FEATURES
400 MSPS (ECL)/ 100 MSPS (TTL) Update Rate
Low Glitch Impulse: 1.5 pV -s
Fast Settling: 4.5 ns to $\mathbf{1 / 2}$ LSB
Low Power: 1.1 W
On-Board Quadrature Logic for DDS Applications
Differential Clock (ECL)
APPLICATIONS
Direct Digital Synthesis
Arbitrary Waveform Synthesis
Waveform Reconstruction
High Speed Imaging

GENERAL DESCRIPTION

The AD 9720 and AD 9721 D/A converters are 10-bit, high speed digital-to-analog converters constructed in an oxide
isolated bipolar process. The AD 9720 is ECL compatible, and will update up to 400 M SPS; the AD 9721 is TTL compatible and will update up to 100 M SPS.
D esigned for direct digital synthesis (DDS), waveform reconstruction, and high resolution video applications, both devices feature low glitch impulse of 1.5 pV -s and fast settling times of 4.5 ns to $1 / 2 \mathrm{LSB}$.

Both converters are characterized for dynamic performance, and have excellent harmonic suppression and spectral purity in waveform generation applications.
The units are available in 28-lead DIPs, LCCs and SOICs. Industrial temperature range devices are packaged in plastic for operation from $-25^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$; extended temperature range devices for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ are in hermetic ceramic packages. Contact the factory for information about the availability of M IL-ST D-883 devices.

FUNCTIONAL BLOCK DIAGRAM

REV. A

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

World Wide Web Site: http://www.analog.com © Analog Devices, Inc., 1997

AD9720/AD9721- SPECIFICATIONS

ELECIRICAL CHARACIERISIICS unless otherwise noted)

Parameter (Conditions)	Temp	Test Level	AD9720BN/BR			AD9720TE/TQ			AD9721BN/BR			AD9721TE/TQ			Units
			Min	Typ	Max										
RESOLUTION			10			10			10			10			Bits
DC ACCURACY Differential N onlinearity Integral N onlinearity ("Best Fit" Straight Line)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	$\begin{array}{\|l\|} \mathrm{I} \\ \mathrm{VI} \\ \mathrm{II} \\ \mathrm{VI} \end{array}$		$\begin{aligned} & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 075 \\ & 1.0 \\ & 1.0 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 1.5 \\ & 2.0 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 1.0 \\ & 1.0 \\ & 1.5 \end{aligned}$		0.6 0.7	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
INITIAL OFFSET ERROR Zero-Scale Offset Error Full-Scale G ain Error ${ }^{1}$ Offset Drift C oefficient	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{II} \\ & \mathrm{VI} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 16 \\ & 20 \\ & 2 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \\ & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 16 \\ & 20 \\ & 2 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \\ & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 16 \\ & 20 \\ & 2 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \\ & 15 \\ & 15 \end{aligned}$		$\begin{aligned} & 16 \\ & 20 \\ & 2 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 60 \\ & 75 \\ & 15 \\ & 15 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ \% \% $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
REFERENCE/CONTROL AMP Internal Reference Voltage Internal Reference Voltage D rift Internal Reference O utput C urrent Amplifier Input Impedance Amplifier Bandwidth	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{~V} \\ & \mathrm{IV} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & -1.15 \\ & -1.15 \\ & -50 \end{aligned}$	$\begin{aligned} & -1.25 \\ & 100 \\ & \\ & 50 \\ & 1 \end{aligned}$	$\begin{array}{r} -1.35 \\ -1.35 \\ +500 \end{array}$	$\begin{aligned} & -1.15 \\ & -1.15 \\ & -50 \end{aligned}$	$\begin{aligned} & -1.25 \\ & 100 \\ & \\ & 50 \\ & 1 \end{aligned}$	$\begin{array}{r} -1.35 \\ -1.35 \\ +500 \end{array}$	$\begin{aligned} & -1.15 \\ & -1.15 \\ & -50 \end{aligned}$	$\begin{aligned} & -1.25 \\ & 100 \\ & \\ & 50 \\ & 1 \end{aligned}$	$\begin{array}{r} -1.35 \\ -1.35 \\ +500 \end{array}$	$\begin{aligned} & -1.15 \\ & -1.15 \\ & -50 \end{aligned}$	$\begin{aligned} & -1.25 \\ & 100 \\ & 50 \\ & 1 \end{aligned}$	$\begin{array}{r} -1.35 \\ -1.35 \\ +500 \end{array}$	V V $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $k \Omega$ M Hz
REFERENCE INPUT ${ }^{2}$ Reference Input Impedance Reference M ultiplying Bandwidth ${ }^{3}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 4.6 \\ & 75 \end{aligned}$			$\begin{aligned} & 4.6 \\ & 75 \end{aligned}$			$\begin{aligned} & 4.6 \\ & 75 \end{aligned}$			$\begin{aligned} & 4.6 \\ & 75 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{MHz} \end{aligned}$
OUTPUT PERFORMANCE Full-Scale Output Current ${ }^{2,4}$ Output Compliance Range Output Resistance Output C apacitance O utput U pdate Rate Voltage Settling Time ($1 / 2 \mathrm{LSB})^{5}$ Propagation D elay ($\mathrm{tpD}{ }^{6}$ G litch Impulse ${ }^{7}$ Output Slew Rate ${ }^{8}$ Output Rise Time ${ }^{8}$ Output Fall Time ${ }^{8}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { IV } \\ & V \end{aligned}$	-1.5	$\begin{aligned} & 20.48 \\ & 210 \\ & 6 \\ & 400 \\ & 4.5 \\ & 4.0 \\ & 1.5 \\ & 1,000 \\ & 675 \\ & 470 \end{aligned}$	+3	-1.5	$\begin{aligned} & 20.48 \\ & 210 \\ & 6 \\ & 400 \\ & 4.5 \\ & 4.0 \\ & 1.5 \\ & 1,000 \\ & 675 \\ & 470 \end{aligned}$	+3	-1.5	$\begin{aligned} & 20.48 \\ & 210 \\ & 6 \\ & 100 \\ & 4.5 \\ & 4.5 \\ & 1.5 \\ & 1,000 \\ & 675 \\ & 470 \end{aligned}$	+3	-1.5	$\begin{aligned} & 20.48 \\ & 210 \\ & 6 \\ & 100 \\ & 4.5 \\ & 4.5 \\ & 1.5 \\ & 1,000 \\ & 675 \\ & 470 \end{aligned}$	+3	mA V Ω pF M SPS ns ns pV-s $\mathrm{V} / \mu \mathrm{s}$ ps ps
DIGITAL INPUTS Logic "1" Voltage Logic " 0 " Voltage Logic "1" Current Logic "0" Current Input C apacitance Input Setup Time ($\left.\mathrm{t}_{\mathrm{s}}\right)^{9}$ Input Hold Time $\left(\mathrm{t}_{\mathrm{H}}\right)^{10}$ Clock Pulse Width (Low) Clock Pulse Width (High)	Full Full Full Full $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$ Full $+25^{\circ} \mathrm{C}$ Full $+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	VI VI VI VI V IV IV IV IV IV IV	$\begin{array}{\|c} -1.0 \\ \\ 1.0 \\ 1.2 \\ 1.6 \\ 2.8 \\ 1.1 \\ 1.4 \end{array}$	$\begin{aligned} & 3 \\ & 0.4 \\ & 1.2 \\ & \\ & 0.85 \\ & 0.85 \end{aligned}$	$\begin{aligned} & -1.5 \\ & 50 \\ & 2 \end{aligned}$	$\begin{gathered} -0.9 \\ \\ 1.0 \\ 1.2 \\ 1.6 \\ 2.8 \\ 1.1 \\ 1.4 \end{gathered}$	$\begin{aligned} & 3 \\ & 0.4 \\ & \\ & 1.2 \\ & 0.85 \\ & 0.85 \end{aligned}$	$\begin{aligned} & -1.6 \\ & 50 \\ & 2 \end{aligned}$	2.0	3 0.5 1.25 0.85 0.85	$\begin{aligned} & 0.8 \\ & 400 \\ & 700 \end{aligned}$	$\begin{aligned} & 2.0 \\ & \\ & \\ & 1.0 \\ & 1.2 \\ & 2.0 \\ & 2.3 \\ & 1.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3 \\ & 0.5 \\ & \\ & 1.25 \\ & 0.85 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 400 \\ & 700 \end{aligned}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ pF ns ns ns ns ns ns
DYNAMIC PERFORMANCE Spurious-F ree Dynamic Range (SFDR) ${ }^{11}$ 2.02 M Hz; 100 M SPS; 2 M Hz Span 25.01 M Hz; 100 M SPS; 2 M Hz Span 10.02 M Hz; 250 M SPS; 5 M Hz Span 62.54 M Hz; 250 M SPS; 5 M Hz Span 70 M Hz; 220 M SPS; 10 M Hz Span	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 75 \\ & 66 \\ & 70 \\ & 55 \\ & 70 \end{aligned}$			$\begin{aligned} & 75 \\ & 66 \\ & 70 \\ & 55 \\ & 70 \end{aligned}$			$\begin{aligned} & 75 \\ & 66 \\ & N / A \\ & N / A \\ & N / A \end{aligned}$			$\begin{aligned} & 75 \\ & 66 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \end{aligned}$		dBC dBC dBc dBc dBC
POWER SUPPLY ${ }^{12}$ N egative Supply Current (-5.2 V) ${ }^{13}$ Positive Supply Current (+5.0 V) Nominal Power Dissipation Power Supply Rejection Ratio (PSRR) ${ }^{14}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{I} \\ & \mathrm{VI} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 210 \\ & \text { N /A } \\ & \mathrm{N} / \mathrm{A} \\ & 1.1 \\ & 50 \end{aligned}$	$\begin{aligned} & 280 \\ & 290 \end{aligned}$		$\begin{aligned} & 210 \\ & \mathrm{~N} / \mathrm{A} \\ & \mathrm{~N} / \mathrm{A} \\ & 1.1 \\ & 50 \end{aligned}$	$\begin{aligned} & 280 \\ & 290 \end{aligned}$		$\begin{aligned} & 218 \\ & 14 \\ & 1.2 \\ & 50 \end{aligned}$	$\begin{aligned} & 290 \\ & 300 \\ & 30 \\ & 30 \end{aligned}$		$\begin{aligned} & 218 \\ & 14 \\ & 1.2 \\ & 50 \end{aligned}$	$\begin{aligned} & 290 \\ & 300 \\ & 30 \\ & 30 \end{aligned}$	mA mA mA mA W $\mu \mathrm{A} / \mathrm{V}$

NOTES
${ }^{1} \mathrm{M}$ easured as error in ratio of full-scale current to current through $\mathrm{R}_{\text {SET }}$ ($640 \mu \mathrm{~A}$ nominal); ratio is nominally 32. DAC load is virtual ground.
${ }^{2}$ Full-scale current variations among devices are higher when driving REFERENCE IN directly.
${ }^{3}$ F requency at which a 3 dB change in output of DAC is observed, $\mathrm{R}_{\mathrm{L}}=50 \Omega ; 100 \mathrm{mV}$ modulation at midscale.
${ }^{4}$ Based on $I_{F S}=32$ (CONTROL AMP IN/R ${ }_{\text {SET }}$) when using internal control amplifier. DAC load is virtual ground.
${ }^{5} \mathrm{M}$ easured as voltage settling at midscale transition to $\pm 0.1 \% ; \mathrm{R}_{\mathrm{L}}=50 \Omega$.
${ }^{6} \mathrm{M}$ easured from 50% point of rising edge of CLOCK signal to $1 / 2$ LSB change in output signal.
${ }^{7}$ Peak glitch impulse is measured as the largest area under a single positive or negative transient.
${ }^{8}$ M easured with $R_{L}=50 \Omega$ and DAC operating in latched mode.
${ }^{9}$ D ata must remain stable for specified time prior to rising edge of CLOCK.
${ }^{10}$ D ata must remain stable for specified time after rising edge of CLOCK.
${ }^{11}$ SF DR is defined as the difference in signal energy between the fundamental and worst case spurious frequencies in the output spectrum window, which is centered at the fundamental frequency and covers the indicated span.
${ }^{12}$ Supply voltages should remain stable within $\pm 5 \%$ for normal operation.
${ }^{13} 190 \mathrm{~mA}$ typ on Digital $-\mathrm{V}_{\mathrm{s}}, 30 \mathrm{~mA}$ typ on Analog $-\mathrm{V}_{\mathrm{s}}$.
${ }^{14} \mathrm{M}$ easured at $\pm 5 \%$ of $+\mathrm{V}_{5}$ (AD 9721 only) and $-\mathrm{V}_{\mathrm{S}}$ (AD 9720 or $\mathrm{AD} \mathrm{9721)} \mathrm{using} \mathrm{external} \mathrm{reference}$.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

Positive Supply Voltage (+ V) (AD 9721 Only) +6 V
N egative Supply Voltage ($-\mathrm{V}_{\mathrm{S}}$)
(AD 9720 and AD 9721) - 7 V
Digital Input Voltages ($\mathrm{D}_{1}-\mathrm{D}_{10}, \mathrm{CLOCK}, \overline{\mathrm{CLOCK}}$)
AD 9720 ... 0 V to $-\mathrm{V}_{\mathrm{S}}$
AD $9721 \ldots \ldots$. 0.5 V to $+\mathrm{V}_{\mathrm{s}}$
Internal Reference Output Current 500 $\mu \mathrm{A}$
Control Amplifier Input Voltage Range 0 V to -4 V
Control Amplifier Output Current $\pm 2.5 \mathrm{~mA}$
Reference Input Voltage Range ($\mathrm{V}_{\text {REF }}$) 0 V to $-\mathrm{V}_{\mathrm{S}}$
Analog Output Current 30 mA
O perating Temperature Range
AD 9720/AD 9721BN/BR $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD 9720/AD 9721TE/T Q $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
M aximum Junction T emperature ${ }^{2}$
AD9720/AD 9721BN/BR . $+150^{\circ} \mathrm{C}$
AD9720/AD9721TE/T Q . $175^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Storage T emperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Absolute maximum ratings are limiting values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.
${ }^{2}$ Typical thermal impedances:
28-L ead plastic DIP: $\theta_{\mathrm{JA}}=37^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=10^{\circ} \mathrm{C} / \mathrm{W}$;
28-L eadless LCC: $\quad \theta_{\mathrm{JA}}=41^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=13^{\circ} \mathrm{C} / \mathrm{W}$;
28-L ead SOIC: $\quad \theta_{\mathrm{JA}}=46^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=10^{\circ} \mathrm{C} / \mathrm{W}$;
28-L ead Cerdip: $\quad \theta_{\mathrm{JA}}=35^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=10^{\circ} \mathrm{C} / \mathrm{W}$.
Soldered to board; no air flow.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
AD 9720BN	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 -L ead Plastic DIP	$\mathrm{N}-28$
AD 9720BR	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	$\mathrm{R}-28$
AD 9720TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Leadless LCC	$\mathrm{E}-28 \mathrm{~A}$
AD 9720T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Lead C erdip	$\mathrm{Q}-28$
AD 9721BN	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead Plastic DIP	$\mathrm{N}-28$
AD 9721BR	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28-Lead SOIC	$\mathrm{R}-28$
AD 9721TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Leadless LCC	$\mathrm{E}-28 \mathrm{~A}$
AD 9721T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28-Lead C erdip	$\mathrm{Q}-28$

EXPLANATION OF TEST LEVELS

T est Level
I - 100\% production tested.
II - 100% production tested at $+25^{\circ} \mathrm{C}$, and sample tested at specified temperatures.
III - Sample tested only.
IV - Parameter is guaranteed by design and characterization testing.
V - Parameter is a typical value only.
VI - All devices are 100% tested at $+25^{\circ} \mathrm{C}$. 100% production tested at temperature extremes for extended temperature devices; sample tested at temperature extremes for commercial/industrial devices.

DIE LAYOUT AND MECHANICAL INFORMATION

Die Dimensions $199 \times 165 \times 15(\pm 2)$ mils
Pad Dimensions . 4×4 mils
M etalization . Aluminum

Substrate Potential .. ${ }_{\text {S }}$
Passivation . N itride

PIN FUNCTION DESCRIPTIONS

DIP Pin \#	Name	Function	
1	D_{1} (MSB)	M ost Significant Bit (M SB) of digital input word.	
2-9	$\mathrm{D}_{2}-\mathrm{D}_{9}$	Eight of 10 digital input bits. Digital inputs are 10K ECL compatible for AD 9720; TTL compatible for AD 9721. See coding table elsewhere.	
10	D_{10} (LSB)	Least Significant Bit (LSB) of digital input word.	
		Input Coding vs. Current Output	
		Input Code $D_{1}-D_{10}$ IOUT (mA) $\overline{\text { IOUT }}(\mathrm{mA})$ 1111111111 -20.48 0 000000000 0 -20.48	
11	CLOCK	Edge-triggered latch enable signal for on-board registers. 10K ECL compatible for AD 9720. TTL compatible for AD 9721. Register loads data on rising edge of CLOCK signal; must be driven in conjunction with CLOCK.	
12	$\overline{\text { CLOCK/N }}$ C	Complementary edge-triggered latch enable signal for on-board registers. 10K ECL compatible for AD 9720; not connected (NC) for AD 9721.	
13	IN VERT	N ormally connected to logic LOW; inverters are transparent in this mode. Logic High inverts the 9 $\operatorname{LSBs}\left(D_{2}-D_{10}\right)$ when the MSB is LOW. No internal pull-down resistor.	
14	DIGITAL - $\mathrm{V}_{\mathrm{S}} /+\mathrm{V}_{\text {S }}$	One of three digital supply pins; nominally -5.2 V for AD 9720; +5 V for AD 9721.	
15	GROUND	C onverter ground return.	
16	DIGITAL - $\mathrm{V}_{\text {S }}$	One of three negative digital supply pins; nominally -5.2 V.	
17	$\mathrm{R}_{\text {SET }}$	C onnection for external resistance reference; nominally $1,960 \Omega$. Full-scale current out $=32 \times$ (CONTROL AM P IN / R ${ }_{\text {SET }}$) when using internal amplifier. DAC load is virtual ground.	
18	GROUND	C onverter ground return.	
19	ANALOG RETURN	Analog current return. This point and the reference side of the DAC load resistors should be connected to the same potential (nominally ground).	
20	Iout	Analog current output; full-scale output occurs with digital inputs at all "1." With external load resistor, output voltage $I_{\text {OUT }} \times\left(R_{\text {LOAD }} \\| R_{\text {INTERNAL }}\right) . R_{\text {INTERNAL }}$ is nominally 210Ω.	
21	\bigcirc	Complementary analog current output; zero-scale output occurs with digital inputs at all "1."	
22	ANALOG - V	N egative analog supply; nominally -5.2 V.	
23	REFERENCEIN	N ormally connected to CONT ROL AM P OUT (Pin 24). Direct line to DAC current source network. Voltage changes (noise) at this point have a direct effect on the full-scale output current of DAC. Full-scale current output $=32 \times\left(\right.$ CON TROL AM P IN $\left./ \mathrm{R}_{\text {SET }}\right)$ when using internal amplifier. DAC load is virtual ground.	
24	CONTROL AMP OUT	N ormally connected to REFERENCE IN PUT (Pin 23). Output of internal control amplifier, which provides a reference for the current switch network.	
25	REFERENCE OUT	N ormally connected to CONTROL AM P IN (Pin 26). Internal voltage reference, nominally -1.25 V.	
26	CONTROL AMPIN	N ormally connected to REFERENCE OUT (Pin 25) if not connected to external reference.	
27	DIGITAL - $\mathrm{V}_{\text {S }}$	One of three negative digital supply pins; nominally -5.2 V.	
28	GROUND	C onverter ground return.	

PIN CONFIGURATIONS

AD9720/AD9721 Timing Diagram

THEORY AND APPLICATIONS

The AD 9720/AD 9721 high speed digital-to-analog converters utilize M ost Significant Bit (M SB) decoding and segmentation techniques to reduce glitch impulse and maintain 10-bit linearity without trimming.
As shown in the functional block diagram, the design is based on four main subsections: the D ecoder/D river circuits, the Edge T riggered D ata Register, the Switch Network, and the C ontrol Amplifier. An internal bandgap reference is also included to allow operation with a minimum of external components. T he block labeled "Inverters" is transparent in normal operation, but can be used to minimize the external components requirements in DD S applications using the AD 9950, a 300 M SPS phase accumulator (see AD 9950 data sheet).

Digital Inputs/Timing

The AD 9720 employs single-ended ECL-compatible inputs for data inputs $\mathrm{D}_{1}-\mathrm{D}_{10}$ and the differential clock signals CLOCK and CLOCK. The internal ECL midpoint reference is designed to match 10K ECL device thresholds. On the AD 9721, a T TL translator is added at each input and the clock becomes single ended; with these exceptions, the AD 9720 and AD 9721 are identical. (N OTE: Pin 14 is $+V_{S}$ on $A D 9721 ;-V_{S}$ on $A D 9720$.)
In the D ecoder/D river section, the four M SBs ($\left.D_{1}-D_{4}\right)$ are decoded to 15 "thermometer code" lines. An equalizing delay is included for the six Least Significant Bits (LSBs) and the clock signals. This delay minimizes data skew and data setup and hold times at the register inputs.
The onboard register is rising-edge-triggered and should be used to synchronize data to the current switches by applying a pulse with proper data set-up and hold times as shown in the timing diagram.
Although the AD 9720/AD 9721 chip is designed to provide isolation from digital inputs to the outputs, some coupling of digital transitions is inevitable, especially with TTL or CM OS inputs applied to the AD 9721. Digital feedthrough can be reduced by forming a low-pass filter using a resistor in series with the capacitance of each digital input; this rolls off the slew rate of the digital inputs.

References

As shown in the functional block diagram, the internal band-gap reference, control amplifier, and reference input are pinned out for maximum user flexibility when setting the reference.

When using the internal reference, REFERENCE OUT (Pin 25) should be connected to CONTROL AM P IN (Pin 26). CONTROL AM P OUT (Pin 24) should be connected to REFERENCE IN (Pin 23). A $0.1 \mu \mathrm{~F}$ ceramic capacitor from Pin 23 to AN ALOG - V_{S} (Pin 22) improves settling by decoupling switching noise from the current sink base line. A reference current cell provides feedback to the control amp by sinking current through $\mathrm{R}_{\text {SET }}$ (Pin 17).
Full-scale output current is determined by CONTROL AM P IN and $\mathrm{R}_{\text {SET }}$ according to the equation:

$$
I_{\text {OUT }}(F S)=\left(\text { CONTROL AM P IN } / R_{\text {SET }}\right) \times 32
$$

The internal reference is nominally -1.25 V with a tolerance of $\pm 8 \%$ and typical drift over temperature of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. If greater accuracy or better temperature stability is required, an external reference can be utilized. The AD 589 reference features $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift over temperatures from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
T wo modes of multiplying operation are possible with the AD 9720/AD 9721. Signals with bandwidths up to 1 M Hz and input swings from -0.6 V to -1.2 V can be applied to the CON TROL AM P input as shown in Figure 1. Because the control amplifier is internally compensated, the $0.1 \mu \mathrm{~F}$ capacitor discussed above can be reduced to maximize the multiplying bandwidth. H owever, it should be noted that settling time for changes to the digital inputs will be degraded.

Figure 1. Low Frequency Multiplying Circuit

AD9720/AD9721

The REFERENCE IN pin can also be driven directly for wider bandwidth multiplying operation. The analog signal for this mode of operation must have a signal swing in the range of -3.3 V to -4.25 V . T his can be implemented by capacitively coupling into REFERENCE IN a signal with a dc bias of -3.3 V (I I OUt $\sim 22.5 \mathrm{~mA}$) to -4.25 V (I IUUT $\sim 3 \mathrm{~mA}$), as shown in Figure 2, or by driving REFERENCE IN with a low impedance op amp whose signal swing is limited to the stated range.

Figure 2. Wideband Multiplying Circuit

Outputs

The Switch N etwork provides complementary current outputs I IUT and $\overline{\text { IOUT }}$. The design of the AD 9720/AD 9721 is based on statistical current source matching which provides 10-bit linearity without trim. Current is steered to either $I_{\text {OUT }}$ or $\overline{I_{\text {OUT }}}$ in proportion to the digital input code. T he sum of the two currents is always equal to the full-scale output current minus one LSB.
The current output can be converted to a voltage by resistive loading as shown in the block diagram. Both I IUt and I IOUT should be loaded equally for best overall performance. The voltage which is developed is the product of the output current and the value of the load resistor.
An operational amplifier can also be used to perform the I to V conversion of the DAC output. Figure 3 shows an example of a circuit which uses the AD 9617, a high speed, current feedback amplifier. The resistor values in Figure 3 provide a 4.096 V swing, centered at ground, at the output of the AD 9617 amplifier.

Figure 3. IN Conversion Using Current Feedback Amp

DDS Applications

T he performance characteristics of the AD 9720/A D 9721 make it ideally suited for direct digital synthesis (D D S) and other waveform generation applications. Since the aliased distortion of the DAC collects around the fundamental when generating frequencies which are nearly integer fractions of the clock rate, these are often considered worst case conditions.
Please contact the factory for information concerning the availability of an evaluation board or for additional characterization data.

Figure 4. AD9720 Glitch Impulse

Figure 5. Typical Output Spectrum

Figure 8. Typical Output Spectrum

Figure 6. Typical Output Spectrum

Figure 9. Typical Output Spectrum

Figure 7. Typical Output Spectrum

Figure 10. Typical Output Spectrum

Figure 11. Direct Digital Synthesis System Diagram

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

