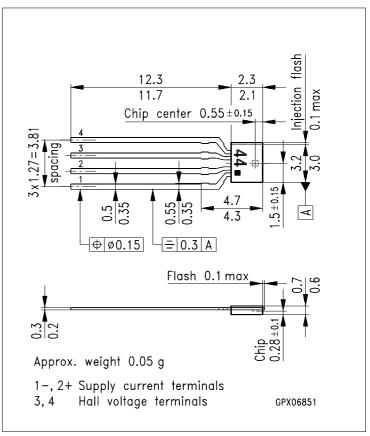


Hall Sensor KSY 44


Version 2.0

Features

- High sensitivity
- High operating temperature
- Small linearity error
- Low offset voltage
- Low TC of sensitivity
- Specified TC of offset voltage
- Low inductive zero component
- Package thickness 0.7 mm
- Connections from one side of the package

Typical Applications

- Current and power measurement
- Magnetic field measurement
- Control of brushless DC motors Rotation and position sensing
- Measurement of diaphragm
- Movement for pressure sensing

Dimensions in mm

Туре	Marking	Ordering Code
KSY 44	44	Q62705-K265

The KSY 44 is a MOVPE¹⁾ Hall sensor in a mono-crystalline GaAs material, built into an extremely flat plastic package (SOH). It is outstanding for a high magnetic sensitivity and low temperature coefficients. The 0.35×0.35 mm² chip is mounted onto a non-magnetic leadframe.

¹⁾ Metal Organic Vapour Phase Epitaxy

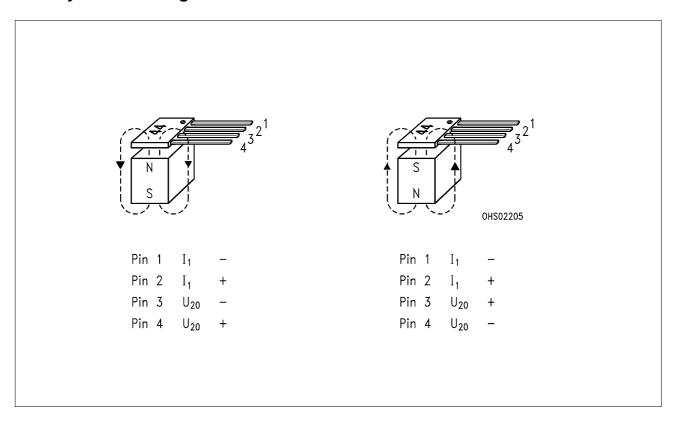
Absolute Maximum Ratings

Parameter	Symbol	Limit Values	Unit
Operating temperature	T_{A}	− 40…+ 175	°C
Storage temperature	$T_{ m stg}$	− 50… + 180	°C
Supply current	I_1	10	mA
Thermal conductivity soldered, in air	$G_{\sf thA} \ G_{\sf thC}$	≥ 1.5 ≥ 2.2	mW/K mW/K

Electrical Characteristics ($T_A = 25$ °C)

mA	7	I_{1N}	Nominal supply current
V/AT	150265	K_{B0}	Open-circuit sensitivity
mV	105185	V_{20}	Open-circuit Hall voltage $I_1 = I_{1N}, B = 0.1 \text{ T}$
mV	≤±15	V_{R0}	Ohmic offset voltage $I_1 = I_{1N}, B = 0$ T
% %	≤± 0.2 ≤± 0.7	F_{L}	Linearity of Hall voltage $B = 00.5 \text{ T}$ $B = 01.0 \text{ T}$
Ω	600900	R_{10}	Input resistance $B = 0 \text{ T}$
Ω	10001500	R_{20}	Output resistance $B = 0 \text{ T}$
%/K	~ - 0.03	$TC_{ m V20}$	Temperature coefficient of the open-circuit Hall voltage $I_1 = I_{1N}$, $B = 0.1 \text{ T}$
%/K	~ + 0.3	<i>TC</i> _{R10, R20}	Temperature coefficient of the internal resistance, $B = 0$ T
%/K	~ 0.3	TC_{VR0}	Temperature coefficient of ohmic offset voltage, $I_1 = I_{1N}$, $B = 0$ T
cm ²	0.16	$A_2^{1)}$	Inductive zero component, $I_{1N} = 0$
mV mV	≤ 0.3 ≤ 0.1	$dV_0^{2)} \ \Delta V_0^{3)}$	Switch-on drift of the ohmic offset voltage $I_1 = I_{1N}$, $B = 0$ T
dB	~ 10	F	Noise figure
	10001500 ~ - 0.03 ~ + 0.3 ~ 0.3 0.16 ≤ 0.3 ≤ 0.1	R_{20} $TC_{ m V20}$ $TC_{ m R10,R20}$ $TC_{ m VR0}$ $A_2^{1)}$ $dV_0^{2)}$ $\Delta V_0^{3)}$	Output resistance $B = 0 \text{ T}$ Temperature coefficient of the open-circuit Hall voltage $I_1 = I_{1N}$, $B = 0.1 \text{ T}$ Temperature coefficient of the internal resistance, $B = 0 \text{ T}$ Temperature coefficient of ohmic offset voltage, $I_1 = I_{1N}$, $B = 0 \text{ T}$ Inductive zero component, $I_{1N} = 0$ Switch-on drift of the ohmic offset voltage $I_1 = I_{1N}$, $B = 0 \text{ T}$

 $^{^{1)}}$ With time varying induction there exists an inductive voltage V_{ind} between the Hall voltage terminals (supply current $I_1 = 0$):


 $[\]begin{array}{c} V_{\rm ind} = A_2 \times {\rm d}B/{\rm d}t \times {\rm 10^{-4}~with}~V({\rm V}),~A_2~({\rm cm^2}),~B({\rm T}),~t({\rm s})\\ 2)~dV_0 = \left| \begin{array}{c} V_0(t=1\,{\rm s}) - V_0(t=0.1\,{\rm s}) \\ \end{array} \right|\\ 3)~\Delta V_0 = \left| \begin{array}{c} V_0(t=3{\rm min}) - V_0(t=1\,{\rm s}) \end{array} \right| \end{array}$

Connection of a Hall Sensor with a Power Source

Since the voltage on the component must not exceed 10 V, the connection to the constant current supply should only be done via a short circuit by-pass. The by-pass circuit-breaker shall not be opened before turning on the power source, in order to avoid damage to the Hall sensor due to power peaks.

Polarity of Hall Voltage

