RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK5D3SCK6T2SCLK0B22	RI_DTE1	G12
RTS2B14RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK5D3SCK6T2SCLK0B22	RTCK	C17
RWAB22RXD1A10RXD2A13SCK3R2SCK4C4SCK5D3SCK6T2SCLK0B22	RTS1	G11
RXD1 A10 RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCK6 T2 SCLK0 B22	RTS2	B14
RXD2 A13 SCK3 R2 SCK4 C4 SCK5 D3 SCK6 T2 SCLK0 B22	RW	AB22
SCK3 R2 SCK4 C4 SCK5 D3 SCK6 T2 SCLK0 B22	RXD1	A10
SCK4 C4 SCK5 D3 SCK6 T2 SCLK0 B22	RXD2	A13
SCK5 D3 SCK6 T2 SCLK0 B22	SCK3	R2
SCK6 T2 SCLK0 B22	SCK4	C4
SCLK0 B22	SCK5	D3
	SCK6	T2
	SCLK0	B22
	SD_D_CLK	P24
SD_D_I N20	SD_D_I	N20

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

Signal ID	Pad Location
SD_D_IO	P25
SD0	AD18
SD1	AE17
SD1_CLK	M7
SD1_CMD	L2
SD1_DATA0	M6
SD1_DATA1	L1
SD1_DATA2	L3
SD1_DATA3	K2
SD10	AE15
SD11	AE14
SD12	AD14
SD13	AA14
SD14	AE13
SD15	AD13
SD16	AA13
SD17	AD12
SD18	AA12
SD19	AE11
SD2	AA19
SD20	AE10
SD21	AA11
SD22	AE9
SD23	AA10
SD24	AE8
SD25	AD10
SD26	AE7
SD27	AA9
SD28	AA8
SD29	AD9
SD3	AA18
SD30	AE6
SD31	AA7
SD4	AD17
SD5	AA17
SD6	AE16
SD7	AA16

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

Signal ID Pad Location SD8 AD15 SD9 AA15 SDBA0 AD7 SDBA1 AE5 SDCKE0 AD21 SDCKE1 AF21 SDCKE1 AF21 SDCKE1 AF21 SDCKE1 AF21 SDCKE1 AF21 SDCK AA21 SDCKE1 AF20 SDQS0 AD16 SDQS1 AE12 SDQS2 AD11 SDQS3 AD8 SDWE AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 ST		
SD9 AA15 SDBA0 AD7 SDBA1 AE5 SDCKE0 AD21 SDCKE1 AF21 SDCKE1 AF21 SDCLK AA21 SDCLK AA20 SDSS A3 SFS1 A3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRX0 B21 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD6	Signal ID	Pad Location
SDBA0 AD7 SDBA1 AE5 SDCKE0 AD21 SDCKE1 AF21 SDCLK AA21 SDCLK AA21 SDCLK AA21 SDCLK AA21 SDCLK AA21 SDCS0 AD16 SDQS1 AE12 SDQS2 AD11 SDQS3 AD8 SDQS3 AD8 SDWE AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD5 C5 STXD6 T1 SVEN0 <td>SD8</td> <td>AD15</td>	SD8	AD15
SDBA1 AE5 SDCKE0 AD21 SDCKE1 AF21 SDCLK AA21 SDCLK AA21 SDCSDQS0 AD16 SDQS1 AE12 SDQS2 AD11 SDQS3 AD8 SDQS2 AD11 SDQS3 AD8 SDQS4 AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX06 F17 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK <td>SD9</td> <td>AA15</td>	SD9	AA15
SDCKE0 AD21 SDCKE1 AF21 SDCLK AA21 SDCLK AA21 SDQS0 AD16 SDQS1 AE12 SDQS2 AD11 SDQS3 AD8 SDQS4 AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX03 R1 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16 <td>SDBA0</td> <td>AD7</td>	SDBA0	AD7
SDCKE1 AF21 SDCLK AA21 SDQS0 AD16 SDQS1 AE12 SDQS2 AD11 SDQS3 AD8 SDWE AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SDBA1	AE5
SDCLKAA21SDCLKAE20SDQS0AD16SDQS1AE12SDQS2AD11SDQS3AD8SDWEAF20SER_RST25SFS3R6SFS4F3SFS5A3SFS6T3SGNDT14SIMPD0G17SJC_MODA20SRST0C19SRX0B21SRXD4C3SRXD5B4SRXD6R7STXD3R1STXD4B3STXD5C5STXD6T1SVCCV14SVEN0A21TDIF16	SDCKE0	AD21
SDCLKAE20SDQS0AD16SDQS1AE12SDQS2AD11SDQS3AD8SDWEAF20SER_RST25SFS3R6SFS4F3SFS5A3SFS6T3SGNDT14SIMPD0G17SJC_MODA20SRST0C19SRX0B21SRXD3R3SRXD4C3SRXD5B4SRXD6R7STXD3R1STXD4B3STXD5C5STXD6T1SVCCV14SVEN0A21TDIF16	SDCKE1	AF21
SDQS0 AD16 SDQS1 AE12 SDQS2 AD11 SDQS3 AD8 SDWE AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX0 F17 STX0 F17 STX0 F17 STX0 F17 STX0 F17 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SDCLK	AA21
SDQS1 AE12 SDQS2 AD11 SDQS3 AD8 SDWE AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SDCLK	AE20
SDQS2 AD11 SDQS3 AD8 SDWE AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVEN0 A21 TCK B19 TDI F16	SDQS0	AD16
SDQS3 AD8 SDWE AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 C3 SRXD5 S4 SRXD6 R7 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVEN0 A21 TCK B19 TDI F16	SDQS1	AE12
SDWE AF20 SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX0 F17 STX0 F17 STX0 F17 STXD5 C5 STXD4 C3 STXD5 C5 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SDQS2	AD11
SER_RS T25 SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVEN0 A21 TCK B19 TDI F16	SDQS3	AD8
SFS3 R6 SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX03 R1 STXD5 C5 STXD4 C3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SDWE	AF20
SFS4 F3 SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 C3 SRXD5 B4 SRXD6 R7 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SER_RS	T25
SFS5 A3 SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STXD3 R1 STXD4 C5 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SFS3	R6
SFS6 T3 SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX03 R1 STXD3 R1 STXD4 C5 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SFS4	F3
SGND T14 SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX03 R1 STXD4 C5 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SFS5	A3
SIMPD0 G17 SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX03 R1 STXD3 R1 STXD4 C5 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SFS6	Т3
SJC_MOD A20 SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STXD3 R1 STXD4 C5 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SGND	T14
SRST0 C19 SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX03 R1 STXD4 C5 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SIMPD0	G17
SRX0 B21 SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SJC_MOD	A20
SRXD3 R3 SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SRST0	C19
SRXD4 C3 SRXD5 B4 SRXD6 R7 STX0 F17 STX03 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SRX0	B21
SRXD5 B4 SRXD6 R7 STX0 F17 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SRXD3	R3
SRXD6 R7 STX0 F17 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SRXD4	C3
STX0 F17 STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SRXD5	B4
STXD3 R1 STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	SRXD6	R7
STXD4 B3 STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	STX0	F17
STXD5 C5 STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	STXD3	R1
STXD6 T1 SVCC V14 SVEN0 A21 TCK B19 TDI F16	STXD4	B3
SVCC V14 SVEN0 A21 TCK B19 TDI F16	STXD5	C5
SVEN0A21TCKB19TDIF16	STXD6	T1
TCK B19 TDI F16	SVCC	V14
TDI F16	SVEN0	A21
	ТСК	B19
TDO A19	TDI	F16
	TDO	A19

Table 67. i.MX31/i.MX31L 14 x 14 BGA (457 Signal ID by Pad Grid Location) (continued)

	r
Signal ID	Pad Location
TMS	G16
TRSTB	B20
TTM_PAD	U20
TXD1	F10
TXD2	C13
UVCC	V16
USB_BYP	A9
USB_OC	C10
USB_PWR	B10
USBH2_CLK	N1
USBH2_DATA0	M1
USBH2_DATA1	M3
USBH2_DIR	N7
USBH2_NXT	N6
USBH2_STP	M2
USBOTG_CLK	G10
USBOTG_DATA0	F9
USBOTG_DATA1	B8
USBOTG_DATA2	G9
USBOTG_DATA3	A7
USBOTG_DATA4	C8
USBOTG_DATA5	B7
USBOTG_DATA6	F8
USBOTG_DATA7	A6
USBOTG_DIR	B9
USBOTG_NXT	A8
USBOTG_STP	C9
UGND	T16
VPG0	G25
VPG1	J20
VSTBY	F26
VSYNC0	N24
VSYNC3	R26
WATCHDOG_RST	A24
WRITE	R25

Product Documentation

6 **Product Documentation**

This Data Sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these types are available at: http://www.freescale.com.

6.1 **Revision History**

Table 68 summarizes revisions to this document since the release of Rev. 1.2.

Table 68. Revision History

Location	Revision
Table 9, "DC Recommended Operating Conditions," on page 61	Core Supply voltage—changed minimum voltage FROM 1.2 V TO 1.22 V.
Table 10, "Voltage versus Core Frequency," on page 62	 Min (V) for 1st row—changed value FROM 1.2 V to 1.22 V. Added footnotes.
Table 13, "Power Consumption (Typical Values)," on page 64	Updated entire table.
Section 4.3.8, "DPLL Electrical Specifications" starting on page 82	Updated DPLL section for content. Replaced HI/LO with content about external clock source (CKIH) and FPM (Frequency Pre-Multiplier).
Table 34, "DDR/SDR SDRAM Read Cycle Timing Parameters," on page 94, Table 35, "SDR SDRAM Write Timing Parameters," on page 96	 Changed SD4, SD6 min values FROM 1.8 V TO 2.0 V. Changed SD13 min value FROM 2.4 V TO 2.0 V.
Section 4.3.10, "ETM Electrical Specifications" on page 100, Table 41, "ETM Trace Data Timing Parameters," on page 101.	At ETM Trace Data Timing Parameters table: Changed Ts Setup value FROM 3 TO 2, changed Th Hold value FROM 2 TO 1.
Table 60, "SJC Timing Parameters," on page 143	 SJ1 row—Removed "in Crystal mode", changed min value FROM 45.0 ns TO 100.0 ns. Changed SJ2 min value FROM 22.5 ns TO 40.0 ns. Changed SJ4 min value FROM 5.0 ns TO 10.0 ns. Changed SJ5 min value FROM 24.0 ns TO 50.0 ns. Changed SJ8 min value FROM 5.0 ns TO 10.0 ns. Changed SJ9 min value FROM 25.0 ns TO 50.0 ns.
Section 4.3.2, "AC Electrical Characteristics" starting on page 68	Updated section for figure, table values.
Section 2.1.1, "Performance" on page 4	Updated section.
Table 11, "Interface Frequency," on page 62	Updated.
Section 4.3.23, "USB Electrical Specifications" on page 151	Revised section; added ULPI information.
Figure 89, "i.MX31/i.MX31L Ball Map," on page 156	Revised for color, grid # ID.

Product Documentation

Location	
Table 23, "ATA Timing Parameters," on page 72	 Inserted the following values: ti_ds, 11 ns ti_dh, 6 ns tco, 15 ns tsu, 19 ns tsui, 9 ns thi, 5 ns Changed tskew1 value FROM 20 ns TO 7 ns.
Table 29, "CSPI Interface Timing Parameters," on page 81	Changed CS4, CS5, CS6 min values FROM 30 ns TO 25 ns.
Table 33, "WEIM Bus Timing Parameters," on page 89	Updated entire table.
Table 49, "Synchronous Display Interface Timing Parameters—Access Level," on page 110	Changed IP18 min value FROM Tdicd-1.5 TO Tdicd-3.5. Changed IP19 min value FROM Tdicp-Tdicd-1.5 TO Tdicp-Tdicd-3.5. Changed IP20 min value FROM Tdicd-1.5 TO Tdicd-3.5.
Above Figure 30, "Asynchronous Memory Timing Diagram for Read Access—WSC=1," on page 91	Changed pad voltage FROM 1.7 V TO 1.75 V.
Section 4.1, "i.MX31 and i.MX31L Chip-Level Conditions" starting on page 60	 Table 9, "DC Recommended Operating Conditions," on page 61—changed Core Supply Voltage row max voltage FROM 1.6 V to 1.65 V, footnote value FROM 1.6 V TO 1.65 V (2 plcs). Table 10, "Voltage versus Core Frequency," on page 62—changed both max values FROM 1.6 V TO 1.65 V; PMIC value in footnote FROM 1.575 V to 1.6 V. Table 12, "DC Absolute Maximum Operating Conditions," on page 63—changed max value FROM 1.6 V to 1.65 V.
Section 4.3.9.3, "SDRAM (DDR and SDR) Memory Controller" starting on page 93	Removed duplicate notes about pad voltages and signal values.
Figure 89, "i.MX31/i.MX31L Ball Map," on page 156	Corrected pad locations for area of rows E through N, columns 4 through 26.

Table 68. Revision History (continued)

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Preescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCIMX31 Rev. 1.4 04/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM, ARM Thumb, Jazelle, and the ARM Powered logo are registered trademarks of ARM Limited. ARM1136JF-S, ARM11, Embedded Trace Kit, Embedded Trace Macrocell, ETM, Embedded Trace Buffer, and ETB are trademarks of ARM Limited. All other product or service names are the property of their respective owners. Java and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. France Telecom – TDF – Groupe des ecoles des telecommunications Turbo codes patents license.

© Freescale Semiconductor, Inc. 2005, 2006. All rights reserved.

