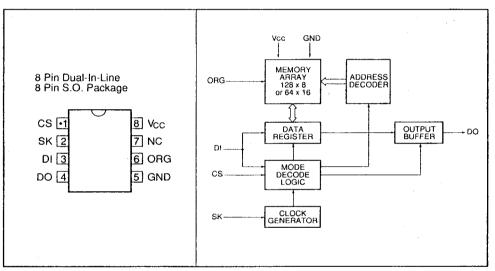
MSM16811

1.024-BIT SERIAL E2PROM


FEATURES

- · CMOS Floating Gate Technology
- Single +5-volt supply
- · Eight pin plastic package
- 64 x 16 or 128 x 8 user selectable serial memory
- · Compatible with NS9346

- · Self timed programming cycle with Auto-Erase
- · Word and chip erasable
- Operating range 0°C to 70°C
- · 10.000 erase/write cycles
- · 10 year data retention

PIN CONFIGURATION (TOP VIEW)

FUNCTIONAL BLOCK DIAGRAM

	F	PIN FUNCT	ons	-
CS SK DI DO V cc NC GNI	No Connection	ORG	Memory Array Organization Selection Input. When the ORG pin is connected to +5 V the 64 x 16 organization is selected. When it is connected to ground the 128 x 8 organization is selected. If the ORG pin is left unconnected, an internal pull-up device selects the 64 x 16 organization.	
May 6	7.05			747

8

INSTRUCTION SET								
Instruction	Start Consider		Address		Data		Comments	
instruction	Bit	Opcode	128 x 8	64 x16	128 x 8	64 x16	Comments	
READ	1	1 0	A ₆ - A ₀	$A_5 - A_0$			READ Address A _N – A ₀	
ERASE	1	11	$A_6 - A_0$	$A_5 - A_0$			ERASE Address	
WRITE	1	01	$A_6 - A_0$	A ₅ - A ₀	D ₇ - D ₀	D ₁₅ - D ₀	WRITE Address	
EWEN	1	00	11XXXXX	11XXXX			Program Enable	
EWDS	1	0.0	00XXXXX	00XXXX			Program Disable	
ERAL	1	00	10XXXXX	10XXXX			Erase All Addresses	
WRAL	1	00	01XXXXX	01XXXX	$D_7 - D_0$	D ₁₅ - D ₀	Program All Addresses	

Power-On Data Protection Circuitry: During power-up all modes of operation are inhibited until Vcc has reached a level of approximately 3.0 volts. During power-down the source data protection circuitry inhibits all modes when Vcc falls below the voltage range of approximately 3.0 volts.

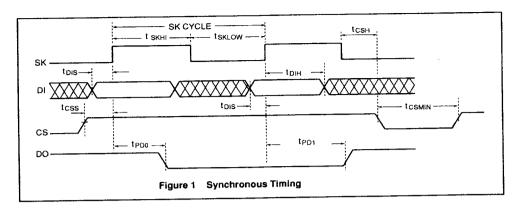
ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATING

Rating	Symbol	Conditions	Value	Unit
Supply Voltage	V _{cc}		−0.3 ~ 7	٧
Input Voltage	Vi	Ta = 25°C	-0.3 ~ V _{CC} + 0.3	٧
Output Voltage	Vo		-0.3 ~ V _{CC} + 0.3	٧
Storage Temperature	T _{STG}		-55 ~ + 150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as recommended. Exposure to ABSOLUTE MAXIMUM RATINGS for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Conditions	Range	Unit
Supply Voltage	V _{CC}	-	5 ± 10%	٧
Temperature Range	Та	-	0 ~ 70	°C
Data Hold Temperature	Ta	-	0 ~ 70	°C

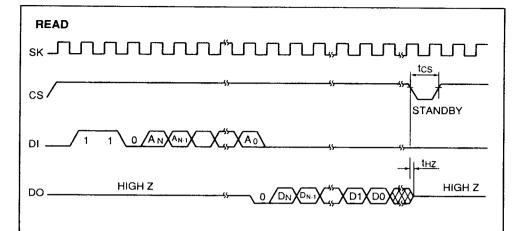

DC CHARACTERISTICS

(Vcc = 4.5V to 5.5V, Ta = $0^{\circ}C \sim 70^{\circ}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Value			
raiametei	Symbol Conditions		Min	in Max		Notes
Supply Voltage	Vcc	-	4.5	5.5	٧	
	I _{CC1}	V _{CC} = 5.0 V CS = 1	_	3	mA	1
Power Supply Current	I _{CC2}	V _{CC} = 5.5 V CS, KS, DI = 0V DO, ORG = OPEN	_	100	μA	
"L" Input Voltage	V _{IL}	***	-0.1	0.8	V	
"H" Input Voltage	ViH	-	2.0	V _{CC} +1	V	
"L" Output Voltage	Vol	TTL l _{OL} = 2.1 mA	-	0.4	V	
L Output Voltage	VOL	CMOS I _{OL} = 100 µA	-	0.1	٧	
"H" Output Voltage	V _{ОН}	TTL I _{OH} = -400 μA	2.4	_	٧	
11 Odipat Voltage		CMOS I _{OH} = -100 μA	V _{CC} -0.5	_	٧	
Input Leakage Current	Lu	V _{in} = 5.5 V	_	10	μΑ	
Output Leakage Current	ILO	V _{out} = 5.5 V CS = 0	_	10	μА	

AC CHARACTERISTICS

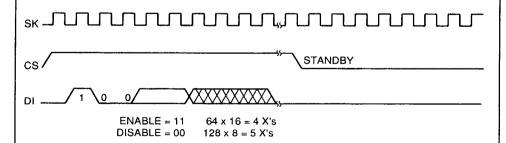
Parameter	Cumbal	Conditions	Value			11-11	Mataa
	Symbol Conditions		Min	Тур	Max	Unit	Notes
CS Setup Time	t css	_	0.2	_	_	μs	
CS Hold Time	t csH	_	0	_	_	μs	
DI Setup Time	t DIS	-	0.4	_		μs	
DI Hold Time	t _{DIH}	_	0.4	_	_	μs	
Output Delay to 1	t PD1	CL = 100pF	-	_	2	μs	
Output Delay to 0	t PDO	V _{OL} = 0.8, V _{OH} = 2.0	_	-	2	μs	
Output Delay to HiZ	tHZ	$V_{IL} = 0.45V, V_{IH} = 2.4$	-	-	0.4	μs	
Erase/Write Pulse Width	t _{EW}	_	_	_	10	ms	
Min CS Low Time	t csmim	_	1	_		μs	
Min SK High Time	t skHi	_	1	-	_	μs	
Min SK Low Time	t sklow		1	-	-	μs	
Output Delay to Status Valid	t _{SV}	CL = 100pF	-	-	1	μs	
Maximum Frequency	SKMAX	_	0	_	250	kHz	

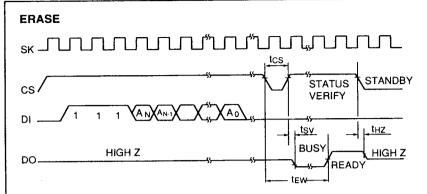

Device Operation

The MSM16811 has 7 instructions that allow it to read, erase, or write. Each instruction consists of a start bit logical 1, an opcode field (2 bits or 4 bits) and an address field (6 or 7 bits).

The DO pin is a multiplexed pin. It is used as Data Out during the Read mode. It can also be used as a Ready Busy status indicator in programming mode. In all the other modes DO is tristated.

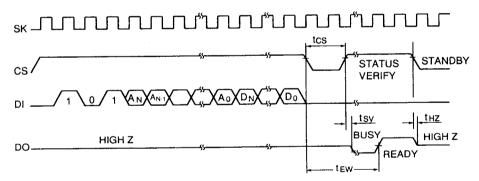
During power-up all modes of operation are disabled and the device comes up in a program disabled state. An EWEN instruction must be issued before starting to program.


At power-down, when Vcc falls below a level of approximately 3V, the data protection circuitry inhibits all modes of operation and an EWDS instruction is executed internally.


Organization	An	D _N
128 x 8	A 6	D ₇
64 x 16	A 5	D ₁₅

The READ instruction reads the contents of the addressed register. It outputs data serially on the DO pin. After the instruction is decoded, a dummy bit (logical 0) precedes the output data string.

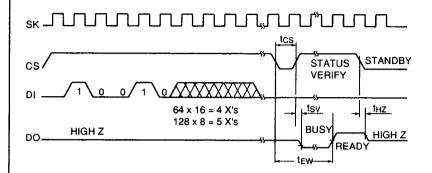
EWEN/EWDS (ERASE/WRITE ENABLE AND DISABLE)



After power-up and before starting any programming instruction the EWEN instruction must be issued. Once it is issued, it remains active until an EWDS instruction takes place. The EWDS instruction prevents any accidental programming of the part. The READ instruction is independent from the EWEN and EWDS instructions.

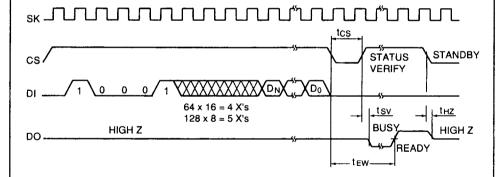
After an ERASE instruction is shifted in, CS is dropped low. This sets the beginning of the self timed erase sequence. If CS is then brought high (after observing the tcs spec) the DO pin will act as a status indicator. It will remain low so long as the chip is programming. It will go high after all the bits of the addressed register are set to a logical 1.

WRITE



After a WRITE instruction is shifted in with the corresponding 8 bits or 16 bits of data, CS is dropped low. This sets the beginning of the self timed programming sequence. If CS is brought high during the programming time (after observing the tosspecification), the DO pin will act as a status indicator – it will remain low so long as the chip is programming. It will go high after all the bits of the addressed register are set to their proper values. With the MSM16811 it is NOT neccessary to erase the memory location before the WRITE instruction.

Configuration	An	DN
128 x 8	A 6	D ₇
64 x 16	A 5	D ₁₅


8

ERAL (ERASE ALL)

The ERAL instruction erases the whole chip. Except for its different opcode, the ERAL instruction is identical to the ERASE instruction.

WRAL (WRITE ALL)

The WRAL instruction writes to all the registers simultaneously. All the registers must be erased before a WRAL operation. Except for its different opcode, the WRAL instruction is identical to the WRITE instruction.