
INTEGRATED CIRCUITS

Product specification Supersedes data of 2000 Sep 29 2002 Sep 06

TZA3033

FEATURES

- Low equivalent input noise of 1 pA/ \sqrt{Hz} (typical)
- Wide dynamic range from 0.25 μA to 1.6 mA (typical)
- Differential transimpedance of 44 $k\Omega$
- Bandwidth typical 130 MHz
- Differential outputs
- On-chip Automatic Gain Control (AGC)
- No external components required
- Single supply voltage from 3.0 to 5.5 V
- Bias voltage for PIN diode
- Pin compatible with SA5223
- Goldplated version available for direct placement of photodiode on die.

APPLICATIONS

- Digital fibre optic receiver in short, medium and long haul optical telecommunications transmission systems or in high speed data networks
- Wideband RF gain block.

GENERAL DESCRIPTION

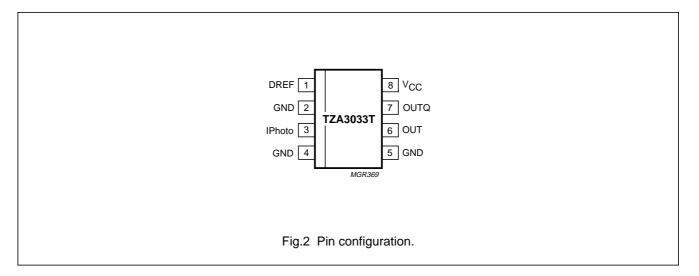

The TZA3033 is a low-noise transimpedance amplifier with AGC designed to be used in STM1/OC3 fibre optic links. It amplifies the current generated by a photo detector (PIN diode or avalanche photodiode) and converts it to a differential output voltage.

ORDERING INFORMATION

TYPE		PACKAGE	
NUMBER NAME DESCRIPT		DESCRIPTION	VERSION
TZA3033T	SO8	plastic small outline package; 8 leads; body width 3.9 mm	SOT96-1
TZA3033U	_	 bare die in waffle pack carriers; die dimensions 1.030 × 1.300 mm 	
TZA3033U/G	$ - \qquad bare die with goldplating in waffle pack carriers; die dimensions \\ 1.030 \times 1.300 \text{ mm} $		_

TZA3033

BLOCK DIAGRAM


TZA3033

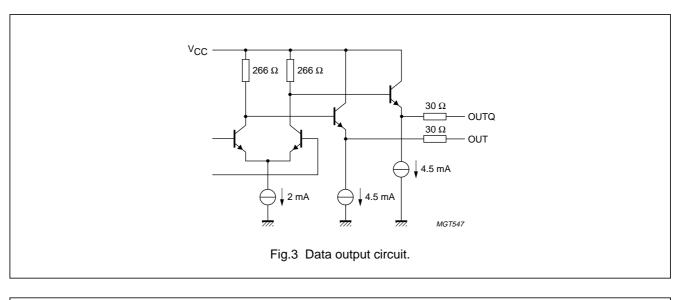
PINNING

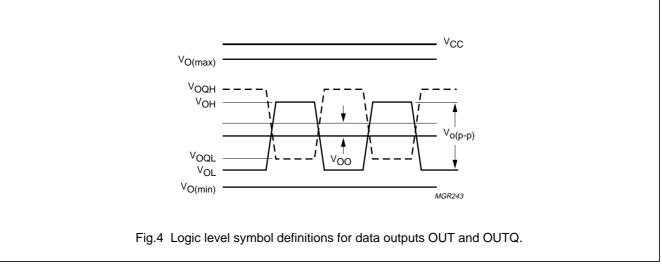
SYMBOL	PIN TZA3033T	PAD TZA3033U	TYPE	DESCRIPTION
DREF	1	1	analog output	bias voltage for PIN diode; cathode should be connected to this pin; note 1
TESTA	_	2	_	for test purposes only; to be left open in application
GND	2	3, 4	ground	ground
IPhoto	3	5	analog input current input; anode of PIN diode should be connecte pin; DC bias voltage is 1048 mV	
TESTB	_	6	 for test purposes only; to be left open in application 	
GND	4	7, 8	ground	ground
GND	5	9, 10	ground	ground
OUT	6	11	output data output; pin OUT goes HIGH when current flows pin IPhoto	
OUTQ	7	12	output data output; compliment of pin OUT	
V _{CC}	8	13, 14	supply	supply voltage
AGC	_	15	input/output	AGC analog I/O

Note

1. For the TZA3033U/G this pad is connected to the gold layer on top of the passivation layer.

FUNCTIONAL DESCRIPTION


The TZA3033 is a transimpedance amplifier intended for use in fibre optic links for signal recovery in STM1/OC3 applications. It amplifies the current generated by a photo detector (PIN diode or avalanche photodiode) and transforms it into a differential output voltage. The most important characteristics of the TZA3033 are high receiver sensitivity and wide dynamic range.

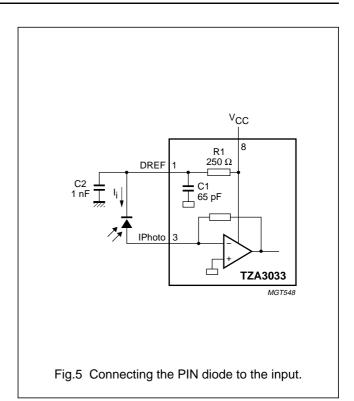

High receiver sensitivity is achieved by minimizing noise in the transimpedance amplifier. The signal current generated by a PIN diode can vary between 0.25 μ A to 1.6 mA (p-p). An AGC loop (see Fig.1) is implemented to make it possible to handle such a wide dynamic range. The AGC loop increases the dynamic range of the receiver by reducing the feedback resistance of the preamplifier.

The AGC loop hold capacitor is integrated on-chip, so an external capacitor is not needed for AGC. The AGC voltage can be monitored at pad 15 on the bare die (TZA3033U). Pad 15 is not bonded in the packaged device (TZA3033T). This pad can be left unconnected during normal operation. It can also be used to force an external AGC voltage. If pad 15 (AGC) is connected to V_{CC} , the internal AGC loop is disabled and the receiver gain is at a maximum. The maximum input current is then approximately 10 μ A.

A differential amplifier converts the output of the preamplifier to a differential voltage (see Fig.3).

The logic level symbol definitions are shown in Fig.4.

TZA3033


PIN diode bias voltage DREF

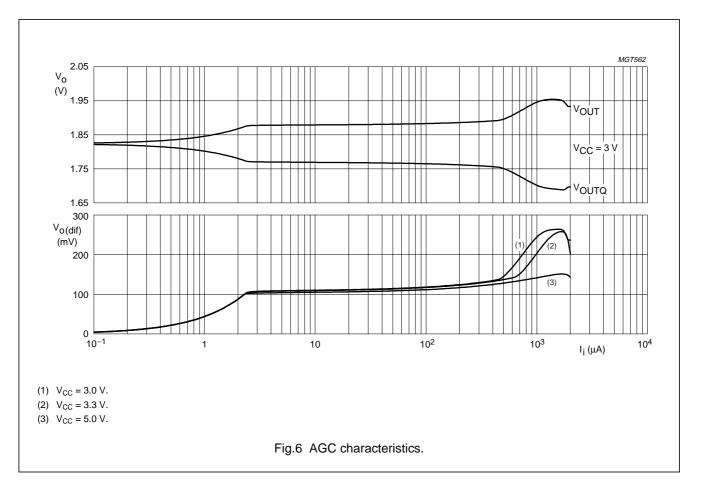
The transimpedance amplifier together with the PIN diode determine to a large extent the performance of an optical receiver. The key parameters of a transimpedance amplifier like sensitivity, bandwidth, and the Power Supply Rejection Ratio (PSSR), are especially influenced by how the PIN diode is connected to the input and the layout around the input pin. The total capacitance at the input pin is critical to obtain the highest sensitivity. It should be kept to a minimum by reducing the capacitor of the PIN diode should be placed very close to the IC to reduce the parasitics. Because the capacitance of the PIN diode depends on the reverse voltage across it, the reverse voltage should be selected as high as possible.

The PIN diode can be connected to the input as shown in Fig.5. In Fig.5 the PIN diode is connected between DREF and IPhoto. Pin DREF provides an easy bias voltage for the PIN diode. The voltage at DREF is derived from V_{CC} by a low-pass filter. The low-pass filter consisting of the internal resistor R1, the internal capacitor C1 and the external capacitor C2 rejects the supply voltage noise. The external capacitor C2 should be equal to or larger than 1 nF for a high PSRR.

It is preferable to connect the cathode of the PIN diode to a voltage higher than V_{CC} when such a voltage source is available on the board. In this case the DREF pin can be left unconnected.

The reverse voltage across the PIN diode is 3.95 V (5 - 1.05 V) for a 5 V supply and 2.25 V (3.3 - 1.05 V) for a 3.3 V supply.

AGC


The TZA3033 transimpedance amplifier can handle input currents from 0.25 μ A to 1.6 mA. This means a dynamic range of 79 dB. At low input currents, the transimpedance must be high to obtain an adequate output voltage, and the noise should be suitably low to guarantee minimum bit error rate. At high input currents however, the transimpedance should be low to avoid pulse width distortion. This means that the gain of the amplifier has to vary depending on the input signal level to handle such a wide dynamic range. This is achieved in the TZA3033 by implementing an Automatic Gain Control (AGC) loop.

The AGC loop consists of a peak detector, a hold capacitor and a gain control circuit. The peak amplitude of the signal is detected by the peak detector and stored on the hold capacitor. The voltage across the hold capacitor is compared to a threshold level. The threshold level is set at an input current of 2.5 μ A (p-p). AGC becomes active only for input signals larger than the threshold level. It is disabled for smaller signals. The transimpedance is then at its maximum value (44 k Ω differential).

TZA3033

When the AGC is active, the feedback resistance of the transimpedance amplifier is reduced to keep the output voltage constant. The transimpedance is regulated from 44 k Ω at low currents (I < 2.5 μ A) to 200 Ω at high currents (I < 500 μ A). Above 500 μ A the transimpedance is at its minimum and can not be reduced further but the front-end remains linear until input currents of 1.6 mA (p-p).

The upper graph of Fig.6 shows the output voltages V_{OUT} and V_{OUTQ} of the TZA3033 as a function of the DC input current for a supply voltage of 3 V. In the lower graph the difference between both output voltages, $V_{o(dif)}$, is shown for supply voltages of 3, 3.3 and 5 V. It can seen from the graph that the output changes linearly up to an input current of 2.5 μ A where the AGC becomes active. From this point on, the AGC tries to keep the differential output voltage constant around 110 mV for medium range input currents (input currents above 500 μ A, and the output voltage rises again with the input current.

TZA3033

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER		MAX.	UNIT
V _{CC}	supply voltage	-0.5	+5.5	V
V _n	DC voltage			
	pin 3/pad 5: IPhoto	-0.5	+2	V
	pins 6 and 7/pads 11 and 12: OUT and OUTQ	-0.5	V _{CC} + 0.5	V
	pad 15: AGC (TZA3033U only)	-0.5	V _{CC} + 0.5	V
	pin 1/pad 1: DREF	-0.5	V _{CC} + 0.5	V
I _n	DC current			
	pin 3/pad 5: IPhoto	-1	+2.5	mA
	pins 6 and 7/pads 11 and 12: OUT and OUTQ	–15	+15	mA
	pad 15: AGC (TZA3033U only)	-0.2	+0.2	mA
	pin 1/pad 1: DREF	-2.5	+2.5	mA
P _{tot}	total power dissipation	_	300	mW
T _{stg}	storage temperature	-65	+150	°C
Tj	junction temperature	-	150	°C
T _{amb}	ambient temperature	-40	+85	°C

HANDLING

Precautions should be taken to avoid damage through electrostatic discharge. This is particularly important during assembly and handling of the bare die. Additional safety can be obtained by bonding the V_{CC} and GND pads first, the remaining pads may then be bonded to their external connections in any order.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th(j-s)}	thermal resistance from junction to solder point	160	K/W

TZA3033

CHARACTERISTICS

For typical values $T_{amb} = 25 \text{ °C}$ and $V_{CC} = 5 \text{ V}$; minimum and maximum values are valid over the entire ambient temperature range and process spread; all voltages are measured with respect to ground; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	
V _{CC}	supply voltage		3	5	5.5	V
I _{CC}	supply current	AC coupled; $R_L = 50 \Omega$				
		$V_{CC} = 5 V$	20	38	60	mA
		V _{CC} = 3.3 V	20	35	50	mA
P _{tot}	total power dissipation	V _{CC} = 5 V	100	190	330	mW
		V _{CC} = 3.3 V	60	116	180	mW
Tj	junction temperature		-40	-	+125	°C
T _{amb}	ambient temperature		-40	+25	+85	°C
R _{tr}	small-signal transresistance of the receiver	AC coupled; measured differentially				
		R _L = ∞	42	90	112	kΩ
		R _L = 50 Ω	21	45	66	kΩ
f _{-3dB(h)}	high frequency –3 dB point	AC coupled; measured differentially; $C_i = 0.7 \text{ pF}$; $R_L = 50 \Omega$				
		T _i = 125 °C	90	130	_	MHz
		T _i = 100 °C	100	130	_	MHz
PSRR	power supply rejection ratio	measured differentially; note 1				
		f = 100 kHz to 10 MHz	_	0.5	_	μA/V
		f = 100 MHz	_	10	-	μA/V
Bias voltag	ge: pin DREF			ł		-
R _{DREF} resistance between pins DREF and V _{CC}		DC tested	210	245	290	Ω
Input: pin	Photo	-				•
V _{bias} (IPhoto)	input bias voltage on pin IPhoto		800	1050	1300	mV
I _{i(IPhoto)(p-p)}	input current on pin IPhoto	note 2				
	(peak-to-peak value)	$V_{CC} = 5 V$	0	1	1800	μA
		V _{CC} = 3.3 V	0	1	1600	μA
R _i	small-signal input resistance	f _i = 1 MHz; input current < 0.5 μA	-	330	-	Ω
I _{n(tot)}	total integrated RMS noise current over bandwidth (referenced to input)	$\Delta f = 90 \text{ MHz}; \text{ note } 3$	_	16	-	nA

TZA3033

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Data outpu	its: OUT and OUTQ					
V _{o(cm)}	common mode output voltage	AC coupled; $R_L = 50 \Omega$	V _{CC} – 1.34	V _{CC} – 1.15	V _{CC} - 0.96	V
V _{o(se)(p-p)}	single-ended output voltage (peak-to-peak value)	AC coupled; $R_L = 50 \Omega$; input current = 100 $\mu A_{(p-p)}$	40	110	200	mV
V _{OO}	differential output offset	V _{CC} = 5 V	-50	+55	+150	mV
voltage	voltage	V _{CC} = 3.3 V	-50	+35	+100	mV
R _{o(se)}	single-ended output resistance	DC tested	36	44	57	Ω
t _r	rise time	20% to 80%	_	2.3	3.9	ns
t _f	fall time	80% to 20%	_	2.3	3.9	ns
Automatic	gain control loop: pad AGC					•
I _{th(AGC)}	AGC threshold current	referred to the peak input current; tested at 10 MHz	_	2.5	_	μA
t _{att(AGC)}	AGC attack time		_	5	_	μs
t _{decay(AGC)}	AGC decay time		_	10	-	ms

Notes

1. PSRR is defined as the ratio of the equivalent current change at the input (ΔI_{IPhoto}) to a change in supply voltage:

$$\mathsf{PSRR} = \frac{\Delta \mathsf{I}_{\mathsf{IPhoto}}}{\Delta \mathsf{V}_{\mathsf{CC}}}$$

For example, a + 4 mV disturbance on V_{CC} at 10 MHz will typically add an extra 2 nA to the photodiode current. The external capacitor between DREF and GND has a large impact on PSRR. The specification is valid with an external capacitor of 1 nF. The PSSR is guaranteed by design.

2. The Pulse Width Distortion (PWD) is <5% over the whole input current range. The PWD is defined as:

 $PWD = \left(\frac{pulse \ width}{T} - 1\right) \times 100\%$ where T is the clock period. The PWD is measured differentially with

PRBS pattern of 10⁻²³.

3. All $I_{n(tot)}$ measurements were made with an input capacitance of $C_i = 1 \text{ pF}$. This was comprised of 0.5 pF for the photodiode itself, with 0.3 pF allowed for the printed-circuit board layout and 0.2 pF intrinsic to the package. Noise performance is measured differentially.

MGT550 MGT549 50 36.5 Icc ICC (mA) (mA) (1) 36.0 45 (2) (3) 35.5 40 35.0 35 34.5 30 34.0 25 т_ј (°С) ¹²⁰ 3.5 4.5 0 3.0 4.0 5.0 5.5 -40 40 80 $V_{CC}(V)$ (1) $V_{CC} = 5 V$. (2) $V_{CC} = 3.3 V.$ (3) $V_{CC} = 3 V.$ Fig.8 Supply current as a function of the junction Fig.7 Supply current as a function of the supply temperature. voltage. MGT552 MGT551 1.055 1.12 Vi ٧i (V) (V) 1.10 1.050 1.08 1.045 1.06 (1) 1.040 (2) 1.04 (3) 1.035 1.02 1.030 1.00 80 T_j (°C) 120 3.0 3.5 4.0 4.5 5.0 5.5 -40 0 40 $V_{CC}(V)$ (1) $V_{CC} = 5 V$. (2) $V_{CC} = 3.3 V.$ (3) $V_{CC} = 3 V.$

TYPICAL PERFORMANCE CHARACTERISTICS

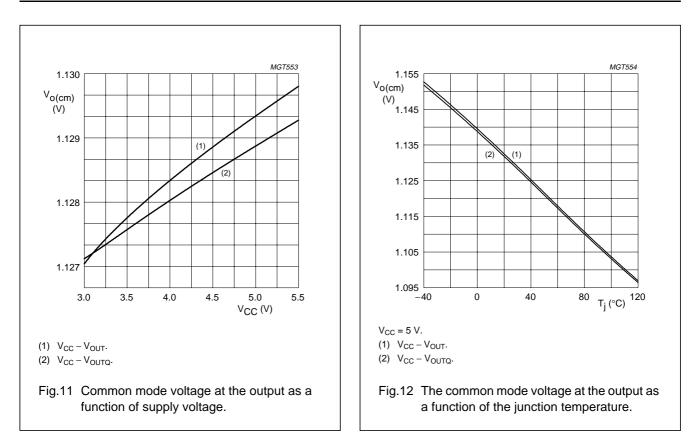
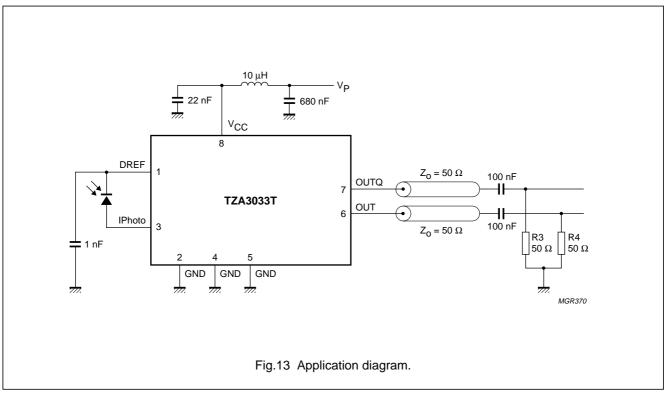

Fig.10 Input voltage as a function of the junction temperature.

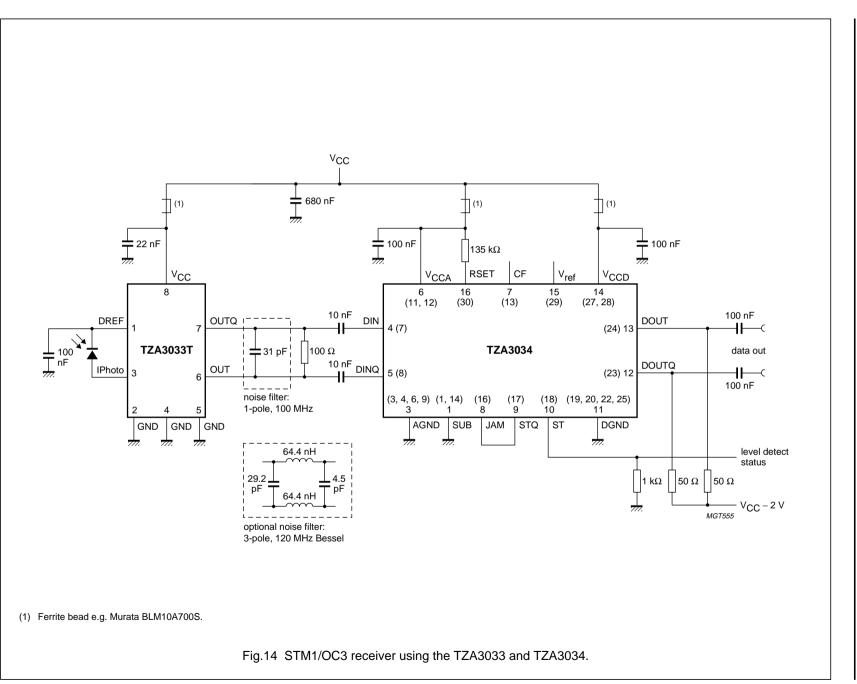
Fig.9


voltage.

Input voltage as a function of the supply

TZA3033

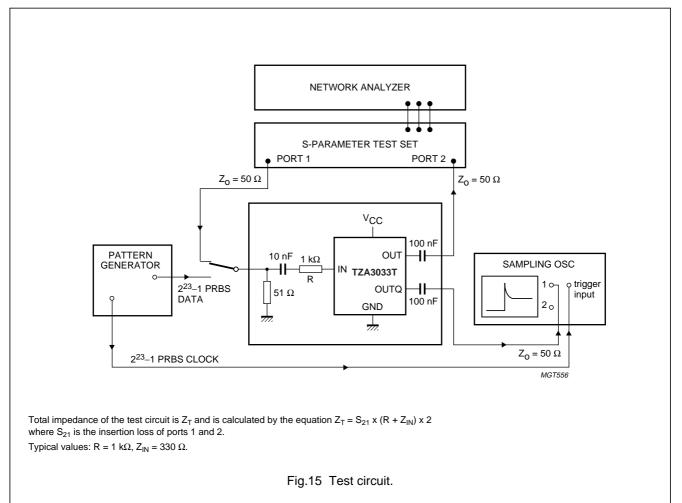
APPLICATION INFORMATION

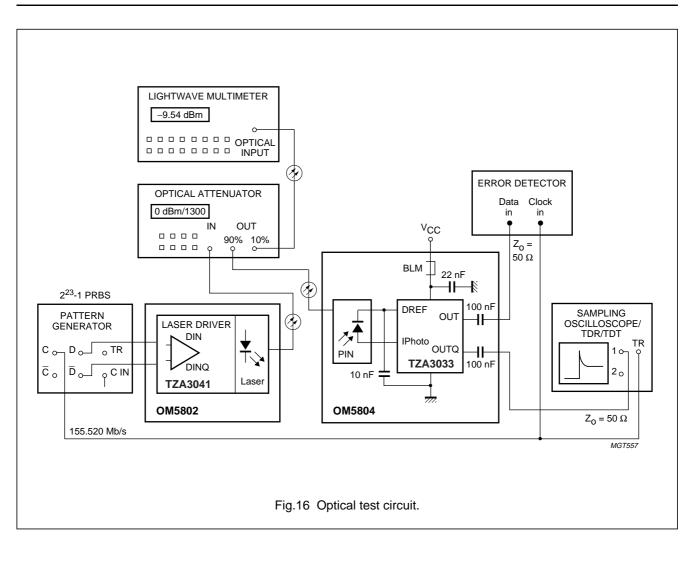


Philips Semiconductors

Product specification

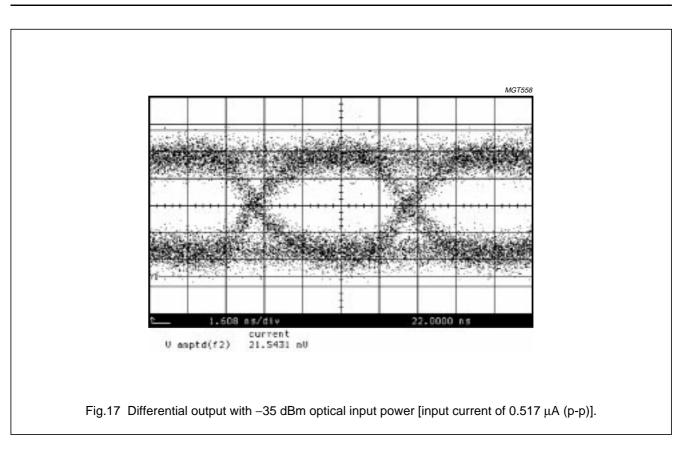
SDH/SONET STM1/OC3 transimpedance amplifier

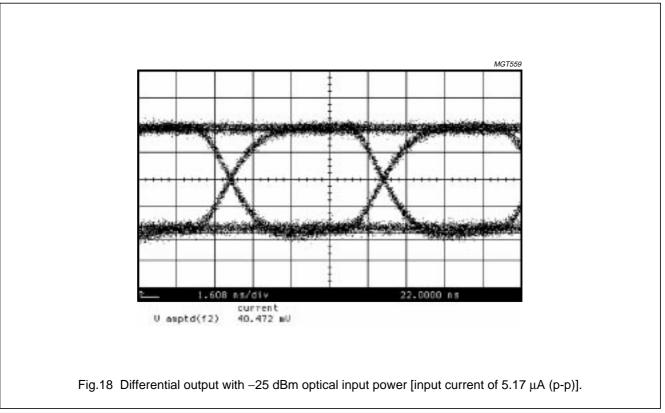

2002 Sep 06

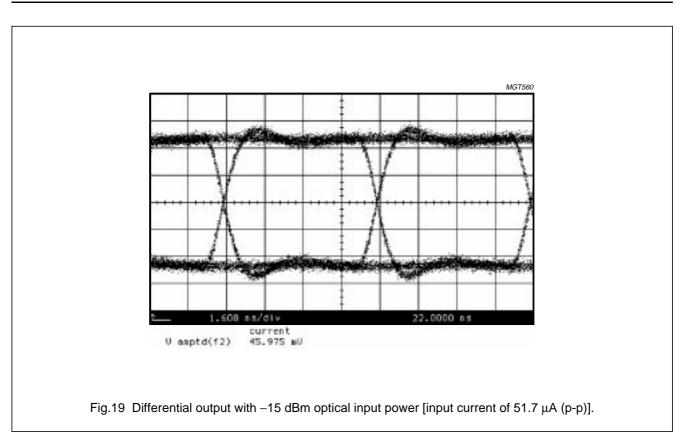

_

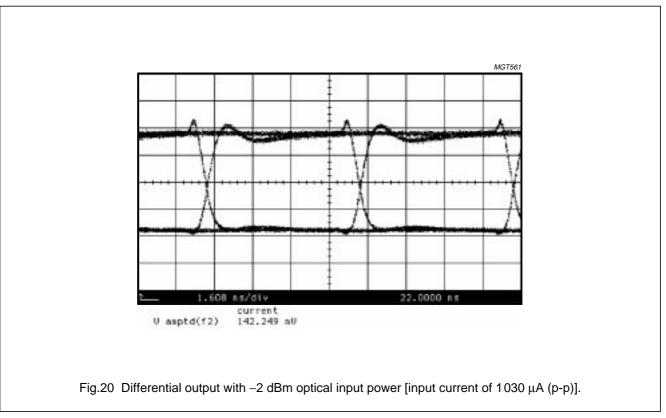
TZA3033

SDH/SONET STM1/OC3 transimpedance amplifier


Test circuits






TZA3033

SDH/SONET STM1/OC3 transimpedance amplifier

BONDING PAD LOCATIONS

SYMBOL	PAD	COORDINATES ⁽¹⁾		
STMBOL	PAD	x	у	
DREF	1	95	881	
TESTA	2	95	735	
GND	3	95	618	
GND	4	95	473	
IPhoto	5	95	285	
TESTB	6	95	147	
GND	7	215	95	
GND	8	360	95	
GND	9	549	95	
GND	10	691	95	
OUT	11	785	501	
OUTQ	12	785	641	
V _{CC}	13	567	1055	
V _{CC}	14	424	1055	
AGC	15	259	1055	

Note

1. All coordinates are referenced, in μ m, to the bottom left-hand corner of the die.

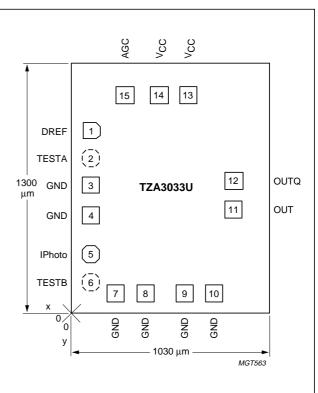
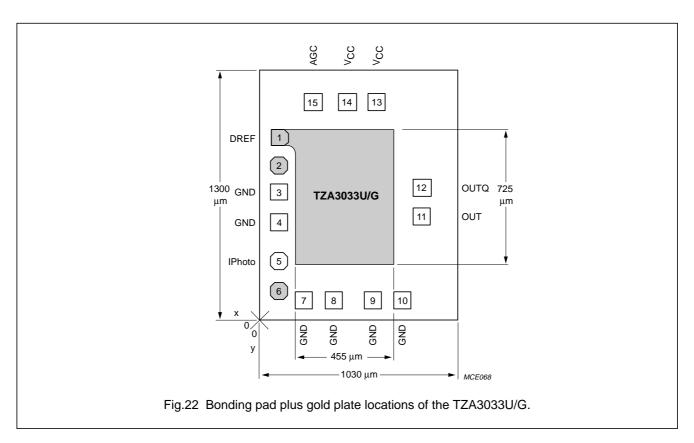



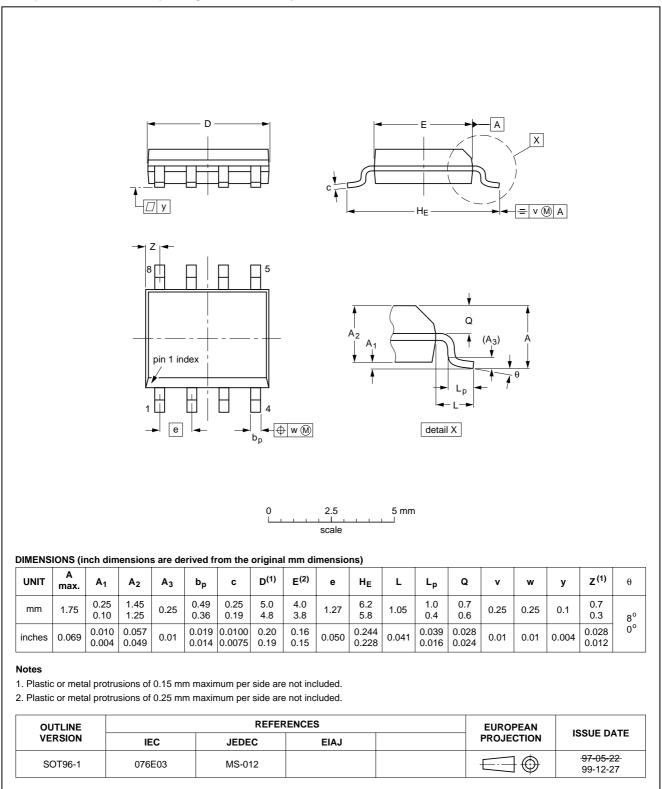
Fig.21 Bonding pad locations of the TZA3033U.

TZA3033

Physical characteristics of the bare die

PARAMETER	VALUE	
Gold layer ⁽¹⁾	2.8 μm Au + 3.2 μm TiW	
Glass passivation	2.1 μm PhosphoSilicate Glass (PSG) on top of 0.65 μm oxynitride	
Bonding pad dimension	minimum dimension of exposed metallization is $90 \times 90 \ \mu m$ (pad size = $100 \times 100 \ \mu m$)	
Metallization	1.22 μm W/AlCu/TiW	
Thickness	380 μm nominal	
Size	$1.03 \times 1.30 \text{ mm} (1.34 \text{ mm}^2)$	
Backing	silicon; electrically connected to GND potential through substrate contacts	
Attach temperature	<440 °C; recommended die attach is glue	
Attach time	<15 s	

Note


1. For the TZA3033U/G version only.

TZA3033

SDH/SONET STM1/OC3 transimpedance amplifier

PACKAGE OUTLINE

SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300 \,^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

TZA3033

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE ⁽¹⁾	SOLDERING METHOD		
PACKAGE (***	WAVE	REFLOW ⁽²⁾	
BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA	not suitable	suitable	
HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable ⁽³⁾	suitable	
PLCC ⁽⁴⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽⁴⁾⁽⁵⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁶⁾	suitable	

Notes

- 1. For more detailed information on the BGA packages refer to the "(*LF*)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office.
- 2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
- If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 6. Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

Product specification

SDH/SONET STM1/OC3 transimpedance amplifier

TZA3033

DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. **Right to make changes** — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Bare die — All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, Philips Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

TZA3033

NOTES

TZA3033

NOTES

TZA3033

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2002

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

403510/03/pp28

Date of release: 2002 Sep 06

Document order number: 9397 750 10127

SCA74

Let's make things better.

Philips Semiconductors