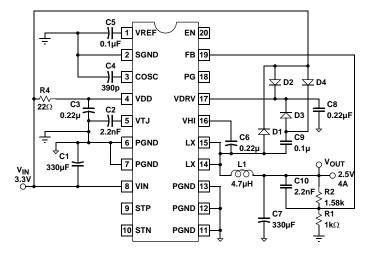


Data Sheet March 4, 2002 FN7296

Monolithic 4 Amp DC:DC Step-Down Regulator

élantec.


The EL7563 is an integrated, full-featured synchronous step-down regulator with output voltage

adjustable from 1.0V to 2.5V. It is capable of delivering 4A continuous current at up to 95% efficiency. The EL7563 operates at a constant frequency pulse width modulation (PWM) mode, making external synchronization possible. Patented on-chip resistorless current sensing enables current mode control, which provides cycle-by-cycle current limiting, over-current protection, and excellent step load response. The EL7563 features power tracking, which makes the start-up sequencing of multiple converters possible. A junction temperature indicator conveniently monitors the silicon die temperature, saving the designer time on the tedious thermal characterization. The minimal external components and full functionality make this EL7563 ideal for desktop and portable applications.

The EL7563 is specified for operation over the full -40°C to +85°C temperature range.

Pinout

EL7563 (20-PIN SO) TOP VIEW

Typical Application Diagrams continued on page 3 Manufactured Under U.S. Patent No. 5,7323,974

Features

- Integrated synchronous MOSFETs and current mode controller
- · 4A continuous output current
- Up to 95% efficiency
- · Internal patented current sense
- · Cycle-by-cycle current limit
- 3V to 3.6V input voltage
- · Adjustable output voltage 1V to 2.5V
- · Precision reference
- ±0.5% load and line regulation
- · Adjustable switching frequency to 1MHz
- Oscillator synchronization possible
- · Internal soft-start
- Over-voltage protection
- · Junction temperature indicator
- · Over-temperature protection
- · Under-voltage lockout
- · Multiple supply start-up tracking
- Power-good indicator
- 20-pin SO (0.300") package
- 28-pin HTSSOP package

Applications

- DSP, CPU core, and I/O supplies
- Logic/Bus supplies
- · Portable equipment
- DC:DC converter modules
- GTL + Bus power supply

Ordering Information

PART NUMBER	PACKAGE	TAPE & REEL	PKG. NO.
EL7563CM	20-Pin SO (0.300")	-	MDP0027
EL7563CM-T13	20-Pin SO (0.300")	13"	MDP0027
EL7563CRE-T7	28-Pin HTSSOP	7"	MDP0048
EL7563CRE-T13	28-Pin HTSSOP	13"	MDP0048

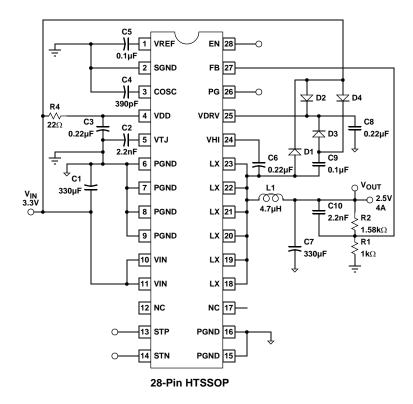
EL7563

Absolute Maximum Ratings (T_A = 25°C)

Supply Voltage between V _{IN} or V _{DD} and GND +4.5V	Storage Temperature
V _{LX} Voltage	Operating Ambient Temperature
Input Voltage	Operating Junction Temperature
V _{HI} Voltage GND -0.3V, V _{LX} +6V	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

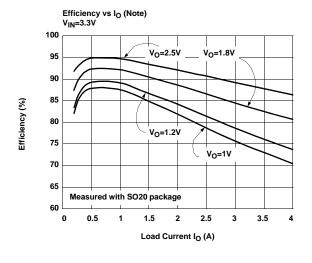

$\textbf{DC Electrical Specifications} \qquad \text{$V_{DD} = V_{IN} = 3.3$V, $T_{A} = T_{J} = 25$^{\circ}$C, $C_{OSC} = 1.2$nF, unless otherwise specified. }$

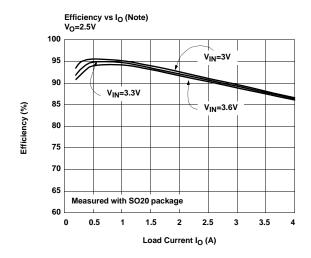
VREFTC Reference Temperature Coefficient 50 ppm/°C VREFLOAD Reference Load Regulation 0 < I _{REF} < 50µA -1 % VRAMP Oscillator Ramp Amplitude 1.15 V IoSC_CHG Oscillator Charge Current 0.1V < V _{OSC} < 1.25V 200 µA IoSC_DIS Oscillator Discharge Current 0.1V < V _{OSC} < 1.25V 8 mA IvDD+VDRV VDD+VDRV Supply Current VEN = 2.7V, FOSC = 120kHz 2 3.5 5 mA IvDD_OFF VDD Standby Current EN = 0 1 1.5 mA VDD_OFF VDp for Shutdown 2.4 2.65 V VDD_ON VDp for Startup 2.6 2.95 V TOT Over Temperature Threshold 135 °C THYS Over Temperature Hysteresis 20 °C ILEAK Internal FET Leakage Current EN = 0, Lx = 3.3V (low FET), Lx = 0V 10 µA ILMAX Peak Current Limit 5 A A RDSON Tempco 0.2	PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
VREFLOAD Reference Load Regulation 0 < I_REF < 50 μA -1 % VRAMP Oscillator Ramp Amplitude 1.15 V VoSC_CHG Oscillator Charge Current 0.1V < VOSC < 1.25V	V _{REF}	Reference Accuracy		1.24	1.26	1.28	V
Veralimary Oscillator Ramp Amplitude 0.1 Veralimary Veralim	V _{REFTC}	Reference Temperature Coefficient			50		ppm/°C
OSC_CHG OSCIllator Charge Current O.1V < V _{OSC} < 1.25V 200 μA IOSC_DIS OSCIllator Discharge Current O.1V < V _{OSC} < 1.25V 8 mA MNDP*VDRV V _{ODP*} V _{ORV} Supply Current V _{EN = 2.7V, FoSC = 120kHz 2 3.5 5 mA V_{DD_OFF} V_{DD_Standby Current EN = 0 1 1.5 mA V_{DD_OFF} V_{DD_Standby Current EN = 0 2.4 2.65 V V_{DD_ON} V_{DD_OFT} Startup 2.6 2.95 V ToT Over Temperature Threshold 135 °C T_{HYS} Over Temperature Hysteresis 20 °C I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 3.3V (low FET), L_X = 0V I_{LEAK} Internal FET Leakage Current EN = 0, L_X = 0}}}	V _{REFLOAD}	Reference Load Regulation	0 < I _{REF} < 50μA	-1			%
OSC_DIS OSCIIIator Discharge Current O.1V < V _{OSC} < 1.25V 8 mA V _{DD+} V _{DRV} V _{DD+} V _{DRV} Supply Current V _{EN} = 2.7V, F _{OSC} = 120kHz 2 3.5 5 mA V _{DD-} OFF V _{DD} Standby Current EN = 0 1 1.5 mA V _{DD-} OFF V _{DD} for Shutdown 2.4 2.65 V V _{DD-} ON V _{DD} for Startup 2.6 2.95 V T _{OT} Over Temperature Threshold 135 °C T _{HYS} Over Temperature Hysteresis 20 °C T _{LEAK} Internal FET Leakage Current EN = 0, L _X = 3.3V (low FET), L _X = 0V T _{LEAK} Internal FET Leakage Current EN = 0, L _X = 3.3V (low FET), L _X = 0V T _{LEAK} Internal FET Caskage Current EN = 0, L _X = 3.3V (low FET), L _X = 0V T _{LEAK} Internal FET Os Resistance Wafer level test only 30 60 mΩ T _{LEAK} FET On Resistance Wafer level test only 30 60 mΩ T _{LEAK} R _{DSON} Tempoo 0.2 mΩ/°C S _{TP} Auxilliary Supply Tracking Positive Input V _{STP} = V _{IN} /2 -4 2.5 μA S _{TN} Auxilliary Supply Tracking Negative Input V _{STN} = V _{IN} /2 -4 2.5 μA S _{TN} Auxilliary Supply Tracking Negative Input V _{STN} = V _{IN} /2 2.5 4 μA V _{PGP} Positive Power Good Threshold With respect to target output voltage 8 16 % V _{PGR} Negative Power Good Threshold With respect to target output voltage -16 -8 % V _{PG_L} Power Good Drive High I _{PG} = 1mA 2.7 V V _{PG_L} Power Good Drive Low I _{PG} = 1mA 0.5 V V _{PG_L} Over Voltage Protection 10 % 0.5 % V _{PG_L} Output Initial Accuracy I _{LOAD} = 0A 0.977 0.992 1.007 V V _{PG_L} V _{PG_L} Output Load Regulation 0.5A × I _{LOAD} < 4A 0.5 % V _{PG_L} Feedback Input Pull Up Current V _{PG} = 0V 100 200 nA V _{PG_L} EN I _{PD} I _{PD}	V _{RAMP}	Oscillator Ramp Amplitude			1.15		V
V_DD+V_DRV V_DD+V_DRV Supply Current V_EN = 2.7V, F_OSC = 120kHz 2 3.5 5 mA V_DD_OFF V_DD Standby Current EN = 0 1 1.5 mA V_DD_OFF V_DD for Shutdown 2.4 2.65 V V_DD_ON V_DD for Startup 2.6 2.95 V TOT Over Temperature Threshold 135 °C THYS Over Temperature Hysteresis 20 °C ILEAK Internal FET Leakage Current EN = 0, L _X = 3.3V (low FET), L _X = 0V 10 µA ILMAX Peak Current Limit 5 A RDSON FET On Resistance Wafer level test only 30 60 mΩ RDSONTC RDSON Tempco 0.2 mΩ/°C ISTP Auxilliary Supply Tracking Positive Input Pull Down Current VSTP = VIN/2 -4 2.5 µA ISTN Auxilliary Supply Tracking Negative Input Pull Up Current VSTN = VIN/2 2.5 4 µA VPGP Positive Power Good Threshold With respect to target output voltage 8 16 % VPG_LO Power Good Drive High IPG = 1mA 2.7 V VPG_LO Power Good Drive Low IPG = 1mA 2.7 V VPG_LO Power Good Drive Low IPG = 1mA 2.7 V VPG_LO Over Voltage Protection 10 % VFB_LINE Output Line Regulation VIN = 3.3V, ΔVIN = 10%, ILOAD = 0A 0.5 % VFB_LOAD Output Load Regulation VIN = 3.3V, ΔVIN = 10%, ILOAD = 0A 0.5 % VFB_LOAD Output Load Regulation VIN = 3.3V, ΔVIN = 10%, ILOAD = 2A ±1 % VFB_LOAD EN Input Load Level UV VFB_EOV 100 200 nA VFB_LINE EN Input High Level UV VFB_EOV 100 200 nA VFB_LINE EN Input Load Level UV VFB_EOV 100 200 nA VFB_LINE EN Input Load Level UV VFB_EOV 100 200 nA VFB_LINE EN Input Load Level UV VFB_EOV 100 200 nA VFB_LINE EN Input Load Level UV VFB_EOV 100 200 nA VFB_LINE EN Input Load Level UV VFB_EOV 100 200 nA VFB_LINE EN Input Load Level UV VFB_EOV 100 200 nA VFB_LINE EN Input Load Level UV VFB_EOV 100 200 nA VFB_LINE EN Input Load Level UV VFB_EOV 100 200 nA VFB_LOAD UV UV	losc_chg	Oscillator Charge Current	0.1V < V _{OSC} < 1.25V		200		μΑ
VDD_OFF VDD Standby Current EN = 0	losc_dis	Oscillator Discharge Current	0.1V < V _{OSC} < 1.25V		8		mA
VDD_OFF VDD for Shutdown 2.4 2.65 V VDD_ON VDD for Startup 2.6 2.95 V TOT Over Temperature Threshold 135 °C THYS Over Temperature Hysteresis 20 °C ILEAK Internal FET Leakage Current EN = 0, Lx = 3.3V (low FET), Lx = 0V (high FET) 10 µA ILMAX Peak Current Limit 5 A A RDSON FET On Resistance Wafer level test only 30 60 mΩ RDSONTC RDSON Tempco 0.2 mΩ/°C IAUXIIIary Supply Tracking Positive Input Pull Down Current VSTP = VIN/2 -4 2.5 µA ISTP Auxilliary Supply Tracking Negative Input Pull UP Current VSTN = VIN/2 2.5 4 µA VPGP Positive Power Good Threshold With respect to target output voltage 8 16 % VPG_HI Power Good Drive Low IPG = 1mA 2.7 V V VPG_LO Power Good Drive Low IPG = 1mA 2.7 V	I _{VDD} +V _{DRV}	V _{DD} +V _{DRV} Supply Current	V _{EN} = 2.7V, F _{OSC} = 120kHz	2	3.5	5	mA
VDD_ON VDD_ON VDD for Startup 2.6 2.95 V	I _{VDD_OFF}	V _{DD} Standby Current	EN = 0		1	1.5	mA
Tot	V _{DD_OFF}	V _{DD} for Shutdown		2.4		2.65	V
Thys	V _{DD_ON}	V _{DD} for Startup		2.6		2.95	V
LEAK	T _{OT}	Over Temperature Threshold			135		°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T _{HYS}	Over Temperature Hysteresis			20		°C
RDSONFET On ResistanceWafer level test only3060mΩRDSONTCRDSON Tempco0.2 $m\Omega^{\circ}$ CISTPAuxilliary Supply Tracking Positive Input Pull Down Current $V_{STP} = V_{IN}/2$ -42.5 μ AISTNAuxilliary Supply Tracking Negative Input Pull Up Current $V_{STN} = V_{IN}/2$ 2.54 μ AVPGPPositive Power Good ThresholdWith respect to target output voltage816%VPGNNegative Power Good ThresholdWith respect to target output voltage-16-8%VPG_IHPower Good Drive High $I_{PG} = 1mA$ 2.7VVPG_LOPower Good Drive Low $I_{PG} = 1mA$ 2.7VVOVPOver Voltage Protection10%VFBOutput Initial Accuracy $I_{LOAD} = 0A$ 0.9770.9921.007VVFB_LINEOutput Line Regulation $V_{IN} = 3.3V$, $\Delta V_{IN} = 10\%$, $I_{LOAD} = 0A$ 0.5%VFB_LOADOutput Load Regulation0.5A < $I_{LOAD} < 4A$ 0.5%VFB_TCOutput Temperature Stability-40°C < TA < 85°C, $I_{LOAD} = 2A$ ±1%VFB_TCOutput Temperature Stability-40°C < TA < 85°C, $I_{LOAD} = 2A$ ±1%VEN_HIEN Input High Level2.7VVEN_LOEN Input Low Level1V	ILEAK	Internal FET Leakage Current	, , , , , , , , , , , , , , , , , , , ,			10	μΑ
RDSONTC RDSON Tempco 0.2 mΩ/°C ISTP Auxilliary Supply Tracking Positive Input Pull Down Current VSTP = VIN/2 -4 2.5 μA ISTN Auxilliary Supply Tracking Negative Input Pull Up Current VSTN = VIN/2 2.5 4 μA VPGP Positive Power Good Threshold With respect to target output voltage 8 16 % VPGN Negative Power Good Threshold With respect to target output voltage -16 -8 % VPG_HI Power Good Drive High IPG = 1mA 2.7 V V VPG_LO Power Good Drive Low IPG = 1mA 0.5 V VOVP Over Voltage Protection 10 % VFB Output Initial Accuracy ILOAD = 0A 0.977 0.992 1.007 V VFB_LINE Output Line Regulation VIN = 3.3V, ΔVIN = 10%, ILOAD = 0A 0.5 % VFB_LOAD Output Temperature Stability -40°C < TA < 85°C, ILOAD = 2A	I _{LMAX}	Peak Current Limit		5			Α
ISTP Auxilliary Supply Tracking Positive Input Pull Down Current VSTP = VIN/2 -4 2.5 μA ISTN Auxilliary Supply Tracking Negative Input Pull Up Current VSTN = VIN/2 2.5 4 μA VPGP Positive Power Good Threshold With respect to target output voltage 8 16 % VPGN Negative Power Good Threshold With respect to target output voltage -16 -8 % VPG_HI Power Good Drive High IPG = 1mA 2.7 V V VPG_LO Power Good Drive Low IPG = -1mA 0.5 V VOVP Over Voltage Protection 10 % VFB Output Initial Accuracy ILOAD = 0A 0.977 0.992 1.007 V VFB_LINE Output Line Regulation VIN = 3.3V, Δ VIN = 10%, ILOAD = 0A 0.5 % VFB_LOAD Output Temperature Stability -40°C < TA < 85°C, ILOAD = 2A	R _{DSON}	FET On Resistance	Wafer level test only		30	60	mΩ
Pull Down Current Pull Down Current Pull Up Current VSTN = VIN/2 2.5 4 μA	R _{DSONTC}	R _{DSON} Tempco			0.2		mΩ/°C
Pull Up Current Verity Positive Power Good Threshold With respect to target output voltage 8 16 % VPGN Negative Power Good Threshold With respect to target output voltage -16 -8 % VPG_HI Power Good Drive High IPG = 1mA 2.7 V V VPG_LO Power Good Drive Low IPG = -1mA 0.5 V VOVP Over Voltage Protection 10 % VFB Output Initial Accuracy ILOAD = 0A 0.977 0.992 1.007 V VFB_LINE Output Line Regulation VIN = 3.3V, ΔVIN = 10%, ILOAD = 0A 0.5 % VFB_LOAD Output Load Regulation 0.5A < ILOAD < 4A	I _{STP}		V _{STP} = V _{IN} /2	-4	2.5		μΑ
VPGN Negative Power Good Threshold With respect to target output voltage -16 -8 % VPG_HI Power Good Drive High IPG = 1mA 2.7 V VPG_LO Power Good Drive Low IPG = -1mA 0.5 V VOVP Over Voltage Protection 10 % VFB Output Initial Accuracy ILOAD = 0A 0.977 0.992 1.007 V VFB_LINE Output Line Regulation VIN = 3.3V, ΔVIN = 10%, ILOAD = 0A 0.5 % VFB_LOAD Output Load Regulation 0.5A < ILOAD < 4A	I _{STN}		$V_{STN} = V_{IN}/2$		2.5	4	μΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{PGP}	Positive Power Good Threshold	With respect to target output voltage	8		16	%
VPG_LO Power Good Drive Low IPG = -1mA 0.5 V VOVP Over Voltage Protection 10 % VFB Output Initial Accuracy ILOAD = 0A 0.977 0.992 1.007 V VFB_LINE Output Line Regulation VIN = 3.3V, ΔVIN = 10%, ILOAD = 0A 0.5 % VFB_LOAD Output Load Regulation 0.5A < ILOAD < 4A	V _{PGN}	Negative Power Good Threshold	With respect to target output voltage	-16		-8	%
VOVP Over Voltage Protection 10 % VFB Output Initial Accuracy I _{LOAD} = 0A 0.977 0.992 1.007 V VFB_LINE Output Line Regulation V _{IN} = 3.3V, ΔV _{IN} = 10%, I _{LOAD} = 0A 0.5 % VFB_LOAD Output Load Regulation 0.5A < I _{LOAD} < 4A	V _{PG_HI}	Power Good Drive High	I _{PG} = 1mA	2.7			V
VFBOutput Initial Accuracy $I_{LOAD} = 0A$ 0.9770.9921.007VVFB_LINEOutput Line Regulation $V_{IN} = 3.3V$, $\Delta V_{IN} = 10\%$, $I_{LOAD} = 0A$ 0.5%VFB_LOADOutput Load Regulation0.5A < $I_{LOAD} < 4A$ 0.5%VFB_TCOutput Temperature Stability $-40^{\circ}C < T_A < 85^{\circ}C$, $I_{LOAD} = 2A$ ±1% I_{FB} Feedback Input Pull Up Current $V_{FB} = 0V$ 100200nA V_{EN_LO} EN Input High Level2.7 V	V _{PG_LO}	Power Good Drive Low	I _{PG} = -1mA			0.5	V
V_{FB_LINE} Output Line Regulation $V_{IN} = 3.3V$, $\Delta V_{IN} = 10\%$, $I_{LOAD} = 0A$ 0.5% V_{FB_LOAD} Output Load Regulation $0.5A < I_{LOAD} < 4A$ 0.5% V_{FB_TC} Output Temperature Stability $-40^{\circ}C < T_A < 85^{\circ}C$, $I_{LOAD} = 2A$ ± 1 % I_{FB} Feedback Input Pull Up Current $V_{FB} = 0V$ 100200nA V_{EN_HI} EN Input High Level2.7 V V_{EN_LO} EN Input Low Level1 V	V _{OVP}	Over Voltage Protection			10		%
V_{FB_LOAD} Output Load Regulation $0.5A < I_{LOAD} < 4A$ 0.5 % V_{FB_TC} Output Temperature Stability $-40^{\circ}C < T_A < 85^{\circ}C$, $I_{LOAD} = 2A$ ± 1 % I_{FB} Feedback Input Pull Up Current $V_{FB} = 0V$ 100 200 nA V_{EN_HI} EN Input High Level 2.7 V V_{EN_LO} EN Input Low Level 1 V	V _{FB}	Output Initial Accuracy	I _{LOAD} = 0A	0.977	0.992	1.007	V
VFB_TC Output Temperature Stability -40°C < TA < 85°C, I _{LOAD} = 2A ±1 % IFB Feedback Input Pull Up Current V _{FB} = 0V 100 200 nA VEN_HI EN Input High Level 2.7 V VEN_LO EN Input Low Level 1 V	V _{FB_LINE}	Output Line Regulation	$V_{IN} = 3.3V$, $\Delta V_{IN} = 10\%$, $I_{LOAD} = 0A$		0.5		%
IFB Feedback Input Pull Up Current VFB = 0V 100 200 nA VEN_HI EN Input High Level 2.7 V VEN_LO EN Input Low Level 1 V	V _{FB_LOAD}	Output Load Regulation	0.5A < I _{LOAD} < 4A		0.5		%
V _{EN_HI} EN Input High Level 2.7 V V _{EN_LO} EN Input Low Level 1 V	V _{FB_TC}	Output Temperature Stability	-40°C < T _A < 85°C, I _{LOAD} = 2A		±1		%
V _{EN_LO} EN Input Low Level 1 V	I _{FB}	Feedback Input Pull Up Current	V _{FB} = 0V		100	200	nA
	V _{EN_HI}	EN Input High Level				2.7	V
I_{EN} Enable Pull Up Current $V_{EN} = 0$ -4 -2.5 μA	V _{EN_LO}	EN Input Low Level		1			V
	I _{EN}	Enable Pull Up Current	V _{EN} = 0	-4	-2.5		μΑ

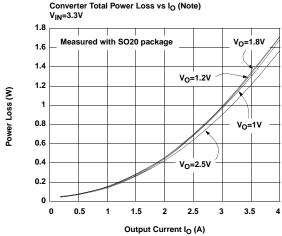
Closed-Loop AC Electrical Specifications $V_S = V_{IN} = 3.3V$, $T_A = T_J = 25$ °C, $C_{OSC} = 1.2$ nF, unless otherwise specified.

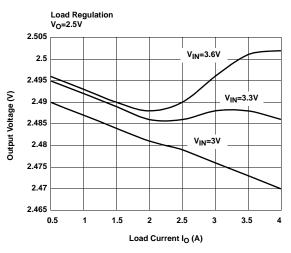
PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
Fosc	Oscillator Initial Accuracy		100	115	125	kHz
tsync	Minimum Oscillator Sync Width			25		ns
M _{SS}	Soft Start Slope			0.5		V/ms
t _{BRM}	FET Break Before Make Delay			15		ns
t _{LEB}	High Side FET Minimum On Time			150		ns
D _{MAX}	Maximum Duty Cycle			95		%

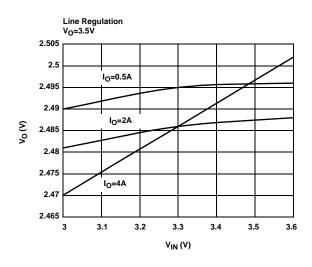
Typical Application Diagrams (Continued)

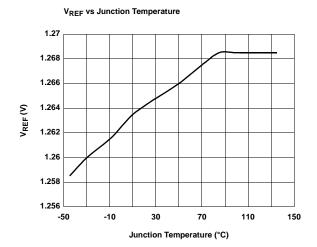


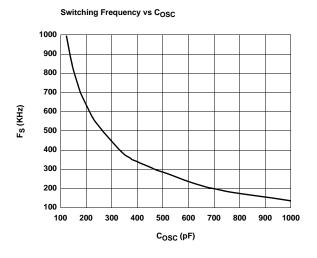

Pin Descriptions

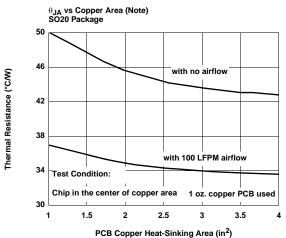

PIN NUMBER	PIN NAME	PIN FUNCTION
1	VREF	Bandgap reference bypass capacitor; typically 0.1µF to SGND
2	SGND	Control circuit negative supply or signal ground
3	cosc	Oscillator timing capacitor (see performance curves)
4	VDD	Control circuit positive supply; normally connected to VIN through an RC filter
5	VTJ	Junction temperature monitor; connected with 2.2nF to 3.3nF to SGND
6	PGND	Ground return of the regulator; connected to the source of the low-side synchronous NMOS power FET
7	PGND	Ground return of the regulator; connected to the source of the low-side synchronous NMOS power FET
8	VIN	Power supply input of the regulator; connected to the drain of the high-side NMOS power FET
9	STP	Auxilliary supply tracking positive input; tied to regulator output to synchronize start up with a second supply; leave open for stand alone operation; 2µA internal pull down current
10	STN	Auxilliary supply tracking negative input; connect to output of a second supply to synchronize start up; leave open for stand alone operation; 2µA internal pull up current
11	PGND	Ground return of the regulator; connected to the source of the low-side synchronous NMOS power FET
12	PGND	Ground return of the regulator; connected to the source of the low-side synchronous NMOS power FET
13	PGND	Ground return of the regulator; connected to the source of the low-side synchronous NMOS power FET
14	LX	Inductor drive pin; high current output whose average voltage equals the regulator output voltage
15	LX	Inductor drive pin; high current output whose average voltage equals the regulator output voltage
16	VHI	Positive supply of high-side driver; boot strapped from VDRV to LX with an external 0.22µF capacitor
17	VDRV	Positive supply of low-side driver and input voltage for high side boot strap
18	PG	Power good window comparator output; logic 1 when regulator output is within ±10% of target output voltage
19	FB	Voltage feedback input; connected to external resistor divider between VOUT and SGND; a 125nA pull-up current forces VOUT to SGND in the event that FB is floating
20	EN	Chip enable, active high; a 2µA internal pull up current enables the device if the pin is left open; a capacitor can be added at this pin to delay the start of converter

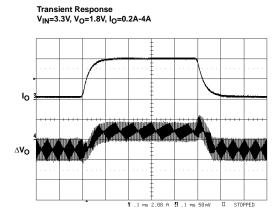

Typical Performance Curves (20-Pin SO Package)

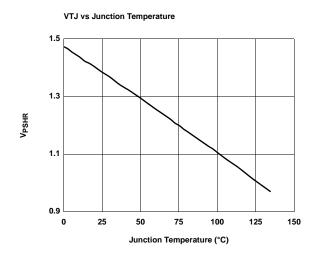

NOTE: The 28-Pin HTSSOP Package Offers Improved Performance

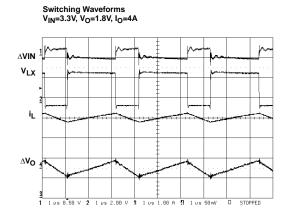


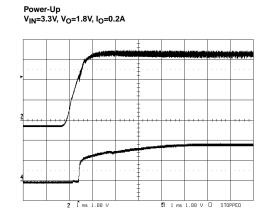


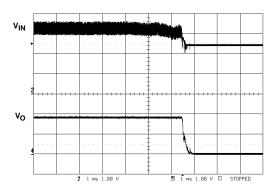


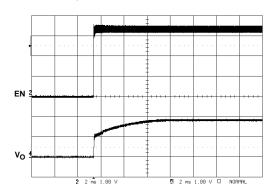



Typical Performance Curves (20-Pin SO Package) (Continued)

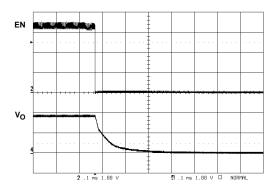

NOTE: The 28-Pin HTSSOP Package Offers Improved Performance

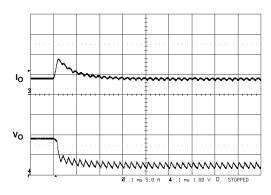


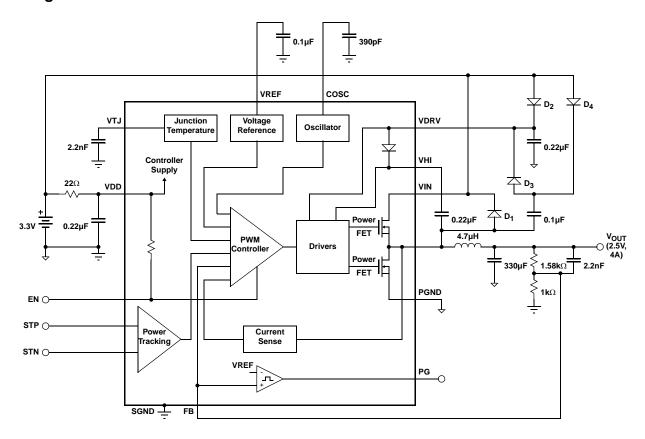




Typical Performance Curves (20-Pin SO Package) (Continued)


Power-Down V_{IN}=3.3V, V_O=1.8V, I_O=4A


Enable V_{IN}=3.3V, V_O=1.8V at 4A


Disable V_{IN}=3.3V, V_O=1.8V at 4A

Short-Circuit Protection V_{IN}=3.3V, V_O=1.8V, I_O=4A to short

Block Diagram

Applications Information

Circuit Description

General

The EL7563 is a fixed frequency, current mode controlled DC:DC converter with integrated N-channel power MOSFETs and a high precision reference. The device incorporates all the active circuitry required to implement a cost effective, user-programmable 4A synchronous stepdown regulator suitable for use in DSP core power supplies. By combining fused-lead packaging technology with an efficient synchronous switching architecture, high power output (10W) can be realized without the use of discrete external heat sinks.

Theory of Operation

The EL7563 is composed of 7 major blocks:

- 1. PWM Controller
- 2. NMOS Power FETs and Drive Circuitry
- 3. Bandgap Reference
- 4. Oscillator
- 5. Temperature Sensor
- 6. Power Good and Power On Reset
- 7. Auxiliary Supply Tracking

PWM Controller

The EL7563 regulates output voltage through the use of current-mode controlled pulse width modulation. The three main elements in a PWM controller are the feedback loop and reference, a pulse width modulator whose duty cycle is controlled by the feedback error signal, and a filter which averages the logic level modulator output. In a step-down (buck) converter, the feedback loop forces the time-averaged output of the modulator to equal the desired output voltage. Unlike pure voltage-mode control systems, current-mode control utilizes dual feedback loops to provide both output voltage and inductor current information to the controller. The voltage loop minimizes DC and transient errors in the output voltage by adjusting the PWM duty-cycle in response to changes in line or load conditions. Since the output voltage is equal to the time-averaged of the modulator output, the relatively large LC time constant found in power supply applications generally results in low bandwidth and poor transient response. By directly monitoring changes in inductor current via a series sense resistor the controller's response time is not entirely limited by the output LC filter and can react more quickly to changes in line and load conditions. This feed-forward characteristic also simplifies AC loop compensation since it adds a zero to the overall loop response. Through proper selection of the currentfeedback to voltage-feedback ratio the overall loop response will approach a one-pole system. The resulting system offers several advantages over traditional voltage control systems, including simpler loop compensation, pulse by pulse current limiting, rapid response to line variation and good load step response.

The heart of the controller is an input direct summing comparator which sum voltage feedback, current feedback, slope compensation ramp and power tracking signals together. Slope compensation is required to prevent system instability that occurs in current-mode topologies operating at duty-cycles greater than 50% and is also used to define the open-loop gain of the overall system. The slope compensation is fixed internally and optimized for 500mA inductor ripple current. The power tracking will not contribute any input to the comparator steady-state operation. Current feedback is measured by the patented sensing scheme that senses the inductor current flowing through the high-side switch whenever it is conducting. At the beginning of each oscillator period the high-side NMOS switch is turned on. The comparator inputs are gated off for a minimum period of time of about 150ns (LEB) after the high-side switch is turned on to allow the system to settle. The Leading Edge Blanking (LEB) period prevents the detection of erroneous voltages at the comparator inputs due to switching noise. If the inductor current exceeds the maximum current limit (ILMAX) a secondary over-current comparator will terminate the high-side switch on time. If ILMAX has not been reached, the feedback voltage FB derived from the regulator output voltage VOUT is then compared to the internal feedback reference voltage. The resultant error voltage is summed with the current feedback and slope compensation ramp. The high-side switch remains on until all four comparator inputs have summed to zero, at which time the high-side switch is turned off and the low-side switch is turned on. However, the maximum on-duty ratio of the high-side switch is limited to 95%. In order to eliminate cross-conduction of the high-side and low-side switches a 15ns break-beforemake delay is incorporated in the switch drive circuitry. The output enable (EN) input allows the regulator output to be disabled by an external logic control signal.

Output Voltage Setting

In general:

$$V_{OUT} = 0.992V \times \left(1 + \frac{R_2}{R_1}\right)$$

However, due to the relatively low open loop gain of the system, gain errors will occur as the output voltage and loopgain is changed. This is shown in the performance curves. A 100nA pull-up current from FB to VDD forces VOUT to GND in the event that FB is floating.

NMOS Power FETs and Drive Circuitry

The EL7563 integrates low on-resistance ($30m\Omega$) NMOS FETs to achieve high efficiency at 4A. In order to use an NMOS switch for the high-side drive it is necessary to drive

the gate voltage above the source voltage (LX). This is accomplished by bootstrapping the VHI pin above the LX voltage with an external capacitor CVHI and internal switch and diode. When the low-side switch is turned on and the LX voltage is close to GND potential, capacitor CVHI is charged through internal switch to VDRV, typically 6V with external charge-pump. At the beginning of the next cycle the high-side switch turns on and the LX pins begin to rise from GND to VIN potential. As the LX pin rises the positive plate of capacitor CVHI follows and eventually reaches a value of VDRV+VIN, typically 9V, for VIN=3.3V. This voltage is then level shifted and used to drive the gate of the high-side FET, via the VHI pin. A value of 0.22µF for CVHI is recommended.

Reference

A 1.5% temperature compensated bandgap reference is integrated in the EL7563. The external VREF capacitor acts as the dominant pole of the amplifier and can be increased in size to maximize transient noise rejection. A value of 0.1µF is recommended.

Oscillator

The system clock is generated by an internal relaxation oscillator with a maximum duty-cycle of approximately 95%. Operating frequency can be adjusted through the COSC pin or can be driven by an external source. If the oscillator is driven by an external source care must be taken in selecting the ramp amplitude. Since CSLOPE value is derived from the COSC ramp, changes to COSC ramp will change the CSLOPE compensation ramp which determine the openloop gain of the system.

When external synchronization is required, always choose C_{OSC} such that the free-running frequency is at least 20% lower than that of sync source to accommodate component and temperature variations. Figure 1 shows a typical connection.

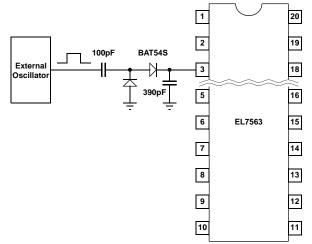


FIGURE 1. OSCILLATOR SYNCHRONIZATION

Junction Temperature Sensor

An internal temperature sensor continuously monitors die temperature. In the event that die temperature exceeds the thermal trip-point, the system is in fault state and will be shut down. The upper and low trip-points are set to 135°C and 115°C respectively.

The VTJ pin is an accurate indication of the internal silicon junction temperature (see performance curve.) The junction temperature T_J (°C) can be deducted from the following relation:

$$T_J = 75 + \frac{1.2 - VTJ}{0.00384}$$

Where VTJ is the voltage at VTJ pin in volts.

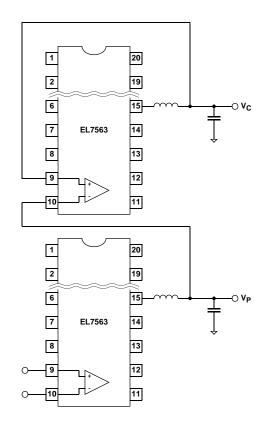
Power Good and Power On Reset

During power up the output regulator will be disabled until VIN reaches a value of approximately 2.9V. About 300mV hysteresis is present to eliminate noise-induced oscillations.

Under-voltage and over-voltage conditions on the regulator output are detected through an internal window comparator. A logic high on the PG output indicates that the regulated output voltage is within about +10% of the nominal selected output voltage.

Power Tracking

The power tracking pins STP and STN are the inputs to a comparator, whose HI output forces the PWM controller to skip switching cycle.


1. Linear Tracking

In this application, it is always the case that the lower voltage supply V_{C} tracks the higher output supply V_{P} Please see Figure 2 below.

2. Offset Tracking

The intended start-up sequence is shown in Figure 3. In this configuration, V_{C} will not start until V_{P} reaches a preset value of:

$$\frac{R_B}{R_A + R_B} \times V_{IN}$$

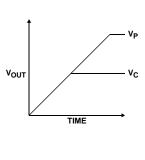


FIGURE 2. LINEAR POWER TRACKING

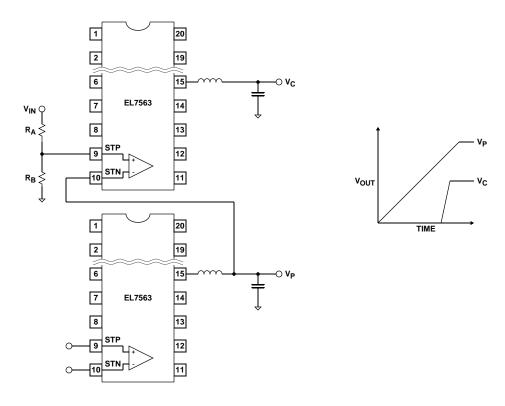
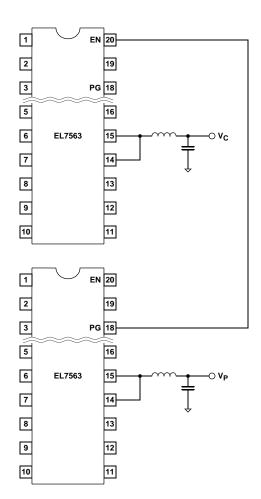



FIGURE 3. OFFSET POWER TRACKING

The second way of offset tracking is to use the EN and Power Good pins, as shown in Figure 4. In this configuration, V_{P} does not have to be larger than $V_{\text{C}}.$

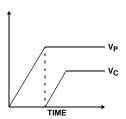


FIGURE 4. OFFSET TRACKING

3. External Soft Start

An external soft start can be combined with auxilliary supply tracking to provide desired soft start other than internally preset soft start (Figure 5). The appropriate start-up time is:

$$t_s = R \times C \times \frac{V_O}{V_{IN}}$$

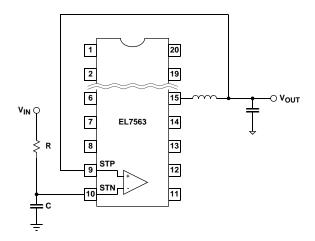
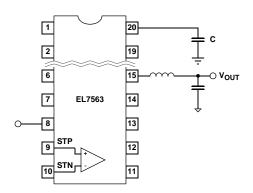


FIGURE 5. EXTERNAL SOFT START

4. Start-up Delay


A capacitor can be added to the EN pin to delay the converter start-up (Figure 6) by utilizing the pull-up current. The delay time is approximately:

$$t_d(ms) = 1200 \times C(\mu F)$$

Thermal Management

The EL7563CM utilizes "fused lead" packaging technology in conjunction with the system board layout to achieve a lower thermal resistance than typically found in standard SO20 packages. By fusing (or connecting) multiple external leads to the die substrate within the package, a very conductive heat path is created to the outside of the package. This conductive heat path MUST then be connected to a heat sinking area on the PCB in order to dissipate heat out and away from the device. The conductive paths for the SO20 package are the fused leads: #6, 7, 11, 12, and 13. If a sufficient amount of PCB metal area is connected to the fused package leads, a junction-to-ambient resistance of 43°C/W can be achieved (compared to 85°C/W for a standard SO20 package). The general relationship between PCB heat-sinking metal area and the thermal resistance for this package is shown in the Performance Curves section of this data sheet. It can be readily seen that the thermal resistance for this package approaches an asymptotic value of approximately 43°C/W without any airflow, and 33°C/W with 100 LFPM airflow. Additional information can be found in Application Note #8 (Measuring the Thermal Resistance of Power Surface-Mount Packages). For a thermal shutdown die junction temperature of 135°C, and power dissipation of 1.5W, the ambient temperature can be as high as 70°C without airflow. With 100 LFPM airflow, the ambient temperature can be extended to 85°C.

The EL7563CRE utilizes the 28-pin HTSSOP package. The majority of heat is dissipated through the heat pad exposed at the bottom of the package. Therefore, the heat pad needs to be soldered to the PCB. The thermal resistance for this package is better than that of the SO20. Actual test results

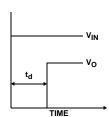


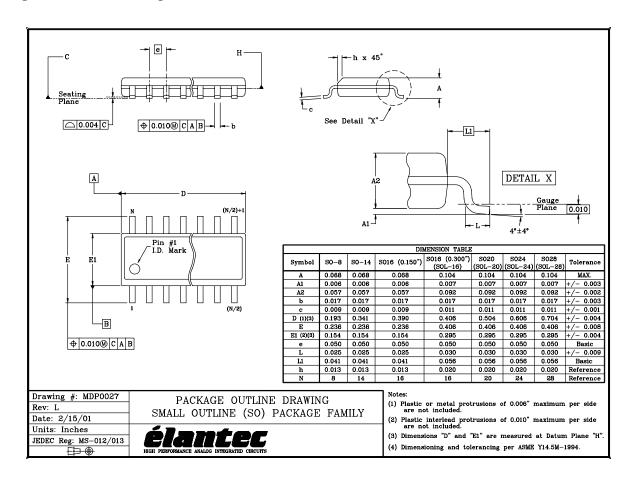
FIGURE 6. START-UP DELAY

are available from Elantec Applications staff. The actual junction temperature can be measured at VTJ pin.

Since the thermal performance of the IC is heavily dependent on the board layout, the system designer should exercise care during the design phase to ensure that the IC will operate under the worst-case environmental conditions.

Layout Considerations

The layout is very important for the converter to function properly. Power Ground (\downarrow) and Signal Ground ($\stackrel{.}{\bot}$) should be separated to ensure that the high pulse current in the Power Ground never interferes with the sensitive signals connected to Signal Ground. They should only be connected at one point (normally at the negative side of either the input or output capacitor.)


The trace connected to the FB pin is the most sensitive trace. It needs to be as short as possible and in a "quiet" place, preferably between PGND or SGND traces.

In addition, the bypass capacitor connected to the VDD pin needs to be as close to the pin as possible.

The heat of the chip is mainly dissipated through the PGND pins. Maximizing the copper area around these pins is preferable. In addition, a solid ground plane is always helpful for the EMI performance.

The demo board is a good example of layout based on these principles. Please refer to the EL7563 Application Brief for the layout.

Package Outline Drawing

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com