ProASIC ${ }^{\text {PLUS }}$ Flash Family FPGAs

Features and Benefits High Capacity

- 75,000 to 1 million System Gates
- 27k to 198kbits of Two-Port SRAM
- 66 to 712 User I/Os

Reprogrammable Flash Technology

- $0.22 \mu 4 \mathrm{LM}$ Flash-based CM OS Process
- Live at Power-Up, Single-Chip Solution
- No Configuration Device Required
- Retains Programmed Design during Power-Down/ Power-Up Cycles

Performance

- 3.3V, 32-bit PCI (up to 50 MHz)
- Two Integrated PLLs
- External System Performance up to 150 MHz

Secure Programming

- The Industry's Most Effective Security Key (FlashLock ${ }^{\text {TM }}$) Prevents Read Back of Programming Bitstream

Low Power

- Low Impedance Flash Switches
- Segmented Hierarchical Routing Structure
- Small, Efficient, Configurable (Combinatorial or Sequential) Logic Cells
High Performance Routing Hierarchy
- Ultra-Fast Local and Long-Line Network
- High Speed Very Long-Line Network
- High Performance, Low Skew, Splittable Global Network

ProASICPLUS Product Profile

Device	APA075	APA150	APA300	APA450	APA600	APA750	APA1000
Maximum System Gates	75,000	150,000	300,000	450,000	600,000	750,000	1,000,000
Maximum Tiles (Registers)	3,072	6,144	8,192	12,288	21,504	32,768	56,320
Embedded RAM Bits (k=1,024 bits)	27k	36k	72k	108k	126k	144k	198k
Embedded RAM Blocks (256x9)	12	16	32	48	56	64	88
LVPECL	2	2	2	2	2	2	2
PLL	2	2	2	2	2	2	2
Global Networks	4	4	4	4	4	4	4
Maximum Clocks	24	32	32	48	56	64	88
Maximum User I/Os	158	242	290	344	454	562	712
JTAG ISP	Yes						
PCI	Yes						
Package (by pin count)							
TQFP	100, 144	100					
PQFP	208	208	208	208	208	208ww.	atasfortu
PBGA		456	456	456	456	456	456
FBGA	144	144, 256	144, 256	144, 256, 484	256, 484, 676	676, 896	896, 1152

General Description

The ProASICPLUS family of devices, Actel's second generation Flash FPGAs, offers enhanced performance over Actel's ProASIC family. It combines the advantages of ASICs with the benefits of programmable devices through nonvolatile Flash technology. This enables engineers to create high-density systems using existing ASIC or FPGA design flows and tools. In addition, the ProASICPLUS family offers a unique clock conditioning circuit based on two on-board phase-locked loops (PLLs). The family offers up to 1 million system gates, supported with up to 198 kbits of 2-port SRAM and up to 712 user I/Os, all providing 50 MHz PCl performance.
Advantages to the designer extend beyond performance. Unlike SRAM-based FPGAs, four levels of routing hierarchy simplify routing, while the use of Flash technology allows all functionality to be live at power-up. No external Boot PROM is required to support device programming. While on-board security mechanisms prevent all access to the program information, reprogramming can be performed in-system to support future design iterations and field upgrades. The device's architecture mitigates the complexity of ASIC migration at higher user volume. This makes ProASIC PLUS a cost-effective solution for applications in the networking, communications, computing, and avionics markets.
The ProASIC ${ }^{\text {PLUS }}$ family achieves its nonvolatility and reprogrammability through an advanced Flash-based $0.22 \mu \mathrm{~m}$ LVCMOS process with four-layers of metal. Standard CMOS design techniques are used to implement logic and control functions, including the PLLs and LVPECL inputs. This results in predictable performance fully compatible with gate arrays.
The ProASICPLUS architecture provides granularity comparable to gate arrays. The device core consists of a Sea-of-Tiles ${ }^{T M}$. Each tile can be configured as a flip-flop, latch, or 3-input/1-output logic function by programming the appropriate Flash switches. The combination of fine
granularity, flexible routing resources, and abundant Flash switches allow 100% utilization and over 95% routability for highly congested designs. Tiles and larger functions are interconnected through a 4-level routing hierarchy.
Embedded 2-port SRAM blocks with built-in FIFO/RAM control logic can have user-defined depth and width. Users can also select programming for synchronous or asynchronous operation, as well as parity generations or checking.
The unique clock conditioning circuitry in each device includes two clock conditioning blocks. Each block provides a PLL core, delay lines, phase shifts ($0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$), and clock multipliers/dividers, as well as the circuitry needed to provide bidirectional access to the PLL. The PLL block contains four programmable frequency dividers, which allow the incoming clock signal to be divided by a wide range of factors from 1 to 64. The clock conditioning circuit also delays or advances the incoming reference clock up to 8 ns (in increments of 0.25 ns). The PLL can be configured internally or externally during operation without redesigning or reprogramming the part. In addition to the PLL, there are two LVPECL differential input pairs to accommodate high speed clock and data inputs.
To support customer needs for more comprehensive, lower cost board-level testing, Actel's ProASICPLUS devices are fully compatible with IEEE Standard 1149.1 for test access port and boundary-scan test architecture. For more information concerning the Flash FPGA implementation, please refer to the "Boundary Scan (JTAG)" section on page 13.
ProASICPLUS devices are available in a variety of high-performance plastic packages. Those packages and the performance features discussed above are described in more detail in the following sections.

Ordering Information

APA1000	- F	FG	1152	1
	-	Speed Gr Blank F		
	Part Number APA075 APA150 APA300 APA450 APA600 APA750 APA1000	$\begin{aligned} & =75,000 \\ & =150,00 \\ & =300,00 \\ & =450,00 \\ & =600,00 \\ & =750,00 \\ & =1,000, \end{aligned}$	valent Sy ivalent ivalent ivalent ivalent uivalent quivale	Gates mates m Gates m Gates m Gates m Gates em Gates

Plastic Device Resources

User I/Os* *										
Device	TQFP 100-Pin	TQFP 144-Pin	PQFP 208-Pin	PBGA 456-Pin	FBGA 144-Pin	FBGA 256-Pin	FBGA 484-Pin	FBGA 676-Pin	FBGAA 896-Pin	FBGA 1152-Pin
APA075	66	107	158		100					
APA150	66		158	242	100	186				
APA300			158	290	100	186				
APA450			158	344	100	186	344			
APA600			158	356		186	370	454		
APA750			158	356				454	562	
APA1000			158	356					642	712

Package Definitions

$T Q F P=$ Thin Quad Flat Pack, PQFP = Plastic Quad Flat Pack, PBGA $=$ Plastic Ball Grid Array,$F B G A=$ Fine Pitch Ball Grid Array *Each pair of PECL I/Os were counted as one user I/O.

Product Availability

	Speed Grade		Application	
	Std.	-F*	C	I
APA075 Device				
100-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark
144-Pin Thin Quad Flat Pack (TQFP)	PP	PP	PP	PP
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark
144-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
APA150 Device				
100-Pin Thin Quad Flat Pack (TQFP)	\checkmark	\checkmark	\checkmark	\checkmark
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	\checkmark	\checkmark	\checkmark
144-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	v	\checkmark
256-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
APA300 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	\checkmark	\checkmark	\checkmark
144-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
256-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
APA450 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	\checkmark	\checkmark	\checkmark
144-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
256-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
484-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
APA600 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	\checkmark	\checkmark	\checkmark
256-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
484-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
676-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
APA750 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	v	\checkmark
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	\checkmark	\checkmark	\checkmark
676-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	v	\checkmark
896-Pin Plastic Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark
APA1000 Device				
208-Pin Plastic Quad Flat Pack (PQFP)	\checkmark	\checkmark	\checkmark	\checkmark
456-Pin Plastic Ball Grid Array (PBGA)	\checkmark	\checkmark	v	\checkmark
896-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	v	\checkmark
1152-Pin Fine Pitch Ball Grid Array (FBGA)	\checkmark	\checkmark	\checkmark	\checkmark

Note: \quad *-F parts are only available as commercial temperature devices.
Applications: $\mathrm{C}=$ Commercial Availability: $\boldsymbol{\nu}=$ Available
$I=$ Industrial $P P=$ Product Planned

ProASICPLUS Architecture

The proprietary ProASIC PLUS architecture provides granularity comparable to gate arrays.
The ProASICPLUS device core consists of a Sea-of-Tiles ${ }^{\text {m" }}$ (Figure 1). Each tile can be configured as a 3-input logic function (e.g., NAND gate, D-Flip-Flop, etc.) by programming the appropriate Flash switch interconnections (Figure 2 on page 6 and Figure 3 on page 6). Tiles and larger functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Flash switches are programmed to connect signal lines to the appropriate logic cell inputs and outputs. Dedicated high-performance lines are connected as needed for fast, low-skew global signal distribution throughout the core. Maximum core utilization is possible for virtually any design.
ProASICPLUS devices also contain embedded two-port SRAM blocks with built-in FIFO/RAM control logic. Programming options include synchronous or asynchronous operation, two-port RAM configurations, user defined depth and width, and parity generation or checking. Please see
the "Embedded Memory Configurations" section on page 21 for more information.

Flash Switch

Unlike SRAM FPGAs, ProASICPLUS uses a live on power-up ISP Flash switch as its programming element.
In the ProASIC ${ }^{\text {PLUS }}$ Flash switch, two transistors share the floating gate, which stores the programming information. One is the sensing transistor, which is only used for writing and verification of the floating gate voltage. The other is the switching transistor. It can be used in the architecture to connect/separate routing nets or to configure logic. It is also used to erase the floating gate (Figure 2 on page 6).

Logic Tile

The logic tile cell (Figure 3 on page 6) has three inputs (any or all of which can be inverted) and one output (which can connect to both ultra-fast local and efficient long-line routing resources). Any three-input, one-output logic function (except a three-input XOR) can be configured as one tile. The tile can be configured as a latch with clear or set or as a flip-flop with clear or set. Thus, the tiles can flexibly map logic and sequential gates of a design.

Figure 1 - The ProASIC ${ }^{\text {PLUS }}$ Device Architecture

Figure 2 • Flash Switch

Figure 3 - CoreLogic Tile

Routing Resources

The routing structure of ProASI CPLUS devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra-fast local resources, efficient long-line resources, high speed very long-line resources, and high performance global networks.

The ultra-fast local resources are dedicated lines that allow the output of each tile to connect directly to every input of the eight surrounding tiles (Figure 4 on page 7).
The efficient long-line resources provide routing for longer distances and higher fanout connections. These resources vary in length (spanning 1, 2, or 4 tiles), run both vertically and horizontally, and cover the entire ProASIC PLUS device (Figure 5 on page 7). Each tile can drive signals onto the efficient long-line resources, which can in turn, access every input of every tile. Active buffers are inserted automatically by routing software to limit the loading effects due to distance and fanout.

The high-speed very long-line resources, which span the entire device with minimal delay, are used to route very long or very high fanout nets. (Figure 6 on page 8).
The high-performance global networks are low skew, high fanout nets that are accessible from external pins or from internal logic (Figure 7 on page 9). These nets are typically used to distribute clocks, resets, and other high fanout nets requiring a minimum skew. The global networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically with signals accessing every input on all tiles.

Figure 4 - Ultra-Fast Local Resources

Figure 5 - Efficient Long-LineResources

High Speed Very Long-Line Resouces

Figure 6 • High Speed Very Long-Line Resources

Clock Resources

The ProASI CPLUS family offers powerful and flexible control of circuit timing through the use of analog circuitry. Each chip has two clock conditioning blocks containing a phase-locked loop (PLL) core, delay lines, phase shifter (0°, $90^{\circ}, 180^{\circ}, 270^{\circ}$), clock multiplier/dividers and all the circuitry needed for the selection and interconnection of inputs to the global network (thus providing bidirectional access to the PLL). This permits the PLL block to drive inputs and/or outputs via the two global lines on each side of the chip (four total lines). This circuitry is discussed in more detail in the "ProASICPLUS Clock Management System" section on page 15.

Clock Trees

One of the main architectural benefits of ProASIC ${ }^{\text {PLUS }}$ is the set of power and delay friendly global networks. ProASICPLUS offers four global trees. Each of these trees is
based on a network of spines and ribs that reach all the tiles in their regions (Figure 7). This flexible clock tree architecture allows users to map up to 88 different internal/external clocks in an APA1000 device. Details on the clock spines and various numbers of the family are given in Table 1 on page 10.
The flexible use of the ProASIC ${ }^{\text {PLUS }}$ clock spine allows the designer to cope with several design requirements. Users implementing clock resource intensive applications can easily route external or gated internal clocks using global routing spines. Users can also drastically reduce delay penalties and save buffering resources by mapping critical high-fanout nets to spines. For design hints on using these features, refer to Actel's Efficient Use of ProASIC Clock Trees application note.

Note: This figureshows routing for only onegl obal path.
Figure 7 • High Performance Global Network

Table 1 - Clock Spines

	APA075	APA150	APA300	APA450	APA600	APA750	APA1000
Global Clock Networks (Trees)	4	4	4	4	4	4	4
Clock Spines/Tree	6	8	8	12	14	16	22
Total Spines	24	32	32	48	56	64	88
Top or Bottom Spine Height (Tiles)	16	24	32	32	48	64	80
Tiles in Each Top or Bottom Spine	512	768	1,024	1,024	1,536	2,048	2,560
Total Tiles	3,072	6,144	8,192	12,288	21,504	32,768	56,320

Array Coordinates

During many place-and-route operations in Actel's Designer software tool, it is possible to set constraints that require array coordinates.
Table 2 is provided as a reference. The array coordinates are measured from the lower left (0,0). They can be used in region constraints for specific groups, designated by a wildcard, and containing core cells, I/Os, and memories.
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a
one-to-one correspondence between I/O cells and core cells. In addition, the I/O coordinate system changes depending on the die/package combination.
Core cell coordinates start at the lower left corner (1,1) or $(1,5)$ if memories are present at the bottom. Memory coordinates use the same system and are indicated in Table 2. The memory coordinates for an APA1000 are illustrated in Figure 8. For more information on how to use constraints, see the Designer User's Guide for ProASICPLUS software tools.

Table 2 - Array Coordinates

Device	Logic Tile					Memory Rows			
	Min.		Max.		Bottom	Top		All	
	\mathbf{x}	\mathbf{y}	\mathbf{x}	\mathbf{y}	\mathbf{y}	\mathbf{y}	Min.	Max.	
APA075	1	1	96	32	-	$(33,33)$ or $(33,35)$	0,0	97,37	
APA150	1	1	128	48	-	$(49,49)$ or $(49,51)$	0,0	129,53	
APA300	1	5	128	68	$(1,3)$ or $(1,5)$	$(69,69)$ or $(69,71)$	0,0	129,73	
APA450	1	5	192	68	$(1,3)$ or $(1,5)$	$(69,69)$ or $(69,71)$	0,0	193,73	
APA600	1	5	224	100	$(1,3)$ or $(1,5)$	$(101,101)$ or $(101,103)$	0,0	225,105	
APA750	1	5	256	132	$(1,3)$ or $(1,5)$	$(133,133)$ or $(133,135)$	0,0	257,137	
APA1000	1	5	352	164	$(1,3)$ or $(1,5)$	$(165,165)$ or $(165,167)$	0,0	353,169	

Figure 8 - CoreCell Coordinates for the APA1000

Input/Output Blocks

To meet complex system demands, the ProASICLLUS family offers devices with a large number of user I/O pins, up to 712 on the APA1000. If the I/0 pad power supply ($V_{\text {DDP }}$) is 3.3 V , each I/O can be selectively configured at the 2.5 V and 3.3 V threshold levels. Table 3 shows the available supply voltage configurations (the PLL block uses an independent 2.5V supply on the AVDD and AGND pins). All I/Os include ESD protection circuits. Each I/O has been tested to 2000V to the human body model (per J ESD22 (HMB)).

Table 3 - ProASIC $\stackrel{\text { PLUS }}{ }$ I/O Power Supply Voltages

	$\mathrm{V}_{\text {DDP }}$	
	$\mathbf{2 . 5 V}$	3.3 V
Input Compatibility	2.5 V	$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$
Output Drive	2.5 V	$3.3 \mathrm{~V}, 2.5 \mathrm{~V}$

Note: $\quad V_{D D}$ is always 2.5 V .

Six or seven standard I/O pads are grouped with a GND pad and either a $V_{D D}$ (core power) or $V_{D D P}$ (I/O power) pad. Two reference bias signals circle the chip. One protects the cascaded output drivers while the other creates a virtual $V_{D D}$ supply for the I/O ring.
I/O pads are fully configurable to provide the maximum flexibility and speed. Each pad can be configured as an input, an output, a tristate driver, or a bidirectional buffer (Figure 9 and Table 4).

Figure 9 - I/O Block Schematic Representation

Table 4 • I/O Features

Function	Description
I/O pads configured as inputs	- Individually selectable 2.5 V or 3.3 V threshold levels - Optional pull-up resistor - Optionally configurable as Schmitt trigger input. The Schmitt trigger input option can be configured as an input only, not a bidirectional buffer. This input type may be slower than a standard input under certain conditions and has a typical hysteresis of 0.35 V . I/O macros with an " S " in the standard I/O library have added Schmitt capabilities - 3.3V PCI Compliant
I/O pads configured as outputs	- Individually selectable 2.5 V or 3.3 V compliant output signals - 2.5V - JEDEC JESD 8-5 - 3.3V - JEDEC JESD 8-A (LVTTL and LVCMOS) - 3.3 V PCI compliant - Ability to drive LVTTL and LVCMOS levels - Selectable drive strengths - Selectable slew rates - Tristate
I/O pads configured as bidirectional buffers	- Individually selectable 2.5 V or 3.3 V compliant output signals - 2.5V - JEDEC JESD 8-5 - 3.3V - JEDEC JESD 8-A (LVTTL and LVCMOS) - 3.3 V PCI compliant - Optional pull-up resistor - Selectable drive strengths - Selectable slew rates - Tristate

Power-up Sequencing

While ProASIC PLUS devices are live at power-up, the order of $V_{D D}$ and $V_{D D P}$ power-up is important during system start-up. $V_{D D}$ should be powered up before (or coincident with) $V_{D D P}$ on ProASIC PLUS devices. Failure to follow these guidelines may result in undesirable pin behavior during system start-up. For more information, refer Actel's ProASICLLUS Family Devi ces Power-Up Behavior application note.

LVPECL Input Pads

In addition to standard I/O pads and power pads, ProASICPLUS devices have a single LVPECL input pad on both the east and west sides of the device, along with AVDD and AGND pins to power the PLL block. The LVPECL pad cell consists of an input buffer (containing a low voltage differential amplifier) and a signal and its complement,

PPECL (I/P) (PECLN) and NPECL (PECLREF). The LVPECL input pad cell differs from the standard I/O cell in that it is operated from $V_{D D}$ only.
Since it is exclusively an input, it requires no output signal, output enable signal, or output configuration bits. As a special high-speed differential input, it al so does not require pull ups. Recommended termination for LVPECL inputs is shown in Figure 10. The LVPECL pad cell compares voltages, as illustrated in Figure 11, on the PPECL (I/P) pad and the NPECL pad and sends the results to the global MUX (Figure 14 on page 16). This high speed, low skew output essentially controls the clock conditioning circuit.
LVPECLs are designed to meet LVPECL JEDEC receiver standard levels (Table 5).

Figure 10 • Recommended Termination for LVPECL Inputs

Figure 11 - LVPECL High and Low Threshold Values
Table 5 - LVPECL Recei ver Specifications

Symbol	Parameter	Min.	Max	Units
V_{IH}	Input High Voltage	1.49	2.72	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	0.86	2.125	V
$\mathrm{~V}_{\mathrm{ID}}$	Differential Input Voltage	0.3	$\mathrm{~V}_{\mathrm{DD}}$	V

Boundary Scan (JTAG)

ProASICPLUS devices are compatible with IEEE Standard 1149.1, which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic ProASICPLUS boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers, and instruction register (Figure 12). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD and BYPASS) and the optional IDCODE instruction (Table 6).
Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI and TDO (test data input and output), TMS (test mode selector) and TRST (test reset input). TMS, TDI and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for
boundary-scan test usage. Actel recommends that a nominal $20 \mathrm{k} \Omega$ pull-up resistor is added to TDO and TCK pins.
The TAP controller is a four-bit state machine (16 states) that operates as shown in Figure 13 on page 14. The ' 1 's and ' 0 's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.
ProASICPLUS devices have to be programmed at least once for complete boundary-scan functionality to be available. If boundary-scan functionality is required prior to partial programming, refer to online technical support on the Actel website and search for ProASIC ${ }^{\text {PLUS }}$ BSDL.

Figure 12 • ProASIC PLUS J TAG Boundary Scan Test Logic Circuit
Table 6 • Boundary-Scan Opcodes

	Hex Opcode
EXTEST	00
SAMPLE/PRELOAD	01
IDCODE	$0 F$
CLAMP	05
BYPASS	FF

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. The TRST pin may also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.
ProASICPLUS devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device
identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I / O pin.
Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundary-scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

Figure 13 - TAP Controller State Diagram

Timing Control and Characteristics

ProASIC ${ }^{\text {PLUS }}$ Clock Management System

Introduction

ProASICPLUS devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASICPLUS family contains two phase-locked loop (PLL) blocks which perform the following functions:

- Clock Phase Adjustment via Programmable Delay (250 ps steps from -8 ns to +8 ns)
- Clock Skew Minimization
- Clock Frequency Synthesis

Each PLL has the following key features:

- Input Frequency Range ($f_{\mathrm{I}_{\mathrm{N}}}$) $=1.5$ to 180 MHz
- Feedback Frequency Range ($\mathrm{f}_{\mathrm{Vco}}$) $=1.5$ to 180 MHz
- Output Frequency Range ($\mathrm{f}_{\text {Out }}$) $=6$ to 180 MHz
- Output Phase Shift $=0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°
- Output Duty Cycle = 50\%
- Low Output Jitter (max at $25^{\circ} \mathrm{C}$)
- $\mathrm{f}_{\mathrm{Vco}}<10 \mathrm{MHz}$. Jitter $\pm 1 \%$ or better
- $10 \mathrm{MHz}<\mathrm{f}_{\mathrm{VcO}}<60 \mathrm{MHz}$. J itter $\pm 2 \%$ or better
- $\mathrm{f}_{\mathrm{VCO}}>60 \mathrm{MHz}$. Jitter $\pm 1 \%$ or better
- Maximum Acquisition Time $=80 \mu \mathrm{~s}$
- Low Power Consumption - 6.9 mW (max - analog supply) $+7.0 \mu \mathrm{~W} / \mathrm{MHz}$ (max - digital supply)

Physical Implementation

Each side of the chip contains a clock conditioning circuit based upon a 180 MHz PLL block (Figure 14 on page 16). Two global multiplexed lines extend along each side of the chip to provide bidirectional access to the PLL on that side (neither MUX can be connected to the opposite side's PLL). Each global line has optional LVPECL input pads (described below). The global lines may be driven by either the LVPECL global input pad or the outputs from the PLL block or both. Each global line can be driven by a different output from the PLL. Unused global pins can be configured as regular I/Os or left unconnected. They default to an input with pull-up. The two signals available to drive the global networks are as follows (Figure 15 on page 17):

Global A (secondary clock)

- Output from Global MUX A
- Conditioned version of PLL output ($f_{\text {out }}$) - delayed or advanced
- Divided version of either of the above
- Further delayed version of either of the above (0.25 ns , 0.50 ns , or 4.00 ns delay) ${ }^{1}$

Global B

- Output from Global MUX B
- Delayed or advanced version of $f_{\text {Out }}$
- Divided version of either of the above
- Further delayed version of either of the above (0.25 ns , 0.50 ns , or 4.00 ns delay) ${ }^{1}$

Functional Description

Each PLL block contains four programmable dividers as shown in Figure 14 on page 16. These allow frequency scaling of the input clock signal as follows:

- The n divider divides the input clock by integer factors from 1 to 32.
- The m divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64 .
- The two dividers together can implement any combination of multiplication and division resulting in a clock frequency between 24 and 180 MHz exiting the PLL core. This clock has a fixed 50% duty cycle.
- The output frequency of the PLL core is given by the following formula ($\mathrm{f}_{\text {REF }}$ is the reference clock frequency):

$$
\mathrm{f}_{\text {OUT }}=\mathrm{f}_{\text {REF }} * \mathrm{~m} / \mathrm{n}
$$

- The third and fourth dividers (u and v) permit the signals applied to the global network to each be further divided by integer factors ranging from 1 to 4 .
The implementations:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{GLB}} & =\mathrm{m} /\left(\mathrm{n}^{*} \mathrm{u}\right) \\
\mathrm{f}_{\mathrm{GLA}} & =\mathrm{m} /\left(\mathrm{n}^{*} \mathrm{v}\right)
\end{aligned}
$$

enable the user to define a wide range of frequency multipliers and divisors. The clock conditioning circuit can advance or delay the clock up to 8 ns (in increments of 0.25 ns) relative to the positive edge of the incoming reference clock. The system also allows for the selection of output frequency clock phases of $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°.
Prior to the application of signals to the rib drivers, they pass through programmable delay units, one per global network. These units permit the delaying of global signals relative to other signals to assist in the control of input set-up times. Not all possible combinations of input and output modes can be used. The degrees of freedom available in the bidirectional global pad system and in the clock conditioning circuit have been restricted. This avoids unnecessary and unwieldy design kit and software work.

[^0]
Lock Signal

A Lock signal (Active High) is provided (using the ACTgen PLL development tool) to indicate that the PLL has locked to the incoming clock signal. Users can employ the Lock signal as a soft reset of the logic driven by GLB and/or GLA.

PLL Configuration Options

The PLL can be configured during design (via Flash-configuration bits set in the programming bitstream) or dynamically during device operation, thus eliminating the need for complete reprogramming. The dynamic configuration bits are loaded into a serial-in/parallel-out shift register provided in the clock conditioning circuit of
each PLL and then latched into the PLL block. The JTAG ports can be used along with a built-in user JTAG interface hardware to load the configuration shift register externally. Another option is internal dynamic configuration via userdesigned hardware. Refer to Actel's ProASIC릉 PLL Dynamic Reconfiguration Using JTAG application note for more information.
For information on the clock conditioning circuit, refer to the, Actel's Using ProASIC ${ }^{\text {PLUS }}$ Clock Conditioning Circuits application note.

Notes:

1. FBDLY is a programmabledelay line from 0 to 4 ns in 250 ps increments.
2. DLYA, DLYB, DLYAFB is a programmable delay line with values $0,250 \mathrm{ps}, 500 \mathrm{ps}$, and 4 ns .

Figure 14 - PLL Block - Top-Level View and Detailed PLL Block Diagram

Note: When a signal from an I/O tile is connected to the core, it cannot be connected to the Global MUX at the sametime.
Figure 15 - Input Connectors to ProASIC ${ }^{\text {PLUS }}$ Clock Conditioning Circuitry

Sample Implementations

Frequency Synthesis

Figure 16 on page 18 illustrates an example where the PLL is used to multiply a 33 MHz external clock up to 133 MHz . Figure 17 on page 18 uses two dividers to synthesize a 50 MHz output clock from a 40 MHz input reference clock. The input frequency of 40 MHz is multiplied by 5 and divided by 4 , giving an output clock (GLB) frequency of 50 MHz . When dividers are used, a given ratio can be generated in multiple ways, allowing the user to stay within the operating frequency ranges of the PLL. For example, in this case the input divider could have been 2 and the output divider also 2 , giving us a division of the input frequency by 4 to go with the feedback loop division (effective multiplication) by 5 .

Adjustable Clock Delay

Figure 18 on page 19 illustrates the delay of the input clock by employing one of the adjustable delay lines. This is easily done in ProASICPLUS by bypassing the PLL core entirely and using the output delay line. Notice also that the output clock can be effectively advanced relative to the input clock by using the delay line in the feedback path. This is shown in Figure 19 on page 19.

Clock Skew Minimization

Figure 20 on page 20 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the "input" clock. The input clock is fed to the reference clock input of the PLL. The output clock (GLA) feeds a clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to Actel's Using ProASICPLUS Clock Conditioning Circuits application note for more information.

Logic Tile Timing Characteristics

Timing characteristics for ProASICPLUS devices fall into three categories: family dependent, device dependent, and design dependent. The input and output buffer characteristics are common to all ProASICPLUS family members. Internal routing delays are device dependent. Design dependency means that actual delays are not determined until after placement and routing of the user's design are complete. Delay values may then be determined by using the Timer utility or performing simulation with post-layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are used for initial design performance evaluation. Critical net delays can then be applied to the most timing critical paths. Critical nets are determined by net property assignment prior to placement and routing. Refer to the Actel Desi gner User's Guidefor details on using constraints.

Timing Derating

Since ProASIC PLUS devices are manufactured with a CMOS process, device performance will vary with temperature, voltage, and process. Minimum timing parameters reflect maximum operating voltage, minimum operating temperature, and optimal process variations. Maximum timing parameters reflect minimum operating voltage, maximum operating temperature, and worst-case process variations (within process specifications).

Figure 16 • Using the PLL $33 \mathrm{MHz} \operatorname{In}, 133 \mathrm{MHz}$ Out

Figure 17 • Using the PLL $40 \mathrm{MHz} \mathrm{In}, 50 \mathrm{MHz}$ Out

Figure 18 • Using the PLL to Delay the Input Clock

Figure 19 • Using the PLL to "Advance" the Input Clock

Figure 20 - Using the PLL for Clock De-skewing

PLL Electrical Specifications

Parameter	Value			Notes
Frequency Ranges				
Reference Frequency f_{IN} (min.)	1.5 MHz			Clock conditioning circuitry (min.) lowest output frequency
Reference Frequency f_{IN} (max.)	180 MHz			Clock conditioning circuitry (max.) highest output frequency
OSC Frequency fivco (min.)	24 MHz			Lowest output frequency voltage controlled oscillator
OSC Frequency $\mathrm{f}_{\mathrm{vco}}$ (max.)	180 MHz			Highest output frequency voltage controlled oscillator
Clock Conditioning Circuitry fout (min.)	6 MHz			Lowest input frequency clock conditioning circuitry
Clock Conditioning Circuitry fout (max.)	180 MHz			Highest input frequency clock conditioning circuitry
Long Term Jitter Peak-to-Peak Max.				
Temperature	Frequency MHz			
	$\mathrm{f}_{\mathrm{vco}}<10$	10<f $\mathrm{vco}<60$	$\mathrm{f}_{\mathrm{Vc} \text { ¢ }} \times 60$	
$25^{\circ} \mathrm{C}$ (or higher)	$\pm 1 \%$	$\pm 2 \%$	$\pm 1 \%$	
$0^{\circ} \mathrm{C}$	$\pm 1.5 \%$	$\pm 2.5 \%$	$\pm 1 \%$	
$-40^{\circ} \mathrm{C}$	$\pm 2.5 \%$	$\pm 3.5 \%$	$\pm 1 \%$	
Acquisition Time from Cold Start				
Acquisition Time (max.) Acquisition Time (max.)		$\begin{gathered} 200 \text { cycles } \\ 80 \mu \mathrm{~s} \end{gathered}$		Period of low reference clock frequencies High reference clock frequencies
Power Consumption				
Analog Supply Power (max*)		6.9 mW		
Digital Supply Current (max)		$7 \mu \mathrm{~W} / \mathrm{MHz}$		
Duty Cycle		50\% $\pm 0.5 \%$		
Note: *High clock frequency				

User Security

ProASIC ${ }^{\text {PLUS }}$ devices have FlashLock protections bits that, once programmed, block the entire programmed contents from being read externally. If locked, the user can only reprogram the device employing the user-defined security key. This protects the device from being read back and duplicated. Since programmed data is stored in nonvolatile memory cells (which are actually very small capacitors), rather than in the wiring, physical deconstruction cannot be used to compromise data. This approach is further hampered by the placement of the memory cells beneath the four metal layers (whose removal cannot be accomplished without disturbing the charge in the capacitor). This is the highest security provided in the industry. For more information, refer to Actel's Design Security in Nonvolatile Flash and Antifuse FPGAs white paper.

Embedded Memory Floorplan

The embedded memory is located across the top and bottom of the device in 256×9 blocks (Figure 1 on page 5). Depending upon the device, up to 88 blocks are available to support a variety of memory configurations. Each block can
be programmed as an independent memory or combined (using dedicated memory routing resources) to form larger, more complex memories. A single memory configuration cannot include blocks from both the top and bottom memory locations.

Embedded Memory Configurations

The embedded memory in the ProASIC CLUS family provides great configuration flexibility (Table 7 on page 22). Unlike many other programmable vendors each ProASICPLUS block is designed and optimized as a two-port memory (1 read, 1 write). This provides 198 kb bits of total memory for two-port and single port usage in the APA1000 device.
Each memory can be configured as FIFO or SRAM, with independent selection of synchronous or asynchronous read and write ports (Table 8 on page 22). Additional characteristics include programmable flags as well as parity checking and generation. Figure 21 on page 23 and Figure 22 on page 24 show the block diagrams of the basic SRAM and FIFO blocks. Table 9 on page 23 and Table 10 on page 24 describe memory block SRAM and FIFO interface signals, respectively. A single memory is designed to operate
at up to 150 MHz (standard speed grade typical conditions). Each block contains a 256 word, 9 -bit wide (1 read port, 1 write port) memory. The memory blocks may be combined in parallel to form wider memories or stacked to form deeper memories (Figure 23 on page 25). This provides optimal bit widths of 9 (1 block), 18,36 , and 72 , and optimal depths of $256,512,768$, and 1,024 . Refer to Actel's A Guide to ACTgen Macros for more information.

Figure 24 on page 25 gives an example of optimal memory usage. Ten blocks with 23,040 bits have been used to generate three memories of various widths and depths. Figure 25 on page 25 shows how memory can be used in parallel to create extra read ports. In this example, using only 10 of the 88 available blocks of the APA1000 yields an effective 6,912 bits of multiple port memories. The Actel ACTgen software facilitates building wider and deeper memories for optimal memory usage.

Table 7 • ProASIC ${ }^{\text {PLUS }}$ Memory Configurations by Device

Device			Maximum Width		Maximum Depth	
	Bottom		\mathbf{D}	W	D	W
APA075	0	12	256	108	1,536	9
APA150	0	16	256	144	2,048	9
APA300	16	16	256	144	2,048	9
APA450	24	24	256	216	3,072	9
APA600	28	28	256	252	3,584	9
APA750	32	32	256	288	4,096	9
APA1000	44	44	256	396	5,632	9

Table 8 - Basic Memory Configurations

Type	Write Access	Read Access	Parity	Library Cell Name
RAM	Asynchronous	Asynchronous	Checked	RAM256x9AA
RAM	Asynchronous	Asynchronous	Generated	RAM256x9AAP
RAM	Asynchronous	Synchronous Transparent	Checked	RAM256x9AST
RAM	Asynchronous	Synchronous Transparent	Generated	RAM256x9ASTP
RAM	Asynchronous	Synchronous Pipelined	Checked	RAM256x9ASR
RAM	Asynchronous	Synchronous Pipelined	Generated	RAM256x9ASRP
RAM	Synchronous	Asynchronous	Checked	RAM256x9SA
RAM	Synchronous	Asynchronous	Generated	RAM256xSAP
RAM	Synchronous	Synchronous Transparent	Checked	RAM256x9SST
RAM	Synchronous	Synchronous Transparent	Generated	RAM256x9SSTP
RAM	Synchronous	Synchronous Pipelined	Checked	RAM256x9SSR
RAM	Synchronous	Synchronous Pipelined	Generated	RAM256x9SSRP
FIFO	Asynchronous	Asynchronous	Checked	FIFO256x9AA
FIFO	Asynchronous	Asynchronous	Generated	FIFO256x9AAP
FIFO	Asynchronous	Synchronous Transparent	Checked	FIFO256x9AST
FIFO	Asynchronous	Synchronous Transparent	Generated	FIFO256x9ASTP
FIFO	Asynchronous	Synchronous Pipelined	Checked	FIFO256x9ASR
FIFO	Asynchronous	Synchronous Pipelined	Generated	FIFO256x9ASRP
FIFO	Synchronous	Asynchronous	Checked	FIFO256x9SA
FIFO	Synchronous	Asynchronous	Generated	FIFO256x9SAP
FIFO	Synchronous	Synchronous Transparent	Checked	FIFO256x9SST
FIFO	Synchronous	Synchronous Transparent	Generated	FIFO256x9SSTP
FIFO	Synchronous	Synchronous Pipelined	Checked	FIFO256x9SSR
FIFO	Synchronous	Synchronous Pipelined	Generated	FIFO256x9SSRP

Note: To save area while using embedded memories, the memory blocks contain multiplexers (called DMUX) for each output signal. These DMUX cells do not consume any core logic tiles and connect directly to high speed routing resources between the memory blocks. They are used when memories arecascaded and are automatically inserted by the softwaretools.

Figure 21 • Example SRAM Block Diagrams
Table 9 - Memory Block SRAM InterfaceSignals

SRAM Signal	Bits	In/Out	Description
WCLKS	1	IN	Write clock used on synchronization on write side
RCLKS	1	IN	Read clock used on synchronization on read side
RADDR<0:7>	8	IN	Read address
RBLKB	1	IN	Read block select (active LOW)
RDB	1	IN	Read pulse (active LOW)
WADDR<0:7>	8	IN	Write address
WBLKB	1	IN	Write block select (active LOW)
DI<0:8>	9	IN	Input data bits $<0: 8>,<8>$ can be used for parity in
WRB	1	IN	Write pulse (active LOW)
DO<0:8>	9	OUT	Output data bits $<0: 8>,<8>$ can be used for parity out
RPE	1	OUT	Read parity error
WPE	1	OUT	Write parity error
PARODD	1	IN	Selects odd parity generation/detect when high, even when low

Note: Not all signals shown are used in all modes.

Note: To save area while using embedded memories, the memory blocks contain multiplexers (called DMUX) for each output signal. These DMUX cells do not consume any core logic tiles and connect directly to high speed routing resources between the memory blocks. They are used when memories arecascaded and are automatically inserted by the softwaretools.

Figure 22 - Basic FIFO Block Diagrams
Table 10 • Memory Block FIFO Interface Signals

FIFO Signal	Bits	In/Out	Description
WCLKS	1	IN	Write clock used for synchronization on write side
RCLKS	1	IN	Read clock used for synchronization on read side
LEVEL <0:7>	8	IN	Direct configuration implements static flag logic
RBLKB	1	IN	Read block select (active LOW)
RDB	1	IN	Read pulse (active LOW)
RESET	1	IN	Reset for FIFO pointers (active LOW)
WBLKB	1	IN	Write block select (active LOW)
Dl<0:8>	9	IN	Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB	1	IN	Write pulse (active LOW)
FULL, EMPTY	2	OUT	FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH	2	OUT	EQTH is true when the FIFO holds the number of words specified by the LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8>	9	OUT	Output data bits <0:8>
RPE	1	OUT	Read parity error
WPE	1	OUT	Write parity error
LGDEP <0:2>	3	IN	Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD	1	IN	Parity generation/detect - Even when low, odd when high

Figure 23 - APA1000 Memory Block Architecture

1,024 words x 9 bits, 1 read, 1 write
Total Memory Blocks Used $=10$
Total Memory Bits $=23,040$
Figure 24 • Example Showing Memories with Different Widths and Depths

Read Ports
512 words x 9 bits, 4 read, 1 write
Total Memory Blocks Used $=10$
Total Memory Bits $=6,912$
Figure 25 - Multi port Memory Usage

Design Environment

The ProASIC PLUS family of FPGAs is fully supported by both Actel's Libero ${ }^{\text {TM }}$ Integrated Design Environment and Actel's Designer FPGA Development Software. Actel's Designer software provides a comprehensive suite of backend development tools for FPGA development. The Designer software includes timing-driven place and route, a world-class integrated static timing analyzer and constraints editor, a design netlist schematic viewer, and SmartPower, a tool that allows the user to quickly estimate the power consumption in a design.
Libero IDE provides an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools (Figure 26). Libero IDE includes Synplicity ${ }^{\circledR}$ Synplify for Actel, Mentor Graphics ${ }^{T m}$ ViewDraw for Actel, Actel's own Designer
software, Model Technology ${ }^{\text {TM }}$ ModelSim HDL Simulator, and SynaptiCAD ${ }^{T M}$ WaveF ormer Lite.

IS P

The user can generate *.bit or *.stp programming files from the Designer software and can use these files to program a device.
ProASICPLUS devices can be programmed in system. For more information on ISP of ProASIC PLUS devices, refer to the In-System Programming ProASIC ${ }^{\text {PLUS }}$ Devices and Performing Internal In-System Programming Using Actel's ProASICㄴLUS Devices application notes. Prior to being programmed for the first time, the ProASIC ${ }^{\text {PLUS }}$ device I/Os are inputs with pull-ups.

Figure 26 - Design Flow

Package Thermal Characteristics

The ProASIC PLUS family is available in several package types with a range of pin counts. Actel has selected packages based on high pin count, reliability factors, and superior thermal characteristics.

Thermal resistance defines the ability of a package to conduct heat away from the silicon, through the package to the surrounding air. Junction-to-ambient thermal resistance is measured in degrees Celsius/Watt and is represented as Theta ja (Θ_{ia}). The lower the thermal resistance, the more efficiently a package will dissipate heat.

A package's maximum allowed power (P) is a function of maximum junction temperature (T_{J}), maximum ambient operating temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$, and junction-to-ambient
thermal resistance Θ_{ja}. Maximum junction temperature is the maximum allowable temperature on the active surface of the IC and is $110^{\circ} \mathrm{C}$. P is defined as:

$$
P=\frac{T_{J}-T_{A}}{\Theta_{j a}}
$$

Θ_{ja} is a function of the rate (in linear feet per minute Ifpm) of airflow in contact with the package. When the estimated power consumption exceeds the maximum allowed power, other means of cooling, such as increasing the airflow rate, must be used.

Package Type	Pin Count	$\Theta_{\mathbf{j c}}$	$\Theta_{\text {ja }}$ Still Air	$\Theta_{\mathbf{j a}} \mathbf{3 0 0} \mathbf{f t . / m i n . ~}$	Units
Thin Quad Flat Pack (TQFP)	100	12	37.5	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thin Quad Flat Pack (TQFP)	144	11	32	24	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Quad Flat Pack (PQFP)	208	8	30	23	${ }^{\circ} \mathrm{C} / \mathrm{W}$
PQFP with Heatspreader	208	3.8	20	17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Plastic Ball Grid Array (PBGA)	456	3	15.6	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	144	3.8	38.8	26.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	256	3.8	25	22	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA) ${ }^{1}$	484	3.2	20	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA) ${ }^{2}$	484	3.2	20.5	16.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	676	3.2	16.4	11.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	896	2.4	13.6	10.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Fine Pitch Ball Grid Array (FBGA)	1152	1.8	12	8.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1. Depopulated Array
2. Full Array

Calculating Typical Power Dissipation

ProASIC른 device power is calculated with both a static and an active component. The active component is a function of both the number of tiles utilized and the system speed. Power dissipation can be calculated using the following formula:
where:

$$
P_{\text {total }}=P_{d c}+P_{a c}
$$

- $P_{d c}=12.5 \mathrm{~mW}$ (Typically $2.5 \mathrm{~V} \times 5 \mathrm{~mA}$)
$P_{d c}$ includes the static components of:
$P_{\text {VDDP }}+P_{V D D}+P_{\text {AVDD }}$
- $P_{\text {ac }}=P_{\text {clock }}+P_{\text {storage }}+P_{\text {logic }}+P_{\text {inputs }}+P_{\text {outputs }}+$ $P_{\text {memory }}+P_{\text {pll }}$
$P_{\text {clock, }}$ the clock component of power dissipation, is given by

$$
\mathrm{P}_{\text {clock }}=\left(\mathrm{P} 1+\mathrm{P} 2 * \mathrm{R}-\mathrm{P} 7 * \mathrm{R}^{2}\right) * \mathrm{Fs}
$$

where:

- $\mathrm{P} 1=100 \mu \mathrm{~W} / \mathrm{MHz}$ is the basic power consumption of the clock tree per MHz of the clock
- $P 2=1.3 \mu \mathrm{~W} / \mathrm{MHz}$ is the incremental power consumption of the clock tree per storage tile - also per MHz of the clock
- P7 $=0.00003 \mu \mathrm{~W} / \mathrm{MHz}$ is a correction factor for highly loaded clock-trees
- $\mathrm{R}=$ the number of storage tiles clocked by this clock
- Fs = the clock frequency
$P_{\text {storage, }}$, the storage-tile (Register) component of AC power dissipation, is given by

$$
P_{\text {storage }}=P 5 * \mathrm{~ms} * \mathrm{Fs}
$$

where:

- P5 $=1.1 \mu \mathrm{~W} / \mathrm{MHz}$ is the average power consumption of a storage-tile per MHz of its output toggling rate. The maximum output toggling rate is $\mathrm{Fs} / 2$
- $m s=$ the number of storage tiles (Register) switching during each Fs cycle
- $\mathrm{Fs}=$ the clock frequency
$P_{\text {logic, }}$ the logic-tile component of AC power dissipation, is given by

$$
\mathrm{P}_{\text {logic }}=\mathrm{P} 3 * \mathrm{mc} * \mathrm{Fs}
$$

where:

- $P 3=1.4 \mu \mathrm{~W} / \mathrm{MHz}$, is the average power consumption of a logic tile per MHz of its output toggling rate. The maximum output toggling rate is $\mathrm{Fs} / 2$
- $\mathrm{mc}=$ the number of logic tiles switching during each Fs cycle
- Fs = the clock frequency
$P_{\text {outputs }}$, the $/ / 0$ component of $A C$ power dissipation, is given by $P_{\text {outputs }}=\left(P 4+\left(\mathrm{C}_{\text {load }} * \mathrm{~V}_{\text {DDP }}{ }^{2}\right)\right) * \mathrm{p} * \mathrm{Fp}$
where:
- P4 $=326 \mu \mathrm{~W} / \mathrm{MHz}$ is the intrinsic power consumption of an output pad normalized per MHz of the output frequency. This is the total I/O current $V_{D D}+V_{D D P}$
- $C_{\text {load }}=$ the output load
- $\mathrm{p}=$ the number of outputs
- $F p=$ the average output frequency

The input's component of AC power dissipation is given by

$$
P_{\text {inputs }}=P 8 * q * F q
$$

where:

- P8 $=29 \mu \mathrm{~W} / \mathrm{MHz}$ is the intrinsic power consumption of an input pad normalized per MHz of the input frequency
- $q=$ the number of inputs
- $\mathrm{Fq}=$ the average input frequency

$$
P_{p l l}=P 9 * N_{p l l}
$$

where:

- $P 9=6.9 \mathrm{~mW}$. This value has been estimated at maximum PLL clock frequency
- $N_{\text {PII }}=$ number of PLLs used

Finally, $P_{\text {memory, }}$ the memory component of $A C$ power consumption, is given by

$$
P_{\text {memory }}=P 6 * N_{\text {memory }} * F_{\text {memory }} * E_{\text {memory }}
$$

where:

- P6 $\begin{aligned}= & 175 \mu \mathrm{~W} / \mathrm{MHz} \text { is the average power consumption } \\ & \text { of a memory block per MHz of the clock }\end{aligned}$
- $\mathrm{N}_{\text {memory }}=$ the number of RAM/FIFO blocks (1 block $=256$ words * 9 bits)
- $\mathrm{F}_{\text {memory }}=$ the clock frequency of the memory
- $\mathrm{E}_{\text {memory }}=$ the average number of active blocks divided by the total number of blocks (N) of the memory.
- Typical values for $E_{\text {memory }}$ would be $1 / 4$ for a $1 k \times 8,9,16$, 32 memory and $1 / 16$ for a $4 k x 8,9,16$, and 32 memory
- In addition, an application-dependent component to $E_{\text {memory }}$ can be considered. For example, for a 1 kx 8 memory using only 1 cycle out of $3, E_{\text {memory }}=1 / 4^{*} 1 / 3=1 / 12$

The following is an APA750 example using a shift register design with 13,440 storage tiles (Register) and 0 logic tiles. This design has one clock at 10 MHz , and 24 outputs toggling at 5 MHz . We then calculate the various components as follows:

$\mathrm{P}_{\text {clock }}$

- $\mathrm{Fs}=10 \mathrm{MHz}$
- $\mathrm{R}=13,440$
$\Rightarrow \quad P_{\text {clock }}=\left(P 1+P 2 * R-P 7 * R^{2}\right) * F s=124.2 \mathrm{~mW}$
$\mathbf{P}_{\text {storage }}$
- $m s=13,440$ (in a shift register 100% of storage-tiles are toggling at each clock cycle and $\mathrm{Fs}=10 \mathrm{MHz}$)
$\Rightarrow \quad P_{\text {storage }}=P 5 * \mathrm{~ms} * \mathrm{Fs}=147.8 \mathrm{~mW}$
$P_{\text {logic }}$
- $\mathrm{mc}=0$ (no logic tile in this shift-register)
$\Rightarrow P_{\text {logic }}=0 \mathrm{~mW}$
$P_{\text {outputs }}$
- $C_{\text {load }}=40 \mathrm{pF}$
- $V_{D D P}=3.3 \mathrm{~V}$
- $p=24$
- $\mathrm{Fp}=5 \mathrm{MHz}$
$\Rightarrow \quad P_{\text {outputs }}=\left(P 4+C_{\text {load }} * V_{D D P}{ }^{2}\right) * p * F p=87.3 \mathrm{~mW}$
$P_{\text {inputs }}$
- $q=1$
- $\mathrm{Fq}=10 \mathrm{MHz}$
$\Rightarrow P_{\text {inputs }}=P 8 * q * F q=0.3 \mathrm{~mW}$
$\mathbf{P}_{\text {memory }}$
$N_{\text {memory }}=0$ (no RAM/FIFO in this shift-register)
$\Rightarrow \quad P_{\text {memory }}=0 \mathrm{~mW}$
$P_{a c}$
=> 360 mW
$P_{\text {total }}$
$\mathrm{P}_{\mathrm{dc}}+\mathrm{P}_{\mathrm{ac}}=372 \mathrm{~mW}$ (Typical)

Operating Conditions

Standard and - F parts are the same unless otherwise noted. - F parts are only available as commercial.

Absolute Maximum Ratings*

Parameter	Condition	Minimum	Maximum	Units
Supply Voltage Core (V V_{DD})		-0.3	3.0	V
Supply Voltage I/O Ring ($\left.\mathrm{V}_{\mathrm{DDP}}\right)$		-0.3	4.0	V
DC Input Voltage		-0.3	$\mathrm{~V}_{\mathrm{DDP}}+0.3$	V
PCI DC Input Voltage		-1.0	$\mathrm{~V}_{\mathrm{DDP}}+1.0$	V
PCI DC Input Clamp Current (absolute)	$\mathrm{V}_{\text {IN }}<-1$ or $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DDP}}+1 \mathrm{~V}$	10		mA
LVPECL Input Voltage		-0.3	$\mathrm{~V}_{\mathrm{DDP}}+0.5$	V
GND		0	0	V

Note: * Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect devicereliability. Devi ces should not beoperated outsidethe Recommended Operating Conditions.

Programming, Storage and Operating Limits

Product Grade	Programming Cycles	Program Retention	Storage Temperature		Operating
			Min.	Max.	T_{J} Max Junction Temperature
Commercial	100	20 years	$-55^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$
Industrial	100	20 years	$-55^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$

Note: This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and programming specification is not implied.

Supply Voltages

Mode	V $_{\text {DD }}$	V $_{\text {DDP }}$
Single Voltage	2.5 V	2.5 V
Mixed Voltage	2.5 V	3.3 V

Parameter	Condition	Com	trial	Units
		Minimum	Maximum	
V_{PP}	During Programming	15.8	16.5	V
	Normal Operation ${ }^{1}$	0	16.5	V
V_{PN}	During Programming	-13.8	-13.2	V
	Normal Operation ${ }^{2}$	-13.8	0	V
IPP	During Programming		25	mA
IPN	During Programming		10	mA
AVDD		V_{DD}	V_{DD}	V
AGND		GND	GND	V

Notes:

1. Pleaser efer to the "VPP Programming Supply Pin" section on page 60 for moreinformation.
2. Please refer to the "VPN Programming Supply Pin" section on page 61 for more information.

Recommended Operating Conditions

Parameter	Limits		
		Commercial	Industrial
	$\mathrm{V}_{\mathrm{DD}} \& \mathrm{~V}_{\mathrm{DDP}}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
DC Supply Voltage (Mixed 2.5V, 3.3V I/Os)	$\mathrm{V}_{\mathrm{DDP}}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
	$\mathrm{~V}_{\mathrm{DD}}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
Operating Ambient Temperature Range	T_{A}	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Maximum Operating Junction Temperature	T_{J}	$110^{\circ} \mathrm{C}$	$110^{\circ} \mathrm{C}$

DC Electrical Specifications ($\left.\mathrm{V}_{\text {DDP }}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}\right)^{\mathbf{1}}$

Symbol	Parameter	Conditions		Commercial / Industrial ${ }^{\mathbf{1 , 2}}$			
				Min.	Typ.	Max.	Units
V_{OH}	Output High Voltage High Drive (OB25LPH) Low Drive (OB25LPL)	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{I}^{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 2.1 \\ & 2.0 \\ & 1.7 \\ & 2.1 \\ & 1.9 \\ & 1.7 \end{aligned}$			V
V_{OL}	Output Low Voltage High Drive (OB25LPH) Low Drive (OB25LPL)					$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.7 \\ & 0.2 \\ & 0.4 \\ & 0.7 \end{aligned}$	V
V_{IH}	Input High Voltage			1.7		$\mathrm{V}_{\mathrm{DDP}}+0.3$	V
V_{IL}	Input Low Voltage			-0.3		0.7	V
$\mathrm{R}_{\text {WEAKPULLUP }}$	Weak Pull-up Resistance (OTB25LPU)	$\mathrm{V}_{\text {IN }} \geq 1.25 \mathrm{~V}$		6		56	$\mathrm{k} \Omega$
HYST	Input Hysteresis Schmitt	See Table 4 on page 11		0.3	0.35	0.45	V
I^{IN}	Input Current	with pull up ($\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$)		-240		-20	$\mu \mathrm{A}$
		without pull up ($\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{DD})		-10		10	$\mu \mathrm{A}$
${ }^{\text {IDDQ }}$	Quiescent Supply Current (standby) Commercial	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{3}$ or V_{DD}	Std.		5.0	15	mA
			-F		5.0	25	mA
IDDQ	Quiescent Supply Current (standby) Industrial	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{3}$ or V_{DD}	Std.		5.0	20	mA
loz	3-State Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{GND}$ or V_{DD}	Std.	-10		10	$\mu \mathrm{A}$
			$-\mathrm{F}^{4}$	-10		100	$\mu \mathrm{A}$
OSH	Output Short Circuit Current High High Drive (OB25LPH) Low Drive (OB25LPL)	$\begin{aligned} & V_{I N}=V_{S S} \\ & V_{I N}=V_{S S} \end{aligned}$		$\begin{array}{\|r} -120 \\ -100 \\ \hline \end{array}$			mA
IOSL	Output Short Circuit Current Low High Drive (OB25LPH) Low Drive (OB25LPL)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DDP}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DDP}} \end{aligned}$				$\begin{gathered} 100 \\ 30 \end{gathered}$	mA
$\mathrm{C}_{1 / \mathrm{O}}$	I/O Pad Capacitance					10	pF
$\mathrm{C}_{\text {CLK }}$	Clock Input Pad Capacitance					10	pF

Notes:

1. All process conditions. J unction Temperature: -40 to $+110^{\circ} \mathrm{C}$.
2. -F parts areonly availableas commercial.
3. No pull-up resistor.
4. This will not exceed $2 m A$ total per device.

DC Electrical Specifications $\left(V_{\text {DDP }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{DD}} \mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}\right)^{\mathbf{1}}$

Symbol	Parameter	Conditions		Commercial / Industrial ${ }^{\mathbf{1 , 2}}$			Units
				Min.	Typ.	Max.	
V_{OH}	Output High Voltage 3.3V I/O, High Drive (OB33P) 3.3V I/O, Low Drive (OB33L)	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-14 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$		$\left\|\begin{array}{c} 0.9 * V_{\mathrm{DDP}} \\ 2.4 \\ 0.9 * \mathrm{~V}_{\mathrm{DDP}} \\ 2.4 \end{array}\right\|$			V
	Output High Voltage 2.5 V I/O, High Drive (OB25H) 2.5 V I/O, Low Drive (OB25L)	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-3.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-0.1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 2.1 \\ & 2.0 \\ & 1.7 \\ & \\ & 2.1 \\ & 2.0 \\ & 1.7 \end{aligned}$			V
V_{OL}	Output Low Voltage 3.3V I/O, High Drive (OB33P) 3.3V I/O, Low Drive (OB33L)					$0.1 \mathrm{~V}_{\mathrm{DDP}}$ 0.4 0.7 $0.1 \mathrm{~V}_{\mathrm{DDP}}$ 0.4 0.7	V
	Output Low Voltage 2.5 V I/O, High Drive (OB25H) 2.5V I/O, Low Drive (OB25L)	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=7 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=14 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=28 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=15 \mathrm{~mA} \end{aligned}$				$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.7 \\ & 0.2 \\ & 0.4 \\ & 0.7 \end{aligned}$	V
V_{IH}	Input High Voltage 3.3V LVTTL/LVCMOS 2.5V Mode			$\begin{gathered} 2 \\ 1.7 \end{gathered}$		$\begin{aligned} & \mathrm{V}_{\mathrm{DDP}}+0.3 \\ & \mathrm{~V}_{\mathrm{DDP}}+0.3 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage 3.3V LVTTL/LVCMOS 2.5V Mode			$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.7 \end{aligned}$	V
$\mathrm{R}_{\text {WEAKPULLUP }}$	Weak Pull-up Resistance (IOB33U)	$\mathrm{V}_{\mathrm{IN}} \geq 1.5 \mathrm{~V}$		7		43	k Ω
$\mathrm{R}_{\text {WEAKPULLUP }}$	Weak Pull-up Resistance (IOB25U)	$\mathrm{V}_{\mathrm{IN}} \geq 1.5 \mathrm{~V}$		7		43	k Ω
${ }^{1} \mathrm{~N}$	Input Current	with pull up ($\mathrm{V}_{\text {IN }}=\mathrm{G}$		-300		-40	$\mu \mathrm{A}$
		without pull up ($\mathrm{V}_{\text {IN }}$		-10		10	$\mu \mathrm{A}$
IDDQ	Quiescent Supply Current (standby) Commercial	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{3}$ or V_{DD}	Std.		5.0	15	mA
			-F		5.0	25	mA
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Supply Current (standby) Industrial	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}^{3}$ or V_{DD}	Std.		5.0	20	mA

Notes:

1. All process conditions. J unction Temperature: -40 to $+110^{\circ} \mathrm{C}$.
2. -F parts areonly available as commercial.
3. No pull-up resi stor.
4. This will not exceed $2 m A$ total per device.

DC Electrical Specifications ($V_{\text {DDP }}=\mathbf{3 . 3 V} \pm 0.3 \mathrm{~V}$ and $\left.V_{\text {DD }} \mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}\right)^{\mathbf{1}}$ (Continued)

Symbol	Parameter	Conditions		Commercial / Industrial ${ }^{1,2}$			Units
				Min.	Typ.	Max.	
loz	3-State Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=\mathrm{GND}$ or V_{DD}	Std.	-10		10	$\mu \mathrm{A}$
			- F^{4}	-10		100	$\mu \mathrm{A}$
losh	Output Short Circuit Current High 3.3V High Drive (OB33P) 3.3V Low Drive (OB33L) 2.5V High Drive (OB25H) 2.5V Low Drive (OB25L)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \\ & \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \end{aligned}$		$\begin{aligned} & -200 \\ & -100 \\ & -20 \\ & -10 \end{aligned}$			mA
lost	Output Short Circuit Current Low 3.3V High Drive 3.3V Low Drive 2.5V High Drive 2.5V Low Drive	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$				$\begin{aligned} & 200 \\ & 100 \\ & 200 \\ & 100 \end{aligned}$	mA
$\mathrm{C}_{\text {I/O }}$	I/O Pad Capacitance					10	pF
$\mathrm{C}_{\text {CLK }}$	Clock Input Pad Capacitance					10	pF

Notes:

1. All process conditions. J unction Temperature: -40 to $+110^{\circ} \mathrm{C}$.
2. -F parts areonly available as commercial.
3. No pull-up resi stor.
4. This will not exceed 2 mA total per device.

DC Specifications (3.3V PCI Operation) ${ }^{1}$

Symbol	Parameter	Condition		Commercial / Industrial ${ }^{\text {2,3 }}$		Units
				Min.	Max.	
V_{DD}	Supply Voltage for Core			2.3	2.7	V
$\mathrm{V}_{\text {DDP }}$	Supply Voltage for I/O Ring			3.0	3.6	V
V_{IH}	Input High Voltage			$0.5 \mathrm{~V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}+0.5$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			-0.5	$0.3 \mathrm{~V}_{\text {DDP }}$	V
IIPU	Input Pull-up Voltage ${ }^{4}$			$0.7 \mathrm{~V}_{\text {DDP }}$		V
IIL	Input Leakage Current ${ }^{5}$	$0<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CCI}}$	Std.	-10	10	$\mu \mathrm{A}$
			-F ${ }^{6}$	-10	100	$\mu \mathrm{A}$
V_{OH}	Output High Voltage	$\mathrm{l}_{\text {OUT }}=-500 \mu \mathrm{~A}$		$0.9 \mathrm{~V}_{\text {DDP }}$		V
V_{OL}	Output Low Voltage	$\mathrm{I}_{\text {OUt }}=1500 \mu \mathrm{~A}$			$0.1 \mathrm{~V}_{\text {DDP }}$	V
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance (except CLK)				10	pF
$\mathrm{C}_{\text {CLK }}$	CLK Pin Capacitance			5	12	pF

Notes:

1. For PCI operation, use OTB33PH, OB33PH, IOB33PH, IB33, or IB33S macrolibrary cell only.
2. All process conditions. J unction Temper ature: -40 to $+110^{\circ} \mathrm{C}$.
3. -F parts areavailableas commercial only.
4. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network. Desi gners with appli cations sensitiveto static power utilization should ensurethat theinput buffer is conducting minimum current at this input voltage.
5. Input leakage currents includehi-Z output leakage for all bidirectional buffers with tristate outputs.
6. The sum of the leakage currents for all inputs shall not exceed 2 mA per device.

AC Specifications (3.3V PCI Revision 2.2 Operation)

Symbol	Parameter	Condition	Commercial / Industrial		Units
			Min.	Max.	
$\mathrm{IOH}_{(A C)}$	Switching Current High	$0<\mathrm{V}_{\text {OUT }} \leq 0.3 \mathrm{~V}_{\text {CCI }}{ }^{*}$	$-12 \mathrm{~V}_{\mathrm{CCI}}$		mA
		$\begin{aligned} & 0.3 \mathrm{~V}_{\mathrm{CCI}} \leq \mathrm{V}_{\mathrm{OUT}}< \\ & 0.9 \mathrm{~V}_{\mathrm{ClI}^{*}} \end{aligned}$	$\left(-17.1+\left(\mathrm{V}_{\text {DDP }}-\mathrm{V}_{\text {OUT }}\right)\right)$		mA
		$0.7 \mathrm{~V}_{\mathrm{CCI}}<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{CCI}}{ }^{*}$		See equation C - page 124 of the PCI Specification document rev. 2.2	
	(Test Point)	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}_{\text {CC }}{ }^{*}$		$-32 \mathrm{~V}_{\mathrm{CCI}}$	mA
$1 \mathrm{OL}(\mathrm{AC})$	Switching Current Low	$\mathrm{V}_{\mathrm{CCI}}>\mathrm{V}_{\text {OUT }} \geq 0.6 \mathrm{~V}_{\text {CCI }}{ }^{*}$	$16 \mathrm{~V}_{\text {DDP }}$		mA
		$\begin{aligned} & 0.6 \mathrm{~V}_{\mathrm{CCI}}>\mathrm{V}_{\mathrm{OUT}}> \\ & 0.1 \mathrm{~V}_{\mathrm{CII}} 1 \end{aligned}$	(26.7V $\mathrm{V}_{\text {OUT }}$)		mA
		$0.18 \mathrm{~V}_{\mathrm{CCI}}>\mathrm{V}_{\text {OUT }}>0^{*}$		See equation D - page 124 of the PCI Specification document rev. 2.2	
	(Test Point)	$\mathrm{V}_{\text {OUT }}=0.18 \mathrm{~V}_{\text {CC }}$		$38 \mathrm{~V}_{\mathrm{CCI}}$	mA
I_{CL}	Low Clamp Current	$-3<\mathrm{V}_{\text {IN }} \leq-1$	$-25+\left(\mathrm{V}_{\mathrm{IN}}+1\right) / 0.015$		mA
I_{CH}	High Clamp Current	$\mathrm{V}_{\mathrm{CCI}}+4>\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CCI}}+1$	$25+\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{DDP}}-1\right) / 0.015$		mA
slew $_{\text {R }}$	Output Rise Slew Rate	$0.2 \mathrm{~V}_{\mathrm{CCI}}$ to $0.6 \mathrm{~V}_{\mathrm{CCI}}$ load *	1	4	V/ns
slew $_{\text {F }}$	Output Fall Slew Rate	$0.6 \mathrm{~V}_{\mathrm{CCI}}$ to $0.2 \mathrm{~V}_{\mathrm{CCI}}$ load*	1	4	V/ns

Note: $\quad *$ Refer to the PCI Specification document rev. 2.2.

Pad Loading Applicable to the Rising Edge PCI

Pad Loading Applicable to the Falling Edge PCI

Tristate Buffer Delays

Tristate Buffer Delays

(Worst-Case Commercial Conditions, $\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF} \operatorname{load}, \mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$)

Macro Type	Description	Max $\mathrm{t}_{\text {DLH }}{ }^{1}$		Max $\mathrm{t}_{\mathrm{DLL}}{ }^{2}$		$\mathrm{Max} \mathrm{tenzH}^{3}$		Max tenzL ${ }^{4}$		$\begin{array}{\|c} \text { Unit } \\ \mathbf{s} \end{array}$
		STD	-F	STD	-F	STD	-F	STD	-F	
OTB33PH	3.3V, PCI Output Current, High Slew Rate	2.0	2.4	2.2	2.6	2.2	2.6	2.0	2.4	ns
OTB33PN	3.3V, High Output Current, Nominal Slew Rate	2.2	2.6	2.9	3.5	2.4	2.9	2.1	2.5	ns
OTB33PL	3.3V, High Output Current, Low Slew Rate	2.5	3.0	3.2	3.9	2.7	3.3	2.8	3.4	ns
OTB33LH	3.3V, Low Output Current, High Slew Rate	2.6	3.1	4.0	4.8	2.8	3.4	3.0	3.6	ns
OTB33LN	3.3V, Low Output Current, Nominal Slew Rate	2.9	3.5	4.3	5.2	3.2	3.8	4.1	4.9	ns
OTB33LL	3.3V, Low Output Current, Low Slew Rate	3.0	3.6	5.6	6.7	3.3	3.9	5.5	6.6	ns
OTB25HH	2.5 V , High Output Current, High Slew Rate	3.1	3.8	1.8	2.2	2.8	3.4	1.7	2.0	ns
OTB25HN	2.5 V , High Output Current, Nominal Slew Rate	3.1	3.7	2.7	3.3	2.9	3.5	2.7	3.2	ns
OTB25HL	2.5 V , High Output Current, Low Slew Rate	3.1	3.7	3.9	4.7	2.9	3.5	3.8	4.6	ns
OTB25LH	2.5V, Low Output Current, High Slew Rate	4.6	5.6	2.9	3.5	4.6	5.5	2.9	3.4	ns
OTB25LN	2.5 V , Low Output Current, Nominal Slew Rate	4.6	5.6	3.7	4.5	4.6	5.5	3.6	4.3	ns
OTB25LL	2.5V, Low Output Current, Low Slew Rate	4.6	5.6	5.1	6.1	4.5	5.4	4.8	5.8	ns
OTB25LPHH	2.5V, Low Power, High Output Current, High Slew Rate ${ }^{5}$	2.0	2.4	2.1	2.5	2.3	2.7	2.0	2.4	ns
OTB25LPHN	2.5V, Low Power, High Output Current, Nominal Slew Rate ${ }^{5}$	2.4	2.9	3.0	3.6	2.7	3.2	2.1	2.5	ns
OTB25LPHL	2.5V, Low Power, High Output Current, Low Slew Rate ${ }^{5}$	2.9	3.5	3.2	3.8	3.1	3.8	2.7	3.2	ns
OTB25LPLH	2.5 V , Low Power, Low Output Current, High Slew Rate ${ }^{5}$	2.7	3.3	4.6	5.5	3.0	3.6	2.6	3.1	ns
OTB25LPLN	2.5V, Low Power, Low Output Current, Nominal Slew Rate ${ }^{5}$	3.5	4.2	4.2	5.1	3.8	4.5	3.8	4.6	ns
OTB25LPLL	2.5V, Low Power, Low Output Current, Low Slew Rate ${ }^{5}$	4.0	4.8	5.3	6.4	4.2	5.1	5.1	6.1	ns

Notes:

1. $t_{\text {DLH }}=$ Data-to-Pad HIGH
2. $t_{D H L}=$ Data-to-Pad LOW
3. $\mathrm{t}_{\mathrm{ENZH}}=$ Enableto-Pad, Z to HIGH
4. $t_{E N Z L}=$ Enableto-Pad, Zto LOW
5. Low power I / O work with $V_{D D P}=2.5 \mathrm{~V} \pm 10 \%$ only. $V_{D D P}=2.3 \mathrm{~V}$ for delays.

Output Buffer Delays

Output Buffer Delays

(Worst-Case Commercial Conditions, $V_{\text {DDP }}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, 35 \mathrm{pF} \operatorname{load}, \mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$)

Macro Type	Description	Max $\mathrm{t}_{\text {DLH }}{ }^{1}$		Max $\mathrm{t}_{\text {DL }}{ }^{2}$		Units
		STD	-F	STD	-F	
OB33PH	3.3V, PCI Output Current, High Slew Rate	2.0	2.4	2.2	2.6	ns
OB33PN	3.3V, High Output Current, Nominal Slew Rate	2.2	2.6	2.9	3.5	ns
OB33PL	3.3V, High Output Current, Low Slew Rate	2.5	3.0	3.2	3.9	ns
OB33LH	3.3V, Low Output Current, High Slew Rate	2.6	3.1	4.0	4.8	ns
OB33LN	3.3V, Low Output Current, Nominal Slew Rate	2.9	3.5	4.3	5.2	ns
OB33LL	3.3V, Low Output Current, Low Slew Rate	3.0	3.6	5.6	6.7	ns
OB25HH	2.5 V , High Output Current, High Slew Rate	3.1	3.8	1.8	2.2	ns
OB25HN	2.5 V , High Output Current, Nominal Slew Rate	3.1	3.7	2.7	3.3	ns
OB25HL	2.5 V , High Output Current, Low Slew Rate	3.1	3.7	3.9	4.7	ns
OB25LH	2.5 V , Low Output Current, High Slew Rate	4.6	5.6	2.9	3.5	ns
OB25LN	2.5 V , Low Output Current, Nominal Slew Rate	4.6	5.6	3.7	4.5	ns
OB25LL	2.5V, Low Output Current, Low Slew Rate	4.6	5.6	5.1	6.1	ns
OB25LPHH	2.5 V , Low Power, High Output Current, High Slew Rate ${ }^{3}$	2.0	2.4	2.1	2.6	ns
OB25LPHN	2.5V, Low Power, High Output Current, Nominal Slew Rate ${ }^{3}$	2.4	2.9	3.0	3.6	ns
OB25LPHL	2.5 V , Low Power, High Output Current, Low Slew Rate ${ }^{3}$	2.9	3.5	3.2	3.8	ns
OB25LPLH	2.5 V , Low Power, Low Output Current, High Slew Rate ${ }^{3}$	2.7	3.3	4.6	5.5	ns
OB25LPLN	2.5V, Low Power, Low Output Current, Nominal Slew Rate ${ }^{3}$	3.5	4.2	4.2	5.1	ns
OB25LPLL	2.5V, Low Power, Low Output Current, Low Slew Rate ${ }^{3}$	4.0	4.8	4.3	6.4	ns

Notes:

1. $\mathrm{t}_{\text {DLH }}=$ Data-to-Pad HIGH
2. $\mathrm{t}_{\mathrm{DHL}}=$ Data-to-Pad LOW
3. Low power $\mathrm{I} / 0$ work with $\mathrm{V}_{\mathrm{DDP}}=2.5 \mathrm{~V} \pm 10 \%$ only $. \mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}$ for delays.

Input Buffer Delays

Input Buffer Delays

(Worst-Case Commercial Conditions, $\mathrm{V}_{\text {DDP }}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$

Macro Type	Description	Max. $\mathrm{t}_{\text {INYH }}{ }^{1}$		Max. $\mathrm{t}_{\mathrm{INYL}}{ }^{2}$		Units
		Std.	-F	Std.	-F	
IB25	$2.5 \mathrm{~V}, \mathrm{CMOS}$ Input Levels ${ }^{3}$, No Pull-up Resistor	0.7	0.9	0.8	1.0	ns
IB25S	2.5V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor, Schmitt Trigger	0.7	0.9	0.8	1.0	ns
IB25LP	2.5 V , CMOS Input Levels ${ }^{3}$, Low Power	0.9	1.1	0.6	0.8	ns
IB25LPS	2.5 V , CMOS Input Levels ${ }^{3}$, Low Power, Schmitt Trigger	0.7	0.9	0.9	1.1	ns
IB33	3.3V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor	0.4	0.5	0.6	0.7	ns
IB33S	3.3V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor, Schmitt Trigger	0.6	0.7	0.8	0.9	ns

Notes:

1. $\mathrm{t}_{\mathrm{INYH}}=$ Input Pad-to-Y HIGH
2. $\quad \mathrm{t}_{\mathrm{INYL}}=$ Input Pad-to-Y LOW
3. LVTTL delays arethe same as CMOS delays.
4. For LP Macros, $\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}$ for delays.

Global Input Buffer Delays

(Worst-Case Commercial Conditions, $\mathrm{V}_{\text {DDP }}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ}$)

Macro Type	Description	Max. $\mathrm{t}_{\text {INYH }}{ }^{1}$		Max. $\mathrm{t}_{\text {INYL }}{ }^{2}$		Units
		Std.	-F	Std.	-F	
GL25	2.5V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor	1.3	1.6	1.0	1.2	ns
GL25S	2.5V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor, Schmitt Trigger	1.3	1.6	1.0	1.2	ns
GL25LP	2.5 V , CMOS Input Levels ${ }^{3}$, Low Power	1.1	1.2	1.0	1.3	ns
GL25LPS	2.5V, CMOS Input Levels ${ }^{3}$, Low Power, Schmitt Trigger	1.3	1.6	1.0	1.1	ns
GL33	3.3V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor	1.0	1.2	1.1	1.3	ns
GL33S	3.3V, CMOS Input Levels ${ }^{3}$, No Pull-up Resistor, Schmitt Trigger	1.0	1.2	1.1	1.3	ns
PECL	PPECL Input Levels	1.0	1.2	1.1	1.3	ns

Notes:

1. $\mathrm{t}_{\mathrm{INYH}}=$ Input Pad-to-Y HIGH
2. $\mathrm{t}_{\mathrm{INYL}}=$ Input Pad-to-Y LOW
3. LVTTL delays arethesame as CMOS delays.
4. For LP Macros, $\mathrm{V}_{\mathrm{DDP}}=2.3 \mathrm{~V}$ for delays.

Predicted Global Routing Delay*

(Worst-Case Commercial Conditions, $\mathrm{V}_{\mathrm{DDP}}=\mathbf{3 . 0 V}, \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=\mathbf{7 0}{ }^{\circ} \mathrm{C}$)

Parameter	Mescription	Max.		
		Std.	$-\mathbf{F}$	
$t_{\text {RCKH }}$	Input Low to High (fully loaded row)	1.1	1.3	ns
$\mathrm{t}_{\mathrm{RCKL}}$	Input High to Low (fully loaded row)	1.0	1.2	ns
$\mathrm{t}_{\mathrm{RCKH}}$	Input Low to High (minimally loaded row)	0.8	1.0	ns
$\mathrm{t}_{\mathrm{RCKL}}$	Input High to Low (minimally loaded row)	0.8	1.0	ns

Note: \quad * The timing delay differ ence between tile locations is less than 15ps.

Global Routing Skew

(Worst-Case Commercial Conditions, $V_{\text {DDP }}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$)

Parameter	Description	Max.		Units
		Std.	-F	
$\mathrm{t}_{\text {RCKSW }}$	Maximum Skew Low to High	270	320	ps
$\mathrm{t}_{\text {RCKSHH }}$	Maximum Skew High to Low	270	320	ps

Module Delays

Sample Macrocell Library Listing*

(Worst-Case Commercial Conditions, $\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=\mathbf{7 0} \mathbf{O}^{\mathrm{C}}$)

Cell Name	Description		Standard		-F		Units
			Maximu m	Minimum	Maximu m	Minimum	
NAND2	2-Input NAND		0.5		0.6		ns
AND2	2-Input AND		0.4		0.5		ns
NOR3	3-Input NOR		0.8		1.0		ns
MUX2L	2-1 MUX with Active Low Select		0.5		0.6		ns
OA21	2-Input OR into a 2-Input AND		0.8		1.0		ns
XOR2	2-Input Exclusive OR		0.6		0.8		ns
LDL	Active Low Latch (LH/HL)CLK-Q	LH	0.9		1.1		ns
		HL	0.8		0.9		
	$\mathrm{t}_{\text {setup }}$			0.7		0.8	
	$\mathrm{t}_{\text {hold }}$			0.1		0.2	
DFFL	Negative Edge-Triggered D-type Flip-Flop (LH/HL) CLK-Q	LH	0.9		1.1		ns
		HL	0.8		1.0		
	$\mathrm{t}_{\text {setup }}$			0.6		0.7	
	$\mathrm{t}_{\text {hold }}$			0.0		0.0	

Note: *Intrinsic delays have a variable component, coupled to the input slope of the signal. These numbers assume an input slopetypical of local interconnect.

Recommended Operating Conditions

Parameter		Limits
		Commercial/Industrial
Maximum Clock Frequency*	$\mathrm{f}_{\mathrm{CLOCK}}$	180 MHz
Maximum RAM Frequency*	$\mathrm{f}_{\mathrm{RAM}}$	150 MHz
Maximum Rise/Fall Time on Inputs*		
- Schmitt Mode	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	100 ns
• Non-schmitt Mode	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	10 ns
Maximum LVPECL Frequency*		180 MHz
Maximum t_{CK} Frequency (JTAG)	t_{CK}	10 MHz

Note: *-F parts will be 20\%slower than standard commercial devices.
Slew Rates Measured at $\mathbf{C}=\mathbf{3 0} \mathrm{pF}$, Nominal Power Supplies and $25^{\circ} \mathrm{C}$

Type	Trig. Level	Rising Edge (nS)	Slew Rate (V/ns)	Falling Edge (nS)	Slew Rate (V/ns)	PCI Mode
OB33PH	$10 \%-90 \%$	1.60	1.65	1.65	1.60	Yes
OB33PN	$10 \%-90 \%$	1.57	1.68	3.32	0.80	No
OB33PL	$10 \%-90 \%$	1.57	1.68	1.99	1.32	No
OB33LH	$10 \%-90 \%$	3.80	0.70	4.84	0.55	No
OB33LN	$10 \%-90 \%$	4.19	0.63	3.37	0.78	No
OB33LL	$10 \%-90 \%$	5.49	0.48	2.98	0.89	No
OB25HH	$20 \%-60 \%$	3.31	0.30	0.75	1.33	No
OB25HN	$20 \%-60 \%$	3.20	0.32	0.77	1.30	No
OB25HL	$20 \%-60 \%$	3.27	0.31	0.77	1.30	No
OB25LH	$20 \%-60 \%$	8.41	0.12	1.38	0.72	No
OB25LN	$20 \%-60 \%$	8.54	0.12	1.15	0.87	No
OB25LL	$20 \%-60 \%$	8.50	0.12	1.19	0.84	No
OB25LPHH	$10 \%-90 \%$	1.55	1.29	1.56	1.28	No
OB25LPHN	$10 \%-90 \%$	1.70	1.18	2.08	0.96	No
OB25LPHL	$10 \%-90 \%$	1.97	1.02	2.09	0.96	No
OB25LPLH	$10 \%-90 \%$	3.57	0.56	3.93	0.51	No
OB25LPLN	$10 \%-90 \%$	4.65	0.43	3.28	0.61	No
OB25LPLL	$10 \%-90 \%$	5.52	0.36	3.44	0.58	No

Note: Standard and -F parts.

Embedded Memory Specifications

This section discusses ProASI CPLUS SRAM/FIFO embedded

 memory and its interface signals, including timing diagrams that show the relationships of signals as they pertain to single embedded memory blocks (Table 11). Table 8 on page 22 shows basic SRAM and FIFO configurations. Simultaneous Read and Write to the same location must be done with care. On such accesses the DI bus is output to the DO bus.
Enclosed Timing Diagrams- SRAM Mode:

- Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)
- Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
- Asynchronous SRAM Write
- Asynchronous SRAM Read, Address Controlled, RDB=0
- Asynchronous SRAM Read, RDB Controlled
- Synchronous SRAM Write
- Embedded Memory Specifications

The difference between synchronous transparent and pipeline modes is the timing of all the output signals from the memory. In transparent mode, the outputs will change within the same clock cycle to reflect the data requested by the currently valid access to the memory. If clock cycles are short (high clock speed), the data requires most of the clock cycle to change to valid values (stable signals). Processing of this data in the same clock cycle is nearly impossible. Most designers add registers at all outputs of the memory to push the data processing into the next clock cycle. An entire clock cycle can then be used to process the data. To simplify use of this memory setup, suitable registers have been implemented as part of the memory primitive and are available to the user in the synchronous pipeline mode. In this mode, the output signals will change shortly after the second rising edge, following the initiation of the read access.

Table 11 - Memory Block SRAM Interface Signals

SRAM Signal	Bits	In/Out	Description
WCLKS	1	IN	Write clock used on synchronization on write side
RCLKS	1	IN	Read clock used on synchronization on read side
RADDR<0:7>	8	IN	Read address
RBLKB	1	IN	True read block select (active LOW)
RDB	1	IN	True read pulse (active LOW)
WADDR<0:7>	8	IN	Write address
WBLKB	1	IN	Write block select (active LOW)
DI<0:8>	9	IN	Input data bits $<0: 8>,<8>$ can be used for parity in
WRB	1	IN	Negative true write pulse
DO<0:8>	9	OUT	Output data bits $<0: 8>,<8>$ can be used for parity out
RPE	1	OUT	Read parity error (active HIGH)
WPE	1	OUT	Write parity error (active HIGH)
PARODD	1	IN	Selects odd parity generation/detect when high, even when low

Note: Not all signals shown are used in all modes.

Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New DO access from RCLKS \uparrow	7.5		ns	
OCH	Old DO valid from RCLKS \uparrow		3.0	ns	
RACH	RADDR hold from RCLKS \uparrow	0.5		ns	
RACS	RADDR setup to RCLKS \uparrow	1.0		ns	
RDCH	RDB hold from RCLKS \uparrow	0.5		ns	
RDCS	RDB setup to RCLKS \uparrow	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	9.5		ns	
RPCH	Old RPE valid from RCLKS \uparrow		3.0	ns	

Note: -F speed grade devices are20\%slower than the standard numbers.

Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol t $\mathbf{x x x}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
OCA	New DO access from RCLKS \uparrow	2.0		ns	
OCH	Old DO valid from RCLKS \uparrow		0.75	ns	
RACH	RADDR hold from RCLKS \uparrow	0.5		ns	
RACS	RADDR setup to RCLKS \uparrow	1.0		ns	
RDCH	RDB hold from RCLKS \uparrow	0.5		ns	
RDCS	RDB setup to RCLKS \uparrow	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	4.0		ns	
RPCH	Old RPE valid from RCLKS \uparrow		1.0	ns	

[^1]
Asynchronous SRAM Write

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathrm{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
AWRH	WADDR hold from WB \uparrow	1.0		ns	
AWRS	WADDR setup to WB \downarrow	0.5		ns	
DWRH	DI hold from WB \uparrow	1.5		ns	
DWRS	DI setup to WB \uparrow	0.5		ns	PARGEN is inactive
DWRS	DI setup to WB \uparrow	2.5		ns	PARGEN is active
WPDA	WPE access from DI	3.0		ns	WPE is invalid while
WPDH	WPE hold from DI		1.0	ns	PARGEN is active
WRCYC	Cycle time	7.5		ns	
WRMH	WB high phase	3.0		ns	Inactive
WRML	WB low phase	3.0		ns	Active

Note: -F speed grade devices are 20\%slower than the standard numbers.

Asynchronous SRAM Read, Address Controlled, RDB=0

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol t $_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
ACYC	Read cycle time	7.5		ns	
OAA	New DO access from RADDR stable	7.5		ns	
OAH	Old DO hold from RADDR stable		3.0	ns	
RPAA	New RPE access from RADDR stable	10.0		ns	
RPAH	Old RPE hold from RADDR stable		3.0	ns	

Note: -F speed grade devices are 20\%slower than the standard numbers.

Asynchronous SRAM Read, RDB Controlled

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol t $\mathbf{x x x}$	Description	Min.	Max.	Units	Notes
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
RDCYC	Read cycle time	7.5		ns	
RDMH	RB high phase	3.0		ns	Inactive setup to new cycle
RDML	RB low phase	3.0		ns	Active
RPRDA	New RPE access from RB \downarrow	9.5		ns	
RPRDH	Old RPE valid from RB \downarrow		3.0	ns	

Note: -F speed grade devices are 20\%slower than the standard numbers.

Synchronous SRAM Write

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol t xxx	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
DCH	DI hold from WCLKS \uparrow	0.5		ns	
DCS	DI setup to WCLKS \uparrow	1.0		ns	
WACH	WADDR hold from WCLKS \uparrow	0.5		ns	
WDCS	WADDR setup to WCLKS \uparrow	1.0		ns	
WPCA	New WPE access from WCLKS \uparrow	3.0		ns	WPE is invalid while
WPCH	Old WPE valid from WCLKS \uparrow	0.5	ns	PARGEN is active	
WRCH, WBCH	WRB \& WBLKB hold from WCLKS \uparrow	0.5	ns		
WRCS, WBCS	WRB \& WBLKB setup to WCLKS \uparrow	1.0		ns	

Notes:

1. On si multaneous read and write accesses to the same location DI is output to DO.
2. -F speed grade devi ces are 20% slower than the standard numbers.

Synchronous Write and Read to the Same Location

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathrm{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
WCLKRCLKS	WCLKS \uparrow to RCLKS \uparrow setup time	-0.1		ns	
WCLKRCLKH	WCLKS \uparrow to RCLKS \uparrow hold time		7.0	ns	
OCH	Old DO valid from RCLKS \uparrow		3.0	ns	OCA/OCH displayed for
OCA	New DO valid from RCLKS \uparrow	7.5		ns	Access Timed Output

Notes:

1. This behavi or is valid for Access Timed Output and Pipelined ModeOutput. The table shows the timings of an Access Timed Output.
2. During synchronous write and synchronous read access to the same location, the new write data will be read out if the active write clock edge occurs before or at the same time as the active read clock edge. The negative setup time insures this behavior for WCLKS and RCLKS driven by the same design signal.
3. If WCLKS changes after thehold time, the data will be read.
4. A setup or hold time violation will result in unknown output data.
5. -F speed grade devi ces are 20% slower than the standard numbers.

Asynchronous Write and Synchronous Read to the Same Location

* New data is read if WB \downarrow occurs before setup time.

The stored data is read if WB \downarrow occurs after hold time.

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
WBRCLKS	WB \downarrow to RCLKS \uparrow setup time	-0.1		ns	
WBRCLKH	WB \downarrow to RCLKS \uparrow hold time		7.0	ns	
OCH	Old DO valid from RCLKS \uparrow		3.0	ns	OCA/OCH displayed for
OCA	New DO valid from RCLKS \uparrow	7.5		ns	Access Timed Output
DWRRCLKS	DI to RCLKS \uparrow setup time	0		ns	
DWRH	DI to WB \uparrow hold time		1.5	ns	

Notes:

1. This behavi or is valid for Access Timed Output and Pipelined ModeOutput. The table shows the timings of an Access Timed Output.
2. In asynchronous write and synchronous read access to the same location, thenew write data will be read out if theactive writesignal edge occurs befor eor at the sametimeas theactiveread clock edge. If WB changes to low after hold time, the data will beread.
3. A setup or hold time violation will result in unknown output data.
4. -F speed grade devi ces are 20% slower than the standard numbers.

Asynchronous Write and Read to the Same Location

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathrm{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
OWRA	New DO access from WB \uparrow	3.0		ns	
OWRH	Old DO valid from WB \uparrow		0.5	ns	
RAWRS	RB \downarrow or RADDR from WB \downarrow	5.0		ns	
RAWRH	RB \uparrow or RADDR from WB \uparrow	5.0		ns	

Notes:

1. During an asynchronous read cycle, each write operation (synchronous or asynchronous) to the same location will automati cally trigger a read operation which updates the read data.
2. Violation or RAWRS will disturb access to the OLD data.
3. Violation of RAWRH will disturb access to the NEWER data.
4. -F speed gradedevi ces are 20% slower than the standard numbers.

Synchronous Write and Asynchronous Read to the Same Location

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathbf{t}_{\mathbf{x x x}}$	Description	Min.	Max.	Units	Notes
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
OWRA	New DO access from WCLKS \downarrow	3.0		ns	
OWRH	Old DO valid from WCLKS \downarrow		0.5	ns	
RAWCLKS	RB \downarrow or RADDR from WCLKS \uparrow	5.0		ns	
RAWCLKH	RB \uparrow or RADDR from WCLKS \downarrow	5.0		ns	

Notes:

1. During an asynchronous read cycle, each write oper ation (synchronous or asynchronous) to the same location will automati cally trigger a read oper ation which updates the read data.
2. Violation of RAWCLKS will disturb access to OLD data.
3. Violation of RAWCLKH will disturb access to NEWE R data.
4. -F speed grade devi ces are 20% slower than the standard numbers.

Asynchronous FIFO Full and Empty Transitions

The asynchronous FIFO accepts writes and reads while not full or not empty. When the FIFO is full, all writes are inhibited. Conversely, when the FIFO is empty, all reads are inhibited. A problem is created if the FIFO is written during the transition out of full to not full or read during the transition out of empty to not empty. The exact time at which the write or read operation changes from inhibited to accepted after the read (write) signal which causes the transition from full or empty to not full or not empty is indeterminate. This indeterminate period starts 1 ns after the RB (WB) transition, which deactivates full or not empty and ends 3 ns after the RB (WB) transition for slow cycles. For fast cycles, the indeterminate period ends 3 ns (7.5 ns RDL (WRL)) after the RB (WB) transition, whichever is later (Table 12).

The timing diagram for write is shown in Figure 27 on page 53. The timing diagram for read is shown in Figure 28 on page 53. For basic SRAM configurations, see Table 9 on page 23.

Enclosed Timing Diagrams - FIF O Mode:

- Asynchronous FIFO Read
- Asynchronous FIFO Write
- Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
- Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)
- Synchronous FIFO Write
- FIFO Reset

Table 12 - Memory Block FIFO Interface Signals

FIFO Signal	Bits	In/Out	Description
WCLKS	1	IN	Write clock used for synchronization on write side
RCLKS	1	IN	Read clock used for synchronization on read side
LEVEL <0:7>*	8	IN	Direct configuration implements static flag logic
RBLKB	1	IN	Read block select (active LOW)
RDB	1	IN	Read pulse (active LOW)
RESET	1	IN	Reset for FIFO pointers (active LOW)
WBLKB	1	IN	Write block select (active LOW)
DI<0:8>	1	IN	Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB	2	OUT	FIFO flags. FULL prevents write and EMPTY prevents read
FULL, EMPTY	2	OUT	EQTH is true when the FIFO holds the number of words specified by the LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
EQTH, GEQTH	9	OUT	Output data bits <0:8>
DO<0:8>	1	OUT	Read parity error (active HIGH)
RPE	1	OUT	Write parity error (active HIGH)
WPE	3	IN	Configures DEPTH of the FIFO to 2 (LGDEP+1)
LGDEP <0:2>	1	IN	Selects odd parity generation/detect when high, even when low
PARODD	IN	Write pulse (active LOW)	

Note: \quad *LEVEL is always eight bits ($0000.0000,0000.0001$). That means for values of DEPTH greater than 256 , not all values will be possible, e.g. for DEPTH $=512$, theLEVEL can only have the values $2,4, \ldots, 512$. The LEVEL signal circuit will gener ate signals that indi cate whether the FIFO is exactly filled to the value of LEVEL (EQTH) or filled equal or higher (GEQTH) than the specified LEVEL. Since counting starts at 0, EQTH will becometruewhen the FIFO holds (LEVEL+1) words for 512-bit FIFOs.

Note: \quad-F speed gradedevices are 20% slower than thestandard numbers.
Figure 27 • Write Timing Diagram

Note: -F speed grade devices are 20\%slower than the standard numbers.
Figure 28 - Read Timing Diagram

Asynchronous FIFO Read

$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol t $\mathbf{x x x}$	Description	Min.	Max.	Units	Notes
ERDH, FRDH, THRDH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from RB \uparrow		0.5	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
ERDA	New EMPTY access from RB \uparrow	3.0^{1}		ns	
FRDA	FULL \downarrow access from RB \uparrow	3.0^{1}		ns	
ORDA	New DO access from RB \downarrow	7.5		ns	
ORDH	Old DO valid from RB \downarrow		3.0	ns	
RDCYC	Read cycle time	7.5		ns	
RDWRS	WB \uparrow, clearing EMPTY, setup to RB \downarrow	3.0^{2}		ns	Enabling the read operation
	RB high phase	3.0	1.0	ns	Inhibiting the read operation
RDH	RB low phase	3.0		ns	Inactive
RDL	9.5		ns	Active	
RPRDA	New RPE access from RB \downarrow		4.0	ns	
RPRDH	Old RPE valid from RB \downarrow	4.5		ns	
THRDA	EQTH or GETH access from RB \uparrow				

Notes:

1. At fast cycles, ERDA and FRDA $=\operatorname{MAX}(7.5 \mathrm{~ns}-\mathrm{RDL}), 3.0 \mathrm{~ns}$.
2. At fast cycles, RDWRS (for enabling read) $=\operatorname{MAX}(7.5 \mathrm{~ns}-$ WRL), 3.0 ns .
3. -F speed grade devi ces are 20% slower than thestandard numbers.

Asynchronous FIFO Write

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol t ${ }_{\text {xxx }}$	Description	Min.	Max.	Units	Notes
DWRH	DI hold from WB \uparrow	1.5		ns	
DWRS	DI setup to WB \uparrow	0.5		ns	PARGEN is inactive
DWRS	DI setup to WB \uparrow	2.5		ns	PARGEN is active
EWRH, FWRH, THWRH	Old EMPTY, FULL, EQTH, \& GETH valid hold time after WB \uparrow		0.5	ns	Empty/ful//thresh are invalid from the end of hold until the new access is complete
EWRA	EMPTY \downarrow access from WB \uparrow	$3.0{ }^{1}$		ns	
FWRA	New FULL access from WB \uparrow	$3.0{ }^{1}$		ns	
THWRA	EQTH or GETH access from WB \uparrow	4.5		ns	
WPDA	WPE access from DI	3.0		ns	WPE is invalid while PARGEN is active
WPDH	WPE hold from DI		1.0	ns	
WRCYC	Cycle time	7.5		ns	
WRRDS	RB \uparrow, clearing FULL, setup to WB \downarrow	$3.0{ }^{2}$		ns	Enabling the write operation
			1.0		Inhibiting the write operation
WRH	WB high phase	3.0		ns	Inactive
WRL	WB low phase	3.0		ns	Active

Notes:

1. At fast cycles, EWRA, FWRA $=\operatorname{MAX}(7.5 \mathrm{~ns}-\mathrm{WRL}), 3.0 \mathrm{~ns}$.
2. At fast cycles, WRRDS (for enabling write) $=\operatorname{MAX}(7.5 \mathrm{~ns}-$ RDL $), 3.0 \mathrm{~ns}$.
3. -F speed gradedevi ces are 20% slower than the standard numbers.

Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)

$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathrm{t}_{\text {xxx }}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from RCLKS \downarrow	3.0^{1}		ns	
FCBA	FULL \downarrow access from RCLKS \downarrow	3.0^{1}		ns	
ECBH, FCBH, THCBH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from RCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
OCA	New DO access from RCLKS \uparrow	7.5		ns	
OCH	Old DO valid from RCLKS \uparrow		3.0	ns	
RDCH	RDB hold from RCLKS \uparrow	1.0		ns	
RDCS	RDB setup to RCLKS \uparrow	9.5		ns	
RPCA	New RPE access from RCLKS \uparrow		3.0	ns	
RPCH	Old RPE valid from RCLKS \uparrow	4.5		ns	
HCBA	EQTH or GETH access from RCLKS \downarrow				

Notes:

1. At fast cycles, ECBA and FCBA $=\operatorname{MAX}(7.5 \mathrm{~ns}-\mathrm{CMH}), 3.0 \mathrm{~ns}$.
2. $-F$ speed gradedevi ces are 20% slower than the standard numbers.

Synchronous FIFO Read, Pipeline Mode Outputs (Synchronous Pipelined)

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathbf{t}_{\text {xxx }}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
ECBA	New EMPTY access from RCLKS \downarrow	3.0^{1}		ns	
FCBA	FULL \downarrow access from RCLKS \downarrow	3.0^{1}		ns	
ECBH, FCBH, THCBH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from RCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
OCA	New DO access from RCLKS \uparrow	2.0		ns	
OCH	Old DO valid from RCLKS \uparrow		0.75	ns	
RDCH	RDB hold from RCLKS \uparrow	0.5		ns	
RDCS	RDB setup to RCLKS \uparrow	1.0		ns	
RPCA	New RPE access from RCLKS \uparrow	4.0		ns	
RPCH	Old RPE valid from RCLKS \uparrow		1.0	ns	
HCBA	EQTH or GETH access from RCLKS \downarrow	4.5		ns	

Notes:

1. At fast cycles, ECBA and FCBA $=\operatorname{MAX}(7.5 \mathrm{~ns}-\mathrm{CMS}), 3.0 \mathrm{~ns}$.
2. -F speed grade devices are 20% slower than the standard numbers.

Synchronous FIFO Write

Note: The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathbf{t}_{\mathbf{x x}}$	Description	Min.	Max.	Units	Notes
CCYC	Cycle time	7.5		ns	
CMH	Clock high phase	3.0		ns	
CML	Clock low phase	3.0		ns	
DCH	DI hold from WCLKS \uparrow	0.5		ns	
DCS	Dl setup to WCLKS \uparrow	1.0		ns	
FCBA	New FULL access from WCLKS \downarrow	3.0^{1}		ns	
ECBA	EMPTY \downarrow access from WCLKS \downarrow	3.0^{1}		ns	
ECBH, FCBH, HCBH	Old EMPTY, FULL, EQTH, \& GETH valid hold time from WCLKS \downarrow		1.0	ns	Empty/full/thresh are invalid from the end of hold until the new access is complete
HCBA	EQTH or GETH access from WCLKS \downarrow	4.5		ns	
WPCA	New WPE access from WCLKS \uparrow	3.0		ns	WPE is invalid while
WPCH	Old WPE valid from WCLKS \uparrow	0.5	ns		
PRARGN is active					
WBCH,	WRB \& WBLKB hold from WCLKS \uparrow	0.5	ns		
WRCS, WBCS	WRB \& WBLKB setup to WCLKS \uparrow	1.0		ns	
Notes:					

Notes:

1. At fast cycles, ECBA and FCBA $=\operatorname{MAX}(7.5 \mathrm{~ns}-\mathrm{CMH}), 3.0 \mathrm{~ns}$.
2. -F speed grade devices are 20% slower than the standard numbers.

FIFO Reset

Note: *The plot shows the normal operation status.
$\mathrm{T}_{\mathrm{J}}=0^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}$ to 2.7 V

Symbol $\mathbf{t x x x}$	Description	Min.	Max.	Units	Notes
CBRSH	WCLKS or RCLKS \uparrow hold from RESETB \uparrow	1.5		ns	Synchronous mode only
CBRSS	WCLKS or RCLKS \downarrow setup to RESETB \uparrow	1.5		ns	Synchronous mode only
ERSA	New EMPTY \uparrow access from RESETB \downarrow	3.0		ns	
FRSA	FULL \downarrow access from RESETB \downarrow	3.0		ns	
RSL	RESETB low phase	7.5		ns	
THRSA	EQTH or GETH access from RESETB \downarrow	4.5		ns	
WBRSH	WB \downarrow hold from RESETB \uparrow	1.5		ns	Asynchronous mode only
WBRSS	WB \uparrow setup to RESETB \uparrow	1.5		ns	Asynchronous mode only

Note: -F speed grade devices are 20% sl ower than the standard numbers.

Pin Description

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with standard LVTTL and LVCMOS specifications. Unused I/O pins are configured as inputs with pull-up resistors.

NC No Connect

To maintain compatibility with other Actel ProASIC ${ }^{\text {PLUS }}$ products, it is recommended that this pin not be connected to the circuitry on the board.

GL

Global Pin
Low skew input pin for clock or other global signals. This pin can be configured with an internal pull-up resistor. When it is not connected to the global network or the clock conditioning circuit, it can be configured and used as a normal I/O.

GLMX Global Multiplexing Pin

Low skew input pin for clock or other global signals. This pin can be used in one of two special ways: (Please see Actel's ProASICPLUS Clock Conditioning Circuits application note for details).

1. When the external feedback option is selected for the PLL block, this pin is routed as the external feedback source to the clock conditioning circuit.
2. In applications where two different signals access the same global net (but at different times) through the use of GLMXx and GLMXLx macros, this pin will be fixed as one of the source pins.
This pin can be configured with an internal pull-up resistor. When it is not connected to the global network or the clock conditioning circuit, it can be configured and used as any normal I/O. If not used, a global will be configured as an input with pull-up.

Dedicated Pins
 GND Ground

Common ground supply voltage.
$\mathbf{V}_{\text {DD }} \quad$ Logic Array Power Supply Pin
2.5 V supply voltage. 2.5 V supply voltage.

V DDP I/O Pad Power Supply Pin
2.5 V or 3.3 V supply voltage.

TMS Test Mode Select

The TMS pin controls the use of boundary-scan circuitry. This pin has an internal pull-up resistor.

TCK Test Clock

Clock input pin for boundary scan (maximum 10 MHz). Actel recommends adding a nominal $20 \mathrm{k} \Omega$ pull-up resistor to this pin.

TDI Test Data In

Serial input for boundary scan. A dedicated pull-up resistor is included to pull this pin high when not being driven.

TDO Test Data Out

Serial output for boundary scan. Actel recommends adding a nominal $20 \mathrm{k} \Omega$ pull-up resistor to this pin.

TRST Test Reset Input

Asynchronous, active low input pin for resetting boundary-scan circuitry. This pin has an internal pull-up resistor.

Special Function Pins

RCK Running Clock

A free running clock is needed during programming if the programmer cannot guarantee that TCK will be uninterrupted. If not used, this pin has an internal pull-up and can be left floating.

NPECL User Negative Input

Provides high speed clock or data signals to the PLL block. If unused, leave the pin unconnected.

PPECL User Positive Input

Provides high speed clock or data signals to the PLL block. If unused, leave the pin unconnected.

AVDD
 PLL Power Supply

Analog $\mathrm{V}_{D D}$ should be V_{DD} (core voltage) 2.5 V (nominal) and be decoupled from GND with suitable decoupling capacitors to reduce noise. For more information, refer to Actel's Using ProASIC PLUS Clock Conditioning Circuits application note. If the PLLs or clock conditioning circuitry are not used in a design, AVDD should be tied high (2.5 V normal).

AGND PLL Power Ground

Analog GND should be OV and be decoupled from GND with suitable decoupling capacitors to reduce noise. For more information, refer to Actel's ProASICPLUS Clock Conditioning Circuits application note. If the PLLs or clock conditioning circuitry are not used in a design, AGND should be tied to GND.

$\mathbf{V}_{\mathbf{P P}} \quad$ Programming Supply Pin

This pin may be connected to any voltage between GND and 16.5V during normal operation, or it can be left unconnected. ${ }^{2}$ For information on using this pin during programming, see the Performing Internal In-System Programming Using Actel's ProASIC PLUS Devices application note. Actel recommends floating the pin or connecting it to $\mathrm{V}_{\text {DDP }}$.
2. There is a nominal $40 \mathrm{k} \Omega$ pull-up resistor on V_{pp}.

$\mathbf{V}_{\text {PN }} \quad$ Programming Supply Pin

This pin may be connected to any voltage between GND and -13.8V during normal operation, or it can be left unconnected. ${ }^{3}$ For information on using this pin during programming, see the Performing Internal In-System Programming Using Actel's ProASIC $\stackrel{P L U S}{ }$ Devices application note. Actel recommends floating the pin or connecting it to GND.

Recommended Design Practice for $\mathbf{V}_{\mathbf{P N}} / \mathbf{V}_{\mathbf{P P}}$

Bypass capacitors are required from $V_{P P}$ to $G N D$ and $V_{P N}$ to GND for all ProASIC른 devices during programming. During the erase cycle, ProASIC PLUS devices may have current surges on the $\mathrm{V}_{P P}$ and $\mathrm{V}_{\text {PN }}$ power supplies. The only way to maintain the integrity of the power distribution to the ProASIC $\stackrel{\text { PLUS }}{ }$ device during these current surges is to counteract the inductance of the finite length conductors that distribute the power to the device. This can be accomplished by providing a sufficient amount of bypass
capacitance between the $\mathrm{V}_{P P}$ and $\mathrm{V}_{\text {PN }}$ pins and GND (using the shortest paths possible). Without sufficient bypass capacitance to counteract the inductance, the $V_{P P}$ and $V_{P N}$ pins may incur a voltage spike beyond the voltage that the device can withstand. This issue applies to all programming configurations.
The power supply voltage limits are defined in the "Supply Voltages" table on page 30. The solution prevents spikes from damaging the ProASIC $\stackrel{\text { PLUS }}{ }$ devices. Bypass capacitors are required for the $\mathrm{V}_{\text {Pp }}$ and $\mathrm{V}_{P N}$ pads. Use a $0.01 \mu \mathrm{~F}$ to 0.1 $\mu \mathrm{F}$ ceramic capacitor with a 25 V or greater rating. To filter low-frequency noise (decoupling), use a $4.7 \mu \mathrm{~F}$ (low ESR, <1 $<\Omega$, tantalum, 25 V or greater rating) capacitor. The capacitors should be located as close to the device pins as possible (within 2.5 cm is desirable). The smaller, high-frequency capacitor should be placed closer to the device pins than the larger low-frequency capacitor. The same dual capacitor circuit should be used on both the $V_{P P}$ and $V_{P N}$ pins (Figure 29).
3. There is a nominal $40 \mathrm{k} \Omega$ pull-down resistor on V_{PN}.

Figure 29 • ProASIC $\xrightarrow{\text { PLUS }} \mathrm{V}_{\text {PP }}$ and $\mathrm{V}_{\text {PN }}$ Capacitor Requirements

Package Pin Assignments 100-Pin TQFP

ProASIC PLUS Flash Family FPGAs

100-Pin TQFP

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function
1	GND	GND
2	I/O	I/O
3	I/O	I/O
4	I/O	I/O
5	I/O	I/O
6	I/O	I/O
7	I/O	I/O
8	I/O	I/O
9	GND	GND
10	I/O (GLMX1)	I/O (GLMX1)
11	GL1	GL1
12	AGND	AGND
13	NPECL1	NPECL1
14	AVDD	AVDD
15	PPECL1 (1/P)	PPECL1 (I/P)
16	GL2	GL2
17	V_{DD}	V_{DD}
18	I/O	I/O
19	I/O	I/O
20	I/O	I/O
21	I/O	I/O
22	I/O	I/O
23	I/O	I/O
24	I/O	I/O
25	GND	GND
26	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
27	I/O	I/O
28	I/O	I/O
29	I/O	I/O
30	I/O	I/O
31	I/O	I/O
32	I/O	I/O
33	I/O	I/O
34	I/O	I/O
35	I/O	I/O
36	I/O	I/O
37	$V_{\text {DD }}$	$V_{\text {DD }}$
38	GND	GND
39	$V_{\text {DDP }}$	$V_{\text {DDP }}$
40	GND	GND
41	I/O	I/O
42	I/O	I/O

100-Pin TQFP

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function
43	I/O	I/O
44	I/O	I/O
45	I/O	I/O
46	I/O	I/O
47	TCK	TCK
48	TDI	TDI
49	TMS	TMS
50	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
51	GND	GND
52	$V_{\text {PP }}$	$V_{\text {PP }}$
53	$\mathrm{V}_{\text {PN }}$	V_{PN}
54	TDO	TDO
55	TRST	TRST
56	RCK	RCK
57	I/O	I/O
58	I/O	I/O
59	I/O	I/O
60	GL3	GL3
61	PPECL2 (I/P)	PPECL2 (I/P)
62	AVDD	AVDD
63	NPECL2	NPECL2
64	AGND	AGND
65	GL4	GL4
66	I/O (GLMX2)	1/O (GLMX2)
67	GND	GND
68	V_{DD}	V_{DD}
69	I/O	I/O
70	I/O	I/O
71	I/O	I/O
72	I/O	I/O
73	I/O	I/O
74	I/O	I/O
75	GND	GND
76	$V_{\text {DDP }}$	$V_{\text {DDP }}$
77	I/O	I/O
78	I/O	I/O
79	I/O	I/O
80	I/O	I/O
81	I/O	I/O
82	I/O	I/O
83	I/O	I/O
84	I/O	I/O

100-Pin TQFP

Pin Number	APA075 Function	APA150 Function
85	I/O	I/O
86	GND	GND
87	$\mathrm{~V}_{\text {DDP }}$	$\mathrm{V}_{\mathrm{DDP}}$
88	GND	GND
89	$\mathrm{~V}_{\mathrm{DD}}$	V_{DD}
90	I / O	I / O
91	I / O	I / O
92	I / O	I / O
93	I / O	I / O
94	I / O	I / O
95	I / O	I / O
96	I / O	I / O
97	I / O	I / O
98	I / O	I / O
99	I / O	I / O
100	V DDP	V

Package Pin Assignments

144-Pin TQFP

ProASIC PLUS Flash Family FPGAs

144-Pin TQFP

Pin Number	APA075 Function
1	I/O
2	I/O
3	I/O
4	I/O
5	I/O
6	I/O
7	I/O
8	I/O
9	$V_{D D}$
10	GND
11	$V_{\text {DDP }}$
12	I/O
13	I/O
14	I/O
15	GL
16	GL
17	AGND
18	NPECL
19	AVDD
20	PPECL (I/P)
21	I/O (GLMX)
22	I/O
23	I/O
24	I/O
25	I/O
26	I/O
27	GND
28	$V_{\text {DDP }}$
29	I/O
30	I/O
31	I/O
32	I/O
33	I/O
34	I/O
35	I/O
36	I/O
37	I/O
38	I/O
39	I/O
40	I/O
41	I/O
42	I/O

144-Pin TQFP

Pin Number	APA075 Function
43	I/O
44	I/O
45	$V_{\text {DD }}$
46	GND
47	$V_{\text {DDP }}$
48	I/O
49	I/O
50	I/O
51	I/O
52	I/O
53	I/O
54	I/O
55	I/O
56	I/O
57	I/O
58	I/O
59	I/O
60	I/O
61	I/O
62	$V_{\text {DD }}$
63	GND
64	$\mathrm{V}_{\text {DDP }}$
65	I/O
66	I/O
67	I/O
68	I/O
69	TCK
70	TDI
71	TMS
72	NC
73	$V_{\text {PP }}$
74	$V_{P N}$
75	TDO
76	TRST
77	RCK
78	I/O
79	I/O
80	I/O
81	$\mathrm{V}_{\text {DDP }}$
82	GND
83	I/O
84	I/O

144-Pin TQFP

Pin Number	APA075 Function
85	I/O
86	I/O
87	I/O
88	I/O (GLMX)
89	PPECL (I/P)

89 PPECL (I/P)
90 AVDD
91 NPECL
AGND
GL
GL
I/O
I/O
I/O
$V_{\text {DDP }}$
GND
$V_{D D}$
I/O
$V_{\text {DDP }}$
GND
$V_{D D}$
I/O
I/O
I/O
I/O
I/O
I/O
I/O

144-Pin TQFP

Pin Number	APA075 Function
127	I / O
128	I / O
129	I / O
130	I / O
131	I / O
132	I / O
133	I / O
134	$\mathrm{~V}_{\mathrm{DDP}}$
135	GND
136	V DD
137	I / O
138	I / O
139	I / O
140	I / O
141	I / O
142	I / O
143	I / O
144	I / O

Package Pin Assignments (Continued)

ProASICPLUS Flash Family FPGAs

208-Pin PQFP

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
1	GND						
2	I/O						
3	1/0	I/O	I/O	I/O	I/O	I/O	I/O
4	1/0	I/O	I/O	I/O	I/O	I/O	I/O
5	I/O						
6	1/0	I/O	I/O	I/O	I/O	I/O	I/O
7	I/O						
8	1/0	I/O	I/O	I/O	I/O	I/O	I/O
9	I/O						
10	I/O	1/0	I/O	I/O	I/O	I/O	I/O
11	1/0	1/0	I/O	I/O	1/0	1/0	I/O
12	1/0	1/0	I/O	I/O	I/O	I/O	I/O
13	1/0	1/0	I/O	I/O	I/O	I/O	I/O
14	1/0	1/0	I/O	I/O	I/O	I/O	I/O
15	I/O						
16	$V_{D D}$						
17	GND						
18	I/O						
19	I/O						
20	I/O						
21	I/O						
22	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
23	I/O (GLMX1)	I/O (GLMX1)	1/O (GLMX1)	I/O (GLMX1)	1/O (GLMX1)	1/O (GLMX1)	I/O (GLMX1)
24	GL1						
25	AGND						
26	NPECL1						
27	AVDD						
28	PPECL1 (I/P)	PPECL1 (I/P)	PPECL1 (IP)	PPECL1 (I/P)	PPECL1 (I/P)	PPECL1 (IP)	PPECL1 (I/P)
29	GND						
30	GL2						
31	I/O						
32	I/O						
33	I/O	1/0	I/O	I/O	I/O	I/O	I/O
34	I/O						
35	I/O						
36	V_{DD}	$V_{D D}$	V_{DD}	V_{DD}	V_{DD}	$V_{D D}$	V_{DD}
37	I/O						
38	1/0	1/0	1/0	1/0	1/0	I/O	1/0
39	I/O	1/0	I/O	I/O	I/O	1/0	I/O
40	$V_{\text {DDP }}$						
41	GND						
42	I/O						

ProASICPLUS Flash Family FPGAs

208-Pin PQFP (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
43	I/O						
44	I/O	1/0	1/0	I/O	1/0	1/0	I/O
45	1/0	1/0	1/0	1/0	1/0	1/0	I/O
46	1/0	1/0	1/0	1/0	1/0	1/0	I/O
47	1/0	1/0	1/0	1/0	1/0	1/0	1/0
48	1/0	1/0	1/0	1/0	I/O	I/O	1/0
49	1/0	I/O	1/0	I/O	1/0	I/O	1/0
50	1/0	I/O	1/0	1/0	I/O	I/O	1/0
51	I/O						
52	GND						
53	$V_{\text {DDP }}$						
54	I/O						
55	1/0	1/0	1/0	1/0	1/0	1/0	1/0
56	1/0	1/0	I/O	1/0	1/0	1/0	1/0
57	1/0	1/0	I/O	1/0	1/0	1/0	1/0
58	1/0	1/0	I/O	1/0	1/0	1/0	1/0
59	1/0	1/0	I/O	1/0	1/0	1/0	1/0
60	1/0	1/0	I/O	1/0	1/0	1/0	1/0
61	1/0	1/0	I/O	1/0	1/0	1/0	1/0
62	1/0	1/0	I/O	1/0	1/0	1/0	1/0
63	1/0	1/0	I/O	1/0	1/0	1/0	1/0
64	I/O						
65	GND						
66	I/O						
67	1/0	1/0	I/O	1/0	1/0	1/0	1/0
68	1/0	1/0	1/0	1/0	1/0	1/0	1/0
69	1/0	1/0	1/0	1/0	I/O	1/0	1/0
70	I/O	I/O	I/O	1/0	I/O	I/O	1/0
71	V_{DD}	V_{DD}	V_{DD}	V_{DD}	$V_{\text {DD }}$	V_{DD}	V_{DD}
72	$V_{\text {DDP }}$						
73	I/O	I/O	I/O	I/O	I/O	I/O	1/0
74	1/0	1/0	1/0	1/0	1/0	1/0	1/0
75	1/0	1/0	1/0	1/0	1/0	1/0	1/0
76	1/0	1/0	1/0	1/0	1/0	1/0	1/0
77	1/0	1/0	1/0	1/0	1/0	1/0	1/0
78	1/0	1/0	1/0	1/0	1/0	1/0	1/0
79	1/0	1/0	1/0	1/0	1/0	1/0	1/0
80	1/0	1/0	1/0	1/0	1/0	1/0	1/0
81	GND						
82	I/O						
83	1/0	1/0	I/O	1/0	1/0	1/0	1/0
84	1/0	1/0	I/O	1/0	I/O	1/0	1/0

208-Pin PQFP (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
85	I/O	1/0	I/O	1/0	I/O	1/0	1/0
86	1/0	1/0	I/O	I/O	1/0	I/O	I/O
87	I/O						
88	$V_{\text {DD }}$	V_{DD}	$V_{D D}$	$V_{D D}$	$V_{\text {DD }}$	$V_{\text {D }}$	V_{DD}
89	$V_{\text {DDP }}$	$\mathrm{V}_{\mathrm{DDP}}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
90	I/O						
91	1/0	1/0	I/O	1/0	1/0	I/O	1/0
92	1/0	1/0	I/O	1/0	1/0	1/0	1/0
93	1/0	1/0	I/O	1/0	I/O	I/O	1/0
94	1/0	1/0	I/O	1/0	I/O	I/O	1/0
95	1/0	1/0	I/O	1/0	1/0	I/O	I/O
96	I/O						
97	GND						
98	I/O						
99	1/0	1/0	I/O	1/0	1/0	1/O	1/0
100	I/O	1/O	I/O	I/O	I/O	1/0	I/O
101	TCK						
102	TDI						
103	TMS						
104	$V_{\text {DDP }}$						
105	GND						
106	$V_{P P}$						
107	$V_{P N}$	V_{PN}	V_{PN}	$V_{P N}$	$V_{P N}$	V_{PN}	V_{PN}
108	TDO						
109	TRST						
110	RCK						
111	I/O						
112	1/0	I/O	I/O	1/0	I/O	I/O	I/O
113	1/0	I/O	I/O	I/O	I/O	I/O	I/O
114	1/0	1/0	I/O	1/0	1/0	1/0	I/O
115	1/0	1/0	I/O	I/O	1/0	1/0	I/O
116	1/0	1/0	1/0	1/0	1/0	1/0	1/0
117	1/0	1/0	1/0	1/0	1/0	1/0	1/0
118	1/0	1/0	I/O	I/O	1/0	1/0	1/0
119	1/0	1/0	1/0	I/O	1/0	1/0	1/0
120	1/0	1/0	1/0	I/O	I/O	I/O	1/0
121	I/O						
122	GND						
123	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
124	I/O	I/O	I/O	I/O	I/O	I/O	$1 / 0$
125	I/O						
126	$V_{D D}$	V_{DD}	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$	V_{DD}

208-Pin PQFP (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
127	I/O						
128	GL3						
129	PPECL2 (IP)	PPECL2 (I/P)	PPECL2 (I/P)	PPECL2 (I/P)	PPECL2 (I/P)	PPECL2 (IP)	PPECL2 (I/P)
130	GND						
131	AVDD						
132	NPECL2						
133	AGND						
134	GL4						
135	I/O (GLMX2)						
136	I/O						
137	I/O	I/O	I/O	I/O	1/0	I/O	I/O
138	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
139	I/O						
140	I/O						
141	GND						
142	$V_{D D}$	$V_{\text {D }}$	$V_{\text {D }}$				
143	I/O						
144	1/0	1/0	1/0	1/0	1/0	1/0	1/0
145	1/0	1/0	1/0	1/0	1/0	I/O	1/0
146	1/0	1/0	1/0	1/0	1/0	I/O	I/O
147	1/0	1/0	1/0	1/0	1/0	I/O	I/O
148	1/0	1/0	I/O	1/0	1/0	1/0	1/0
149	1/0	1/0	1/0	1/0	1/0	1/0	1/0
150	1/0	1/0	1/0	1/0	1/0	I/O	I/O
151	1/0	1/0	1/0	1/0	1/0	1/0	1/0
152	1/0	I/O	1/0	1/0	1/0	1/0	1/0
153	1/0	I/O	1/0	1/0	I/O	1/0	1/0
154	1/0	I/O	1/0	1/0	1/0	1/0	1/0
155	1/0	I/O	1/0	1/0	1/0	1/0	1/0
156	GND						
157	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
158	I/O	I/O	I/O	I/O	I/O	I/O	1/0
159	1/0	1/0	1/0	1/0	I/O	1/0	1/0
160	1/0	1/0	1/0	1/0	1/0	1/0	1/0
161	I/O	I/O	1/0	I/O	I/O	I/O	I/O
162	GND						
163	I/O						
164	1/0	1/0	1/0	1/0	1/0	1/0	1/0
165	1/0	1/0	1/0	1/0	1/0	1/0	1/0
166	1/0	1/0	1/0	1/0	1/0	1/0	1/0
167	1/0	1/0	1/0	1/0	1/0	1/0	1/0
168	1/0	1/0	1/0	1/0	1/0	1/0	1/0

208-Pin PQFP (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
169	I/O						
170	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
171	$V_{D D}$	$V_{D D}$	V_{DD}	$V_{D D}$	$V_{D D}$	$V_{D D}$	V_{DD}
172	I/O	I/O	I/O	1/0	I/O	1/0	1/0
173	1/0	1/0	1/0	1/0	1/0	1/0	1/0
174	1/0	1/0	1/0	1/0	1/0	1/0	1/0
175	1/0	1/0	1/0	1/0	1/0	1/0	I/O
176	1/0	1/0	1/0	1/0	1/0	1/0	1/0
177	I/O	I/O	I/O	I/O	1/0	1/0	I/O
178	GND						
179	I/O						
180	1/0	1/0	1/0	1/0	1/0	1/0	1/0
181	1/0	1/0	1/0	1/0	1/0	1/0	1/0
182	I/O	1/0	1/0	I/O	I/O	I/O	I/O
183	I/O	1/0	1/0	I/O	I/O	1/0	I/O
184	1/0	1/0	1/0	1/0	I/O	1/0	1/0
185	1/O	I/O	1/0	I/O	1/O	I/O	I/O
186	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
187	V_{DD}	V_{DD}	V_{DD}	$V_{D D}$	V_{DD}	V_{DD}	$V_{\text {D }}$
188	I/O	I/O	I/O	I/O	1/0	I/O	I/O
189	I/O	I/O	I/O	1/0	1/0	1/0	1/0
190	I/O	I/O	1/0	I/O	I/O	I/O	I/O
191	I/O	1/0	1/0	I/O	I/O	I/O	I/O
192	I/O	1/0	I/O	I/O	I/O	1/0	I/O
193	I/O	I/O	1/0	I/O	I/O	I/O	I/O
194	I/O						
195	GND						
196	I/O						
197	1/0	1/0	1/0	1/0	I/O	I/O	1/0
198	1/0	1/0	1/0	1/0	I/O	I/O	1/0
199	1/0	1/0	1/0	1/0	I/O	1/0	1/0
200	1/0	1/0	1/0	1/0	I/O	1/0	1/0
201	1/0	1/0	1/0	1/0	I/O	1/0	1/0
202	1/0	I/O	1/0	1/0	1/0	1/0	1/0
203	1/0	1/0	1/0	1/0	1/0	1/0	1/0
204	1/0	1/0	I/O	1/0	1/0	1/0	1/0
205	1/0	1/0	1/0	1/0	1/0	1/0	1/0
206	1/0	1/0	1/0	1/0	1/0	1/0	1/0
207	I/O	1/0	I/O	I/O	I/O	I/O	I/O
208	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\mathrm{DDP}}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\mathrm{DDP}}$

Package Pin Assignments (Continued)

456-Pin PBGA (Bottom View)

456-Pin PBGA

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
A1	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
A2	$V_{\text {DDP }}$					
A3	NC	NC	I/O	I/O	I/O	I/O
A4	NC	NC	1/0	1/0	1/0	1/0
A5	NC	NC	1/0	1/0	1/0	1/0
A6	NC	NC	1/0	1/0	1/0	1/0
A7	NC	NC	1/0	1/0	1/0	1/0
A8	I/O	1/0	1/0	1/0	1/0	1/0
A9	I/O	I/O	1/0	1/0	1/0	1/0
A10	I/O	I/O	1/0	1/0	1/0	1/0
A11	I/O	I/O	1/0	1/0	1/0	1/0
A12	I/O	I/O	1/0	1/0	1/0	1/0
A13	I/O	I/O	I/O	1/0	1/0	1/0
A14	I/O	I/O	1/0	1/0	1/0	1/0
A15	I/O	I/O	I/O	1/0	1/0	1/0
A16	I/O	I/O	I/O	1/0	1/0	1/0
A17	I/O	I/O	I/O	1/0	1/0	1/0
A18	I/O	I/O	I/O	1/0	1/0	1/0
A19	I/O	I/O	I/O	1/0	1/0	1/0
A20	NC	NC	I/O	1/0	1/0	1/0
A21	NC	NC	I/O	1/0	1/0	1/0
A22	NC	NC	1/O	1/0	1/0	I/O
A23	NC	NC	I/O	1/0	1/0	1/0
A24	NC	NC	I/O	I/O	I/O	I/O
A25	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
A26	$V_{\text {DDP }}$					
B1	$V_{\text {DDP }}$					
B2	$V_{\text {DDP }}$					
B3	NC	NC	NC	I/O	I/O	1/O
B4	NC	NC	1/0	1/0	1/0	1/0
B5	NC	NC	1/0	1/0	1/0	1/0
B6	NC	NC	1/0	1/0	1/0	1/0
B7	NC	NC	1/0	I/O	1/0	1/0
B8	I/O	I/O	I/O	I/O	I/O	1/0
B9	1/0	1/0	1/0	I/O	I/O	1/0
B10	1/0	1/0	1/0	I/O	1/0	1/0
B11	1/0	1/0	1/0	1/0	1/0	1/0
B12	1/0	1/0	1/0	1/0	1/0	1/0
B13	1/0	1/0	1/0	1/0	1/0	1/0
B14	1/0	1/0	1/0	1/0	1/0	1/0
B15	1/0	1/0	1/0	1/0	1/0	1/0
B16	I/O	1/0	1/0	1/0	1/0	1/0

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	$\begin{aligned} & \text { APA150 } \\ & \text { Function } \end{aligned}$	$\begin{aligned} & \text { APA300 } \\ & \text { Function } \end{aligned}$	$\begin{aligned} & \text { APA450 } \\ & \text { Function } \end{aligned}$	$\begin{aligned} & \text { APA600 } \\ & \text { Function } \end{aligned}$	$\begin{aligned} & \text { APA750 } \\ & \text { Function } \end{aligned}$	$\begin{aligned} & \text { APA1000 } \\ & \text { Function } \end{aligned}$
B17	1/0	1/0	I/O	1/0	I/O	1/0
B18	1/0	I/O	1/0	1/0	1/0	1/0
B19	I/O	I/O	1/0	1/0	1/0	1/0
B20	NC	NC	1/0	1/0	1/0	1/0
B21	NC	NC	1/0	1/0	1/0	1/0
B22	NC	NC	1/0	I/O	1/0	1/0
B23	NC	NC	1/0	1/0	1/0	I/O
B24	NC	NC	I/O	1/0	1/0	1/0
B25	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
B26	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
C1	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
C2	NC	I/O	I/O	1/O	1/O	I/O
C3	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
C4	NC	NC	NC	I/O	1/O	I/O
C5	NC	NC	1/O	1/0	1/0	1/0
C6	NC	NC	1/0	1/0	1/0	1/0
C7	1/0	1/0	1/0	1/0	1/0	1/0
C8	1/0	1/0	1/0	1/0	1/0	1/0
C9	1/0	1/0	1/0	1/0	1/0	1/0
C10	1/0	1/0	1/0	1/0	1/0	1/0
C11	1/0	1/0	1/0	1/0	1/0	1/0
C12	1/0	1/0	1/0	1/0	1/0	1/0
C13	1/0	1/0	1/0	1/0	1/0	1/0
C14	1/0	1/0	1/0	1/0	1/0	1/0
C15	1/0	1/0	I/O	1/0	1/0	I/O
C16	1/0	1/0	I/O	1/0	1/0	I/O
C17	1/0	1/0	I/O	1/0	1/0	I/O
C18	1/0	1/0	I/O	1/0	1/0	I/O
C19	1/0	1/0	I/O	1/0	1/0	I/O
C20	1/0	1/0	1/0	1/0	1/0	1/0
C21	NC	NC	1/0	1/0	1/0	1/0
C22	NC	NC	1/0	1/0	1/0	1/0
C23	NC	NC	I/O	1/0	1/0	1/0
C24	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
C25	NC	NC	NC	1/0	1/0	1/0
C26	NC	NC	NC	1/0	1/0	1/0
D1	NC	NC	NC	1/0	1/0	1/0
D2	NC	NC	NC	1/0	1/0	1/0
D3	NC	I/O	1/O	1/O	1/O	1/O
D4	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$				
D5	NC	NC	I/O	I/O	I/O	I/O
D6	NC	NC	1/0	1/0	1/0	1/0

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
D7	1/0	1/0	I/O	1/0	1/0	1/0
D8	I/O	1/0	I/O	I/O	I/O	I/O
D9	1/0	1/0	1/0	1/0	1/0	1/0
D10	1/0	1/0	I/O	1/0	1/0	1/0
D11	1/0	1/0	1/0	1/0	1/0	1/0
D12	1/0	1/0	I/O	1/0	1/0	1/0
D13	1/0	1/0	1/0	1/0	1/0	1/0
D14	1/0	1/0	1/0	1/0	1/0	1/0
D15	1/0	1/0	I/O	1/0	1/0	1/0
D16	1/0	1/0	I/O	I/O	1/0	1/0
D17	1/0	1/0	I/O	1/0	1/0	1/0
D18	1/0	1/0	I/O	1/0	1/0	1/0
D19	1/0	1/0	I/O	I/O	1/0	1/0
D20	1/0	1/0	I/O	1/0	1/0	1/0
D21	1/0	1/0	1/0	1/0	I/O	1/0
D22	NC	NC	I/O	I/O	I/O	I/O
D23	$V_{\text {DDP }}$					
D24	NC	I/O	I/O	I/O	I/O	I/O
D25	NC	NC	NC	I/O	I/O	1/0
D26	NC	NC	NC	I/O	I/O	1/0
E1	NC	I/O	I/O	I/O	I/O	1/0
E2	NC	1/0	I/O	I/O	I/O	I/O
E3	NC	1/0	I/O	1/0	I/O	1/0
E4	NC	I/O	I/O	I/O	I/O	I/O
E5	$V_{D D}$					
E6	$V_{D D}$					
E7	$V_{D D}$					
E8	$V_{D D}$					
E9	I/O	I/O	I/O	I/O	I/O	I/O
E10	1/0	1/0	1/0	1/0	I/O	1/0
E11	1/0	1/0	1/0	1/0	I/O	1/0
E12	1/0	1/0	1/0	1/0	I/O	1/0
E13	1/0	1/0	I/O	I/O	I/O	1/0
E14	1/0	1/0	1/0	I/O	I/O	I/O
E15	1/0	1/0	I/O	I/O	I/O	I/O
E16	I/O	1/0	I/O	I/O	I/O	I/O
E17	1/0	1/0	I/O	I/O	I/O	I/O
E18	I/O	I/O	I/O	I/O	I/O	I/O
E19	I/O	I/O	I/O	I/O	I/O	I/O
E20	V_{DD}	V_{DD}	$V_{D D}$	V_{DD}	V_{DD}	$V_{\text {DD }}$
E21	$V_{D D}$	V_{DD}	V_{DD}	V_{DD}	$V_{D D}$	$V_{D D}$
E22	$V_{D D}$					

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
E23	NC	1/0	I/O	1/0	1/0	1/0
E24	NC	1/0	I/O	1/0	1/0	1/0
E25	NC	1/0	I/O	1/0	1/0	1/0
E26	NC	1/0	I/O	1/0	1/0	1/0
F1	NC	1/0	I/O	1/0	1/0	1/0
F2	NC	1/0	I/O	1/0	1/0	1/0
F3	NC	I/O	I/O	1/0	1/0	1/0
F4	NC	I/O	I/O	I/O	I/O	I/O
F5	$V_{D D}$	$V_{\text {D }}$	V_{DD}	$V_{\text {D }}$	$V_{\text {D }}$	$V_{D D}$
F22	V_{DD}	$V_{\text {D }}$	V_{DD}	V_{DD}	$V_{D D}$	V_{DD}
F23	NC	I/O	I/O	I/O	I/O	I/O
F24	NC	1/0	I/O	1/0	1/0	1/0
F25	NC	1/0	//O	I/O	1/0	1/0
F26	NC	I/O	I/O	1/0	1/0	1/0
G1	I/O	1/0	I/O	1/0	1/0	1/0
G2	I/O	I/O	I/O	1/0	1/0	1/0
G3	NC	1/0	I/O	1/0	1/0	1/0
G4	NC	I/O	I/O	I/O	I/O	I/O
G5	$V_{D D}$	$V_{\text {D }}$				
G22	$V_{D D}$					
G23	NC	I/O	I/O	1/0	I/O	1/0
G24	NC	1/0	I/O	I/O	1/0	1/0
G25	NC	1/0	I/O	I/O	1/0	1/0
G26	I/O	1/0	I/O	1/0	1/0	1/0
H1	1/0	1/0	I/O	1/0	1/0	1/0
H2	1/0	1/0	I/O	1/0	1/0	1/0
H3	1/0	1/0	I/O	I/O	1/0	1/0
H4	I/O	I/O	I/O	I/O	I/O	I/O
H5	$V_{D D}$	V_{DD}	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$
H22	$V_{D D}$	V_{DD}	V_{DD}	$V_{D D}$	$V_{D D}$	$V_{D D}$
H23	I/O	1/0	I/O	1/0	1/0	1/0
H24	1/0	1/0	I/O	1/0	1/0	1/0
H25	1/0	I/O	I/O	1/0	1/0	1/0
H26	1/0	I/O	I/O	1/0	1/0	1/0
J1	1/0	I/O	I/O	1/0	1/0	1/0
J2	1/0	I/O	I/O	1/0	1/0	1/0
J3	1/0	I/O	1/0	1/0	1/0	1/0
J4	1/0	I/O	I/O	1/0	1/0	I/O
J5	1/0	1/0	1/0	1/0	1/0	1/0
J22	1/0	1/0	1/0	1/0	1/0	1/0
J23	1/0	1/0	1/0	1/0	1/0	1/0
J24	1/0	1/0	I/O	1/0	1/0	1/0

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
J25	I/O	I/O	I/O	I/O	I/O	I/O
J26	I/O	1/0	1/0	1/0	1/0	1/0
K1	1/0	1/0	1/0	1/0	1/0	1/0
K2	1/0	1/0	1/0	1/0	1/0	1/0
K3	1/0	1/0	1/0	1/0	1/0	1/0
K4	1/0	1/0	I/O	1/0	1/0	1/0
K5	I/O	1/0	I/O	1/0	1/0	1/0
K22	1/0	1/0	I/O	1/0	1/0	1/0
K23	I/O	1/0	I/O	1/0	1/0	1/0
K24	I/O	1/0	I/O	1/0	1/0	I/O
K25	1/0	1/0	I/O	1/0	1/0	1/0
K26	1/0	1/0	I/O	I/O	1/0	I/O
L1	1/0	1/0	1/0	1/0	1/0	1/0
L2	1/0	1/0	1/0	1/0	1/0	1/0
L3	1/0	1/0	1/0	I/O	1/0	1/0
L4	1/0	1/0	1/0	1/0	1/0	1/0
L5	1/0	1/0	1/0	1/0	1/0	1/0
L11	GND	GND	GND	GND	GND	GND
L12	GND	GND	GND	GND	GND	GND
L13	GND	GND	GND	GND	GND	GND
L14	GND	GND	GND	GND	GND	GND
L15	GND	GND	GND	GND	GND	GND
L16	GND	GND	GND	GND	GND	GND
L22	I/O	1/0	I/O	I/O	1/0	I/O
L23	1/0	1/0	1/0	1/0	1/0	1/0
L24	1/0	1/0	1/0	1/0	1/0	1/0
L25	1/0	1/0	1/0	1/0	1/0	1/0
L26	I/O	1/0	I/O	1/0	1/0	1/0
M1	GL1	GL1	GL1	GL1	GL1	GL1
M2	GL2	GL2	GL2	GL2	GL2	GL2
M3	I/O	I/O	I/O	1/0	1/0	1/0
M4	1/0	1/0	I/O	1/0	1/0	1/0
M5	I/O	I/O	I/O	I/O	I/O	I/O
M11	GND	GND	GND	GND	GND	GND
M12	GND	GND	GND	GND	GND	GND
M13	GND	GND	GND	GND	GND	GND
M14	GND	GND	GND	GND	GND	GND
M15	GND	GND	GND	GND	GND	GND
M16	GND	GND	GND	GND	GND	GND
M22	GL4	GL4	GL4	GL4	GL4	GL4
M23	I/O	I/O	I/O	I/O	I/O	I/O
M24	1/0	1/0	1/0	1/0	1/0	1/0

ProASICPLUS Flash Family FPGAs

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
M25	1/0	1/0	I/O	1/0	1/0	1/0
M26	1/0	I/O	1/0	1/0	1/0	1/0
N1	I/O	I/O	1/0	I/O	1/0	I/O
N2	I/O (GLMX1)	I/O (GLMX) 1	I/O (GLMX1)	I/O (GLMX1)	I/O (GLMX1)	I/O (GLMX1)
N3	AGND	AGND	AGND	AGND	AGND	AGND
N4	PPECL1 (I/P)					
N5	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD
N11	GND	GND	GND	GND	GND	GND
N12	GND	GND	GND	GND	GND	GND
N13	GND	GND	GND	GND	GND	GND
N14	GND	GND	GND	GND	GND	GND
N15	GND	GND	GND	GND	GND	GND
N16	GND	GND	GND	GND	GND	GND
N22	NPECL2	NPECL2	NPECL2	NPECL2	NPECL2	NPECL2
N23	GL3	GL3	GL3	GL3	GL3	GL3
N24	AVDD	AVDD	AVDD	AVDD	AVDD	AVDD
N25	I/O (GLMX2)	I/O (GLMX)	I/O (GLMX2)	I/O (GLMX2)	I/O (GLMX2)	I/O (GLMX2)
N26	AGND	AGND	AGND	AGND	AGND	AGND
P1	I/O	I/O	I/O	I/O	I/O	I/O
P2	1/0	1/0	I/O	1/0	1/0	1/0
P3	1/0	1/0	I/O	1/0	I/O	1/0
P4	1/0	1/0	I/O	1/0	1/0	1/0
P5	NPECL1	NPECL1	NPECL1	NPECL1	NPECL1	NPECL1
P11	GND	GND	GND	GND	GND	GND
P12	GND	GND	GND	GND	GND	GND
P13	GND	GND	GND	GND	GND	GND
P14	GND	GND	GND	GND	GND	GND
P15	GND	GND	GND	GND	GND	GND
P16	GND	GND	GND	GND	GND	GND
P22	I/O	I/O	I/O	I/O	I/O	I/O
P23	1/0	1/0	1/0	1/0	1/0	1/0
P24	1/0	1/0	1/0	1/0	1/0	1/0
P25	1/0	1/0	1/0	1/0	1/0	1/0
P26	PPECL2 (I/P)					
R1	I/O	I/O	I/O	1/0	I/O	1/0
R2	1/0	1/0	I/O	1/0	1/0	1/0
R3	1/0	1/0	I/O	1/0	1/0	1/0
R4	1/0	I/O	I/O	1/0	1/0	1/0
R5	I/O	I/O	I/O	I/O	I/O	I/O
R11	GND	GND	GND	GND	GND	GND
R12	GND	GND	GND	GND	GND	GND
R13	GND	GND	GND	GND	GND	GND

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
R14	GND	GND	GND	GND	GND	GND
R15	GND	GND	GND	GND	GND	GND
R16	GND	GND	GND	GND	GND	GND
R22	I/O	1/0	1/0	I/O	I/O	I/O
R23	1/0	1/0	1/0	1/0	1/0	1/0
R24	1/0	1/0	I/O	1/0	1/0	1/0
R25	I/O	I/O	I/O	1/0	1/0	1/0
R26	1/0	1/0	I/O	1/0	1/0	1/0
T1	I/O	I/O	I/O	1/0	1/0	1/0
T2	I/O	1/0	I/O	1/0	1/0	I/O
T3	1/0	1/0	I/O	1/0	1/0	1/0
T4	I/O	1/0	I/O	I/O	1/0	1/0
T5	1/0	1/0	1/0	1/0	1/0	I/O
T11	GND	GND	GND	GND	GND	GND
T12	GND	GND	GND	GND	GND	GND
T13	GND	GND	GND	GND	GND	GND
T14	GND	GND	GND	GND	GND	GND
T15	GND	GND	GND	GND	GND	GND
T16	GND	GND	GND	GND	GND	GND
T22	I/O	I/O	I/O	I/O	I/O	I/O
T23	1/0	1/0	1/0	1/0	1/0	1/0
T24	1/0	1/0	1/0	1/0	1/0	1/0
T25	I/O	1/0	1/0	1/0	1/0	1/0
T26	I/O	1/0	1/0	1/0	1/0	1/0
U1	1/0	1/0	1/0	1/0	1/0	1/0
U2	I/O	1/0	1/0	1/0	1/0	1/0
U3	I/O	1/0	1/0	1/0	1/0	1/0
U4	I/O	1/0	I/O	1/0	1/0	1/0
U5	I/O	1/0	I/O	1/0	1/0	1/0
U22	I/O	1/0	I/O	1/0	1/0	1/0
U23	1/0	1/0	I/O	1/0	1/0	1/0
U24	1/0	1/0	I/O	1/0	1/0	I/O
U25	1/0	1/0	I/O	1/0	1/0	1/0
U26	1/0	1/0	1/0	1/0	1/0	1/0
V1	1/0	1/0	I/O	1/0	1/0	1/0
V2	1/0	1/0	I/O	1/0	1/0	1/0
V3	1/0	1/0	1/0	I/O	1/0	1/0
V4	1/0	1/0	1/0	1/0	1/0	1/0
V5	1/0	1/0	1/0	1/0	1/0	1/0
V22	1/0	1/0	1/0	1/0	1/0	1/0
V23	1/0	1/0	1/0	1/0	1/0	1/0
V24	1/0	1/0	1/O	1/0	1/0	1/0

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
V25	I/O	I/O	I/O	I/O	1/0	1/0
V26	1/0	1/0	I/O	1/0	1/0	1/0
W1	1/0	1/0	I/O	1/0	1/0	1/0
W2	1/0	1/0	I/O	1/0	1/0	1/0
W3	1/0	1/0	I/O	1/0	1/0	1/0
W4	I/O	I/O	I/O	I/O	I/O	I/O
W5	V_{DD}	$V_{\text {D }}$	V_{DD}	$V_{\text {D }}$	$V_{\text {D }}$	$V_{\text {D }}$
W22	V_{DD}	$V_{\text {D }}$	V_{DD}	$V_{\text {D }}$	$V_{D D}$	V_{DD}
W23	I/O	I/O	I/O	I/O	I/O	I/O
W24	I/O	1/0	//O	I/O	I/O	1/0
W25	1/0	1/0	I/O	1/0	1/0	1/0
W26	1/0	1/0	I/O	1/0	1/0	1/0
Y1	I/O	1/0	//O	I/O	1/0	1/0
Y2	1/0	I/O	I/O	1/0	1/0	1/0
Y3	I/O	1/0	I/O	1/0	1/0	1/0
Y4	NC	I/O	I/O	I/O	I/O	I/O
Y5	$V_{D D}$	$V_{D D}$	$V_{D D}$	V_{DD}	$V_{D D}$	$V_{D D}$
Y22	$V_{D D}$					
Y23	NC	I/O	I/O	I/O	I/O	I/O
Y24	NC	I/O	//O	1/0	1/0	1/0
Y25	NC	1/0	I/O	1/0	1/0	1/0
Y26	NC	1/0	I/O	I/O	1/0	1/0
AA1	I/O	1/0	I/O	I/O	1/0	1/0
AA2	NC	1/0	I/O	1/0	1/0	1/0
AA3	NC	1/0	I/O	I/O	1/0	1/0
AA4	NC	I/O	I/O	I/O	I/O	I/O
AA5	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	$V_{\text {D }}$
AA22	$V_{D D}$					
AA23	NC	I/O	I/O	I/O	I/O	I/O
AA24	NC	1/0	1/0	1/0	1/0	1/0
AA25	NC	1/0	1/0	I/O	1/0	1/0
AA26	NC	1/0	I/O	1/0	1/0	1/0
AB1	NC	1/0	I/O	1/0	1/0	1/0
AB2	NC	1/0	1/0	1/0	1/0	1/0
AB3	NC	1/0	1/0	1/0	1/0	1/0
AB4	NC	I/O	I/O	I/O	I/O	I/O
AB5	V_{DD}	V_{DD}	V_{DD}	V_{DD}	$V_{D D}$	V_{DD}
AB6	$V_{D D}$	V_{DD}	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$
AB7	V_{DD}	V_{DD}	V_{DD}	$V_{D D}$	V_{DD}	$V_{D D}$
AB8	1/0	1/0	I/O	I/O	I/O	I/O
AB9	1/0	1/0	//O	1/0	1/0	1/0
AB10	1/0	1/0	I/O	1/0	1/0	1/0

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
AB11	I/O	I/O	I/O	I/O	I/O	I/O
AB12	1/0	1/0	1/0	1/0	1/0	1/0
AB13	1/0	1/0	1/0	1/0	1/0	1/0
AB14	1/0	1/0	1/0	1/0	1/0	1/0
AB15	1/0	1/0	1/0	1/0	1/0	1/0
AB16	1/0	1/0	1/0	1/0	1/0	1/0
AB17	1/0	1/0	1/0	1/0	1/0	1/0
AB18	1/0	1/0	I/O	1/0	1/0	1/0
AB19	I/O	I/O	I/O	I/O	I/O	I/O
AB20	$V_{D D}$					
AB21	$V_{D D}$					
AB22	$V_{D D}$	V_{DD}				
AB23	NC	1/0	I/O	I/O	I/O	I/O
AB24	NC	1/0	1/0	1/0	1/0	1/0
AB25	NC	1/0	1/0	1/0	1/0	1/0
AB26	NC	NC	NC	1/0	1/0	1/0
AC1	NC	1/0	1/0	1/0	1/0	1/0
AC2	NC	1/0	1/0	1/0	1/0	1/0
AC3	NC	I/O	1/0	1/0	1/0	1/0
AC4	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AC5	NC	NC	I/O	I/O	I/O	I/O
AC6	I/O	I/O	1/0	1/0	1/0	1/0
AC7	I/O	1/0	1/0	1/0	1/0	1/0
AC8	I/O	1/0	I/O	1/0	1/0	1/0
AC9	I/O	1/0	I/O	1/0	1/0	1/0
AC10	I/O	1/0	I/O	1/0	1/0	1/0
AC11	I/O	1/0	I/O	1/0	1/0	1/0
AC12	I/O	1/0	I/O	1/0	1/0	1/0
AC13	I/O	1/0	I/O	1/0	1/0	1/0
AC14	I/O	1/0	I/O	1/0	1/0	1/0
AC15	I/O	1/0	I/O	1/0	1/0	1/0
AC16	1/0	1/0	I/O	1/0	1/0	I/O
AC17	1/0	1/0	I/O	1/0	1/0	1/0
AC18	1/0	1/0	I/O	1/0	1/0	I/O
AC19	1/0	1/0	I/O	1/0	1/0	1/0
AC20	I/O	1/0	I/O	1/0	1/0	1/0
AC21	TMS	TMS	TMS	TMS	TMS	TMS
AC22	TDO	TDO	TDO	TDO	TDO	TDO
AC23	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
AC24	RCK	RCK	RCK	RCK	RCK	RCK
AC25	NC	NC	I/O	I/O	I/O	I/O
AC26	NC	I/O	1/0	1/0	1/0	1/0

ProASICPLUS Flash Family FPGAs

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
AD1	NC	NC	NC	1/0	I/O	1/0
AD2	NC	I/O	I/O	I/O	1/0	1/0
AD3	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\mathrm{DDP}}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\mathrm{DDP}}$
AD4	NC	NC	I/O	I/O	I/O	I/O
AD5	NC	NC	1/0	1/0	1/0	1/0
AD6	NC	NC	1/0	1/0	1/0	1/0
AD7	1/0	1/0	1/0	1/0	1/0	1/0
AD8	1/0	1/0	1/0	1/0	1/0	1/0
AD9	1/0	1/0	I/O	1/0	1/0	1/0
AD10	1/0	1/0	1/0	1/0	1/0	1/0
AD11	1/0	1/0	1/0	1/0	1/0	1/0
AD12	1/0	1/0	1/0	1/0	1/0	1/0
AD13	1/0	1/0	1/O	1/0	1/0	1/0
AD14	1/0	1/0	1/0	1/0	1/0	1/0
AD15	1/0	1/0	I/O	1/0	1/0	1/0
AD16	1/0	1/0	1/0	1/0	1/0	1/0
AD17	1/0	1/0	1/0	1/0	1/0	1/0
AD18	1/0	1/0	1/0	1/0	1/0	1/0
AD19	1/0	1/0	1/0	1/0	1/0	1/0
AD20	NC	NC	1/0	1/0	1/0	1/0
AD21	TCK	TCK	TCK	TCK	TCK	TCK
AD22	$V_{P P}$	$V_{\text {PP }}$	$V_{P P}$	V_{PP}	$V_{P P}$	$V_{\text {PP }}$
AD23	NC	NC	NC	I/O	1/O	I/O
AD24	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AD25	NC	NC	I/O	1/0	1/0	I/O
AD26	NC	NC	I/O	I/O	1/0	I/O
AE1	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AE2	$V_{\text {DDP }}$					
AE3	NC	NC	I/O	1/0	1/0	I/O
AE4	NC	NC	1/0	1/0	1/0	1/0
AE5	NC	NC	1/0	1/0	1/0	1/0
AE6	NC	NC	1/0	1/0	1/0	1/0
AE7	NC	NC	1/0	1/0	1/0	1/0
AE8	1/0	I/O	I/O	1/0	1/0	1/0
AE9	1/0	1/0	I/O	1/0	1/0	1/0
AE10	1/0	1/0	I/O	1/0	1/0	1/0
AE11	1/0	1/0	I/O	1/0	1/0	1/0
AE12	1/0	1/0	I/O	1/0	1/0	1/0
AE13	1/0	1/0	I/O	1/0	1/0	1/0
AE14	1/0	1/0	I/O	1/0	1/0	1/0
AE15	1/0	1/0	I/O	1/0	1/0	1/0
AE16	1/0	1/0	1/0	1/0	1/0	1/0

456-Pin PBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function	APA750 Function	APA1000 Function
AE17	I/O	I/O	I/O	I/O	I/O	I/O
AE18	1/0	1/0	I/O	1/0	1/0	1/0
AE19	I/O	1/0	1/0	1/0	1/0	1/0
AE20	NC	NC	I/O	1/0	1/0	1/0
AE21	NC	NC	1/0	1/0	1/0	1/0
AE22	NC	NC	I/O	I/O	I/O	I/O
AE23	$\mathrm{V}_{\text {PN }}$	V_{PN}	V_{PN}	V_{PN}	V_{PN}	V_{PN}
AE24	TRST	TRST	TRST	TRST	TRST	TRST
AE25	$V_{\text {DDP }}$					
AE26	$V_{\text {DDP }}$					
AF1	$V_{\text {DDP }}$					
AF2	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AF3	NC	NC	I/O	I/O	I/O	I/O
AF4	NC	NC	I/O	I/O	1/0	1/0
AF5	NC	NC	I/O	I/O	I/O	1/0
AF6	NC	NC	I/O	I/O	I/O	1/0
AF7	NC	NC	I/O	I/O	I/O	I/O
AF8	NC	NC	NC	1/0	1/0	1/0
AF9	I/O	I/O	I/O	I/O	I/O	1/0
AF10	I/O	1/0	I/O	1/0	1/0	1/0
AF11	I/O	1/0	1/0	1/0	1/O	1/0
AF12	1/0	1/0	I/O	I/O	1/0	1/0
AF13	1/0	1/0	I/O	1/0	1/0	1/0
AF14	1/0	1/0	I/O	I/O	I/O	I/O
AF15	1/0	1/0	I/O	1/0	1/0	1/0
AF16	1/0	1/0	I/O	1/0	1/0	1/0
AF17	1/0	1/0	1/0	1/0	1/0	1/0
AF18	NC	NC	1/0	1/0	1/0	1/0
AF19	NC	NC	1/0	1/0	1/0	1/0
AF20	NC	NC	1/0	1/0	1/0	1/0
AF21	NC	NC	1/0	1/0	1/0	1/0
AF22	NC	NC	I/O	I/O	1/0	1/0
AF23	TDI	TDI	TDI	TDI	TDI	TDI
AF24	NC	NC	I/O	I/O	I/O	I/O
AF25	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AF26	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\mathrm{DDP}}$	$\mathrm{V}_{\mathrm{DDP}}$

Package Assignments (Continued)

144-FBGA (Bottom View)

144-FBGA Pin

Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function
A1	I/O	I/O	I/O	I/O
A2	I/O	I/O	I/O	I/O
A3	1/O	I/O	I/O	I/O
A4	I/O	I/O	I/O	I/O
A5	I/O	I/O	I/O	I/O
A6	GND	GND	GND	GND
A7	I/O	I/O	I/O	I/O
A8	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{D D}$
A9	I/O	I/O	I/O	I/O
A10	I/O	I/O	I/O	I/O
A11	I/O	I/O	I/O	I/O
A12	I/O	I/O	I/O	I/O
B1	I/O	I/O	I/O	I/O
B2	GND	GND	GND	GND
B3	I/O	I/O	I/O	I/O
B4	I/O	I/O	I/O	I/O
B5	I/O	I/O	I/O	I/O
B6	I/O	I/O	I/O	I/O
B7	I/O	I/O	I/O	I/O
B8	I/O	I/O	I/O	I/O
B9	I/O	I/O	I/O	I/O
B10	I/O	I/O	I/O	I/O
B11	GND	GND	GND	GND
B12	I/O	I/O	I/O	I/O
C1	1/O	1/O	1/O	I/O
C2	GL2	GL2	GL2	GL2
C3	I/O	I/O	I/O	I/O
C4	$V_{\text {DD }}$	V_{DD}	$V_{\text {DD }}$	V_{DD}
C5	I/O	I/O	I/O	I/O
C6	1/O	I/O	I/O	I/O
C7	I/O	I/O	I/O	I/O
C8	I/O	I/O	I/O	I/O
C9	I/O	I/O	1/O	I/O
C10	1/O	I/O	I/O	I/O
C11	I/O	I/O	I/O	I/O
C12	I/O	I/O	I/O	I/O
D1	1/O	I/O	I/O	I/O
D2	I/O	I/O	I/O	I/O
D3	I/O	I/O	I/O	I/O
D4	I/O	I/O	I/O	I/O
D5	I/O	I/O	I/O	I/O
D6	I/O	I/O	I/O	I/O

144-FBGA Pin (Continued)

$\begin{array}{\|c} \text { Pin } \\ \text { Number } \end{array}$	APA075 Function	APA150 Function	APA300 Function	APA450 Function
D7	I/O	I/O	I/O	I/O
D8	I/O	I/O	I/O	I/O
D9	I/O	I/O	I/O	I/O
D10	I/O	I/O	1/0	1/0
D11	I/O	I/O	1/0	1/0
D12	$\begin{gathered} \text { I/O } \\ \text { (GLMX2) } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { (GLMX2) } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { (GLMX2) } \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { (GLMX2) } \end{gathered}$
E1	V_{DD}	$V_{D D}$	V_{DD}	V_{DD}
E2	I/O	I/O	I/O	I/O
E3	I/O	I/O	I/O	I/O
E4	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E5	I/O	I/O	I/O	I/O
E6	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E7	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E8	AVDD	AVDD	AVDD	AVDD
E9	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$
E10	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$
E11	NPECL2	NPECL2	NPECL2	NPECL2
E12	AGND	AGND	AGND	AGND
F1	GL1	GL1	GL1	GL1
F2	AGND	AGND	AGND	AGND
F3	$\begin{gathered} \text { I/O } \\ (\mathrm{GLMX1} \end{gathered}$	$\begin{gathered} \text { l/O } \\ \text { (GLMX1) } \end{gathered}$	$\begin{gathered} \text { I/O } \\ (\mathrm{GLMX1}) \end{gathered}$	$\begin{gathered} \text { I/O } \\ \text { (GLMX1) } \end{gathered}$
F4	I/O	I/O	I/O	I/O
F5	GND	GND	GND	GND
F6	GND	GND	GND	GND
F7	GND	GND	GND	GND
F8	I/O	I/O	I/O	I/O
F9	GL4	GL4	GL4	GL4
F10	GND	GND	GND	GND
F11	PPECL2 $(1 / P)$	PPECL2 (I / P)	PPECL2 (I/P)	PPECL2 $(1 / P)$
F12	GL3	GL3	GL3	GL3
G1	PPECL1 (I/P)	PPECL1 (I/P)	PPECL1 (I/P)	PPECL1 (I/P)
G2	GND	GND	GND	GND
G3	AVDD	AVDD	AVDD	AVDD
G4	NPECL1	NPECL1	NPECL1	NPECL1
G5	GND	GND	GND	GND
G6	GND	GND	GND	GND
G7	GND	GND	GND	GND
G8	I/O	I/O	I/O	I/O
G9	I/O	I/O	1/0	I/O

144-FBGA Pin (Continued)

Pin Number	APA075 Function	APA150 Function	APA300 Function	APA450 Function
G10	I/O	I/O	I/O	I/O
G11	I/O	I/O	I/O	I/O
G12	I/O	I/O	I/O	I/O
H1	$V_{\text {DD }}$	$V_{D D}$	$V_{D D}$	$V_{\text {DD }}$
H2	I/O	I/O	I/O	I/O
H3	I/O	I/O	I/O	I/O
H4	I/O	I/O	I/O	I/O
H5	$V_{\text {DD }}$	V_{DD}	$V_{\text {DD }}$	V_{DD}
H6	I/O	I/O	I/O	I/O
H7	I/O	I/O	I/O	I/O
H8	I/O	I/O	I/O	I/O
H9	I/O	I/O	I/O	I/O
H10	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
H11	I/O	I/O	I/O	I/O
H12	$V_{\text {DD }}$	V_{DD}	$V_{\text {DD }}$	V_{DD}
J1	I/O	I/O	I/O	I/O
J2	I/O	I/O	I/O	I/O
J3	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
J4	I/O	I/O	I/O	I/O
J5	I/O	I/O	I/O	I/O
J6	I/O	I/O	I/O	I/O
J7	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$	$V_{\text {DD }}$
J8	TCK	TCK	TCK	TCK
J9	I/O	I/O	I/O	I/O
J10	TDO	TDO	TDO	TDO
J11	I/O	I/O	I/O	I/O
J12	I/O	I/O	I/O	I/O
K1	I/O	I/O	I/O	I/O
K2	I/O	I/O	I/O	I/O
K3	I/O	I/O	I/O	I/O
K4	I/O	I/O	I/O	I/O
K5	I/O	I/O	I/O	I/O
K6	I/O	I/O	I/O	I/O
K7	GND	GND	GND	GND
K8	I/O	I/O	I/O	I/O
K9	I/O	I/O	I/O	I/O
K10	GND	GND	GND	GND
K11	I/O	I/O	I/O	I/O
K12	I/O	I/O	I/O	I/O
L1	GND	GND	GND	GND
L2	I/O	I/O	I/O	I/O
L3	I/O	I/O	I/O	I/O

144-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA075 Function	APA150 Function	APA300 Function	APA450 Function
L4	I/O	I/O	I/O	I/O
L5	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
L6	I/O	I/O	I/O	1/O
L7	1/0	I/O	I/O	1/0
L8	I/O	I/O	I/O	1/0
L9	TMS	TMS	TMS	TMS
L10	RCK	RCK	RCK	RCK
L11	I/O	I/O	I/O	I/O
L12	TRST	TRST	TRST	TRST
M1	I/O	I/O	I/O	I/O
M2	1/0	I/O	1/0	1/0
M3	I/O	I/O	1/0	I/O
M4	1/0	I/O	1/0	I/O
M5	1/0	I/O	1/0	I/O
M6	1/0	I/O	1/0	I/O
M7	1/0	I/O	1/0	I/O
M8	I/O	I/O	I/O	I/O
M9	TDI	TDI	TDI	TDI
M10	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
M11	V_{PP}	V_{PP}	$\mathrm{V}_{\text {PP }}$	V_{PP}
M12	V_{PN}	V_{PN}	V_{PN}	V_{PN}

Package Assignments (Continued)

256-FBGA (Bottom View)

ProASICPLUS Flash Family FPGAs

256-Pin FBGA

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function
A1	GND	GND	GND	GND
A2	I/O	I/O	I/O	I/O
A3	1/0	1/0	1/0	1/0
A4	1/0	1/0	I/O	1/0
A5	1/0	I/O	1/0	1/0
A6	1/0	I/O	I/O	1/0
A7	1/0	1/0	1/0	1/0
A8	1/0	1/0	1/0	1/0
A9	1/0	I/O	I/O	1/0
A10	1/0	I/O	I/O	I/O
A11	1/0	1/0	1/0	1/0
A12	1/0	1/0	1/0	1/0
A13	1/0	I/O	I/O	1/0
A14	1/0	I/O	I/O	I/O
A15	1/0	1/0	1/O	1/0
A16	GND	GND	GND	GND
B1	I/O	I/O	I/O	I/O
B2	1/0	1/0	1/0	1/0
B3	1/0	I/O	I/O	1/0
B4	1/0	1/0	1/0	1/0
B5	1/0	1/0	1/0	1/0
B6	1/0	1/0	I/O	1/0
B7	1/0	1/0	1/0	1/0
B8	1/0	I/O	1/0	1/0
B9	1/0	I/O	I/O	1/0
B10	1/0	1/0	I/O	1/0
B11	1/0	1/0	1/0	1/0
B12	1/0	1/0	1/0	1/0
B13	1/0	1/0	1/0	1/0
B14	I/O	I/O	I/O	1/0
B15	1/0	1/0	I/O	1/0
B16	1/0	1/0	I/O	1/0
C1	1/0	1/0	1/0	1/0
C2	1/0	1/0	1/0	1/0
C3	1/0	1/0	I/O	1/0
C4	1/0	1/0	1/0	1/0
C5	1/0	1/0	1/0	1/0
C6	1/0	1/0	1/0	1/0
C7	1/0	1/0	1/0	1/0
C8	1/0	1/0	1/0	1/0
C9	1/0	I/O	I/O	1/0
C10	1/0	1/0	1/0	1/0
C11	1/0	1/0	1/0	1/0
C12	1/0	I/O	1/0	I/O
C13	1/0	1/0	1/0	1/0

256-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function
C14	1/O	I/O	I/O	1/0
C15	1/0	1/0	1/0	1/0
C16	I/O	1/0	1/0	1/0
D1	1/0	1/0	1/0	1/0
D2	1/0	1/0	I/O	I/O
D3	1/0	1/0	1/0	1/0
D4	I/O	1/0	1/0	I/O
D5	1/0	1/0	1/0	1/0
D6	1/0	1/0	I/O	1/0
D7	1/0	1/0	1/0	1/0
D8	I/O	1/0	I/O	1/0
D9	1/0	1/0	1/0	1/0
D10	1/0	1/0	1/0	1/0
D11	1/0	1/0	1/0	1/0
D12	I/O	1/0	1/0	I/O
D13	1/0	1/0	1/0	1/0
D14	1/0	1/0	1/0	1/0
D15	1/0	1/0	1/0	1/0
D16	I/O	1/0	I/O	I/O
E1	I/O	1/0	1/0	1/0
E2	1/0	1/0	1/0	1/0
E3	1/0	1/0	1/0	1/0
E4	1/0	1/0	1/0	I/O
E5	1/0	I/O	I/O	1/0
E6	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E7	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E8	I/O	I/O	I/O	I/O
E9	I/O	I/O	I/O	I/O
E10	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E11	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E12	I/O	I/O	I/O	I/O
E13	1/0	1/0	I/O	I/O
E14	1/0	1/0	1/0	1/0
E15	1/0	I/O	I/O	1/0
E16	1/0	1/0	1/0	I/O
F1	1/0	I/O	1/0	I/O
F2	1/0	1/0	1/0	1/0
F3	1/0	I/O	I/O	1/0
F4	I/O	I/O	I/O	I/O
F5	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
F6	GND	GND	GND	GND
F7	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$
F8	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$
F9	$V_{\text {D }}$	$V_{\text {D }}$	$V_{\text {D }}$	$V_{\text {D }}$
F10	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$

ProASICPLUS Flash Family FPGAs

256-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function
F11	GND	GND	GND	GND
F12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
F13	I/O	I/O	I/O	I/O
F14	1/0	1/0	I/O	1/0
F15	1/0	1/0	1/0	I/O
F16	1/0	I/O	I/O	1/0
G1	I/O	I/O	I/O	1/0
G2	1/0	1/0	I/O	I/O
G3	1/0	I/O	I/O	1/0
G4	I/O	I/O	I/O	1/0
G5	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
G6	V_{DD}	V_{DD}	V_{DD}	$V_{D D}$
G7	GND	GND	GND	GND
G8	GND	GND	GND	GND
G9	GND	GND	GND	GND
G10	GND	GND	GND	GND
G11	$V_{D D}$	$V_{D D}$	$V_{\text {D }}$	$V_{D D}$
G12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
G13	I/O	I/O	I/O	I/O
G14	1/0	1/0	1/0	1/0
G15	1/0	1/0	I/O	1/0
G16	1/0	1/0	I/O	1/0
H1	GL1	GL1	GL1	GL1
H2	NPECL1	NPECL1	NPECL1	NPECL1
H3	I/O (GLMX1)	I/O (GLMX1)	I/O (GLMX1)	I/O (GLMX1)
H4	AGND	AGND	AGND	AGND
H5	I/O	I/O	I/O	I/O
H6	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{\text {D }}$
H7	GND	GND	GND	GND
H8	GND	GND	GND	GND
H9	GND	GND	GND	GND
H10	GND	GND	GND	GND
H11	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{\text {D }}$
H12	I/O	I/O	I/O	I/O
H13	1/O (GLMX2)	I/O (GLMX2)	I/O (GLMX2)	I/O (GLMX2)
H14	NPECL2	NPECL2	NPECL2	NPECL2
H15	AGND	AGND	AGND	AGND
H16	GL4	GL4	GL4	GL4
J1	GL2	GL2	GL2	GL2
J2	PPECL1 (I/P)	PPECL1 (I/P)	PPECL1 (I/P)	PPECL1 (I/P)
J3	AVDD	AVDD	AVDD	AVDD
J4	I/O	I/O	I/O	I/O
J5	1/O	1/O	I/O	I/O
J6	$V_{\text {D }}$	$V_{\text {D }}$	$V_{\text {D }}$	$V_{\text {D }}$
J7	GND	GND	GND	GND

256-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function
J8	GND	GND	GND	GND
J9	GND	GND	GND	GND
J10	GND	GND	GND	GND
J11	$V_{D D}$	$V_{D D}$	$V_{D D}$	$V_{D D}$
J12	I/O	I/O	I/O	I/O
J13	PPECL2 (IP)	PPECL2 (I/P)	PPECL2 (I/P)	PPECL2 (I/P)
J14	I/O	I/O	I/O	I/O
J15	AVDD	AVDD	AVDD	AVDD
J16	GL3	GL3	GL3	GL3
K1	I/O	I/O	I/O	I/O
K2	1/0	I/O	I/O	I/O
K3	I/O	I/O	I/O	I/O
K4	I/O	I/O	I/O	I/O
K5	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
K6	V_{DD}	V_{DD}	$V_{D D}$	$V_{D D}$
K7	GND	GND	GND	GND
K8	GND	GND	GND	GND
K9	GND	GND	GND	GND
K10	GND	GND	GND	GND
K11	$V_{\text {D }}$	$V_{\text {D }}$	$V_{\text {D }}$	$V_{\text {D }}$
K12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
K13	I/O	I/O	I/O	I/O
K14	1/0	I/O	1/0	I/O
K15	I/O	I/O	I/O	I/O
K16	I/O	I/O	I/O	I/O
L1	1/0	I/O	I/O	I/O
L2	1/0	I/O	I/O	1/0
L3	1/0	1/0	I/O	I/O
L4	I/O	I/O	I/O	I/O
L5	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
L6	GND	GND	GND	GND
L7	$V_{D D}$	$V_{\text {DD }}$	V_{DD}	$V_{D D}$
L8	$V_{D D}$	$V_{D D}$	V_{DD}	$V_{D D}$
L9	$V_{D D}$	$V_{D D}$	V_{DD}	V_{DD}
L10	$V_{D D}$	$V_{D D}$	$V_{D D}$	V_{DD}
L11	GND	GND	GND	GND
L12	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
L13	I/O	I/O	I/O	I/O
L14	1/0	I/O	I/O	I/O
L15	I/O	1/0	1/0	I/O
L16	1/0	1/0	I/O	I/O
M1	1/0	1/0	1/0	I/O
M2	1/0	1/0	1/0	I/O
M3	I/O	I/O	I/O	I/O
M4	1/0	1/0	1/O	1/0

ProASIC PLUS Flash Family FPGAs

256-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function
M5	I/O	I/O	I/O	I/O
M6	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
M7	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
M8	I/O	I/O	I/O	I/O
M9	I/O	I/O	I/O	I/O
M10	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
M11	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
M12	I/O	I/O	I/O	I/O
M13	1/0	1/0	I/O	1/0
M14	1/0	1/0	1/0	1/0
M15	1/0	1/0	I/O	1/0
M16	1/0	1/0	I/O	1/0
N1	1/0	1/0	I/O	1/0
N2	1/0	1/0	1/0	1/0
N3	I/O	1/0	I/O	1/0
N4	I/O	I/O	I/O	1/0
N5	1/0	1/0	I/O	1/0
N6	1/0	I/O	I/O	1/0
N7	1/0	1/0	1/0	1/0
N8	1/0	I/O	1/0	I/O
N9	1/0	I/O	I/O	1/0
N10	1/0	1/0	1/0	1/0
N11	1/0	I/O	I/O	1/0
N12	1/0	1/0	I/O	1/0
N13	1/0	I/O	I/O	I/O
N14	RCK	RCK	RCK	RCK
N15	I/O	I/O	I/O	I/O
N16	1/0	I/O	I/O	1/0
P1	1/0	1/0	1/0	1/0
P2	1/0	1/0	1/0	1/0
P3	1/0	I/O	I/O	1/0
P4	1/0	I/O	I/O	1/0
P5	1/0	1/0	1/0	1/0
P6	1/0	1/0	I/O	1/0
P7	1/0	1/0	I/O	1/0
P8	1/0	I/O	I/O	1/0
P9	I/O	1/0	I/O	1/0
P10	1/0	1/0	1/0	I/O
P11	1/0	1/0	1/0	1/0
P12	I/O	I/O	I/O	I/O
P13	TCK	TCK	TCK	TCK
P14	$V_{\text {PP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {PP }}$
P15	TRST	TRST	TRST	TRST
P16	I/O	I/O	I/O	I/O
R1	1/0	1/0	1/0	1/0

256-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA150 Function	APA300 Function	APA450 Function	APA600 Function
R2	I/O	I/O	I/O	I/O
R3	1/0	1/0	1/0	1/0
R4	1/0	1/0	1/0	1/0
R5	1/0	1/0	I/O	1/0
R6	I/O	I/O	I/O	I/O
R7	1/0	1/0	1/0	I/O
R8	1/0	1/0	1/0	1/0
R9	1/0	1/0	1/0	1/0
R10	1/0	1/0	I/O	1/0
R11	1/0	1/0	1/0	1/0
R12	1/0	I/O	I/O	1/0
R13	1/0	I/O	I/O	1/0
R14	TDI	TDI	TDI	TDI
R15	V_{PN}	V_{PN}	V_{PN}	V_{PN}
R16	TDO	TDO	TDO	TDO
T1	GND	GND	GND	GND
T2	I/O	I/O	I/O	I/O
T3	1/0	1/0	1/0	I/O
T4	1/0	1/0	I/O	I/O
T5	1/0	1/0	I/O	1/0
T6	I/O	I/O	I/O	I/O
T7	1/0	I/O	1/0	I/O
T8	1/0	1/0	I/O	I/O
T9	1/0	1/0	I/O	1/0
T10	1/0	1/0	I/O	1/0
T11	1/0	I/O	I/O	1/0
T12	1/0	1/0	1/0	1/0
T13	1/0	1/0	1/0	1/0
T14	I/O	I/O	I/O	I/O
T15	TMS	TMS	TMS	TMS
T16	GND	GND	GND	GND

Package Assignments (Continued)

484-Pin FBGA (Bottom View)

ProASIC PLUS Flash Family FPGAs

484-Pin FBGA

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
A1	GND	GND
A2	GND	GND
A3	$V_{\text {DDP }}$	$V_{\text {DDP }}$
A4	I/O	I/O
A5	I/O	1/0
A6	I/O	1/0
A7	I/O	1/0
A8	//O	1/0
A9	//O	1/0
A10	I/O	I/O
A11	1/0	1/0
A12	I/O	1/0
A13	1/0	1/0
A14	1/0	1/0
A15	//O	1/0
A16	//O	1/0
A17	//O	1/0
A18	I/O	I/O
A19	I/O	I/O
A20	$V_{\text {DDP }}$	$V_{\text {DDP }}$
A21	GND	GND
A22	GND	GND
B1	GND	GND
B2	$V_{\text {DDP }}$	$V_{\text {DDP }}$
B3	I/O	I/O
B4	I/O	I/O
B5	I/O	I/O
B6	I/O	I/O
B7	I/O	1/0
B8	1/0	1/0
B9	1/0	I/O
B10	1/0	1/0
B11	1/0	I/O
B12	I/O	I/O
B13	I/O	I/O
B14	1/0	I/O
B15	I/O	1/0
B16	I/O	1/0
B17	I/O	1/0
B18	I/O	1/0
B19	I/O	1/0
B20	I/O	I/O

484-Pin FBGA (Continued)

Pin Number	APA450 Function	APA600 Function
B21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
B22	GND	GND
C1	$V_{\text {DDP }}$	$V_{\text {DDP }}$
C2	NC	I/O
C3	I/O	I/O
C4	I/O	I/O
C5	GND	GND
C6	I/O	I/O
C7	I/O	I/O
C8	V_{DD}	V_{DD}
C9	$V_{\text {DD }}$	$V_{\text {DD }}$
C10	I/O	I/O
C11	I/O	//O
C12	NC	//O
C13	NC	//O
C14	V_{DD}	V_{DD}
C15	$V_{D D}$	$V_{D D}$
C16	NC	I/O
C17	I/O	//O
C18	GND	GND
C19	I/O	I/O
C20	I/O	//O
C21	I/O	I/O
C22	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
D1	I/O	I/O
D2	I/O	I/O
D3	NC	I/O
D4	GND	GND
D5	I/O	I/O
D6	I/O	I/O
D7	I/O	I/O
D8	I/O	I/O
D9	I/O	I/O
D10	I/O	I/O
D11	1/0	I/O
D12	I/O	I/O
D13	1/0	I/O
D14	1/0	I/O
D15	1/0	I/O
D16	1/0	I/O
D17	1/0	I/O
D18	1/0	I/O

484-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
D19	GND	GND
D20	I/O	I/O
D21	I/O	I/O
D22	I/O	I/O
E1	I/O	I/O
E2	NC	I/O
E3	GND	GND
E4	I/O	I/O
E5	1/0	I/O
E6	I/O	I/O
E7	I/O	I/O
E8	1/0	I/O
E9	//O	I/O
E10	I/O	I/O
E11	1/0	I/O
E12	I/O	I/O
E13	I/O	I/O
E14	I/O	I/O
E15	I/O	I/O
E16	I/O	I/O
E17	I/O	I/O
E18	1/0	I/O
E19	I/O	I/O
E20	GND	GND
E21	I/O	I/O
E22	I/O	I/O
F1	I/O	I/O
F2	I/O	I/O
F3	I/O	I/O
F4	I/O	I/O
F5	I/O	I/O
F6	I/O	I/O
F7	I/O	I/O
F8	I/O	I/O
F9	I/O	I/O
F10	I/O	I/O
F11	I/O	I/O
F12	//O	I/O
F13	//O	I/O
F14	//O	I/O
F15	//O	I/O
F16	I/O	I/O

484-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
F17	I/O	I/O
F18	I/O	I/O
F19	I/O	I/O
F20	I/O	I/O
F21	I/O	I/O
F22	NC	I/O
G1	I/O	I/O
G2	//O	I/O
G3	NC	I/O
G4	I/O	I/O
G5	I/O	I/O
G6	I/O	I/O
G7	I/O	I/O
G8	I/O	I/O
G9	I/O	I/O
G10	I/O	I/O
G11	I/O	I/O
G12	I/O	I/O
G13	I/O	1/0
G14	I/O	I/O
G15	I/O	I/O
G16	I/O	I/O
G17	I/O	I/O
G18	I/O	I/O
G19	I/O	1/0
G20	I/O	I/O
G21	I/O	I/O
G22	I/O	I/O
H1	I/O	I/O
H2	I/O	I/O
H3	V_{DD}	V_{DD}
H4	I/O	I/O
H5	I/O	I/O
H6	I/O	I/O
H7	I/O	I/O
H8	I/O	I/O
H9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H11	I/O	I/O
H12	I/O	I/O
H13	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
H14	$V_{\text {DDP }}$	$V_{\text {DDP }}$

484-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
H15	I/O	I/O
H16	I/O	1/0
H17	I/O	1/0
H18	I/O	1/0
H19	I/O	I/O
H2O	V_{DD}	V_{DD}
H21	I/O	I/O
H22	1/0	1/0
J1	//O	1/0
J2	I/O	1/0
J3	NC	1/0
J4	I/O	1/0
J5	//O	1/0
J6	//O	1/0
J7	//O	1/O
J8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
J9	GND	GND
J10	$V_{D D}$	$V_{D D}$
J11	$V_{D D}$	$V_{D D}$
J12	$V_{D D}$	$V_{D D}$
J13	$V_{D D}$	$V_{D D}$
J14	GND	GND
J15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
J16	I/O	I/O
J17	I/O	I/O
J18	I/O	I/O
J19	I/O	I/O
J20	NC	1/0
J21	I/O	1/0
J22	I/O	1/0
K1	I/O	I/O
K2	I/O	1/0
K3	NC	1/0
K4	I/O	1/0
K5	I/O	1/0
K6	I/O	1/0
K7	I/O	I/O
K8	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
K9	$V_{D D}$	V_{DD}
K10	GND	GND
K11	GND	GND
K12	GND	GND

484-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
K13	GND	GND
K14	$V_{D D}$	$V_{D D}$
K15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K16	I/O	I/O
K17	I/O	I/O
K18	I/O	I/O
K19	I/O	I/O
K20	I/O	I/O
K21	I/O	I/O
K22	I/O	I/O
L1	NC	I/O
L2	I/O	I/O
L3	I/O	I/O
L4	GL1	GL1
L5	NPECL1	NPECL1
L6	I/O (GLMX1)	I/O (GLMX1)
L7	AGND	AGND
L8	I/O	I/O
L9	$V_{D D}$	$V_{D D}$
L10	GND	GND
L11	GND	GND
L12	GND	GND
L13	GND	GND
L14	$V_{D D}$	$V_{D D}$
L15	I/O	I/O
L16	1/O (GLMX2)	I/O (GLMX2)
L17	NPECL2	NPECL2
L18	AGND	AGND
L19	GL4	GL4
L20	I/O	I/O
L21	I/O	I/O
L22	I/O	I/O
M1	I/O	I/O
M2	I/O	I/O
M3	I/O	I/O
M4	GL2	GL2
M5	PPECL1 (I/P)	PPECL1 (I/P)
M6	AVDD	AVDD
M7	I/O	I/O
M8	I/O	I/O
M9	$V_{D D}$	$V_{D D}$
M10	GND	GND

ProASIC PLUS Flash Family FPGAs

484-Pin FBGA (Continued)

Pin Number	APA450 Function	APA600 Function
M11	GND	GND
M12	GND	GND
M13	GND	GND
M14	V DD $^{\text {M15 }}$	I/O

484-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
P9	GND	GND
P10	$V_{D D}$	$V_{\text {D }}$
P11	$V_{D D}$	$V_{D D}$
P12	$V_{D D}$	$V_{D D}$
P13	$V_{D D}$	$V_{D D}$
P14	GND	GND
P15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P16	I/O	I/O
P17	//O	I/O
P18	I/O	I/O
P19	I/O	I/O
P20	NC	I/O
P21	I/O	I/O
P22	I/O	I/O
R1	I/O	I/O
R2	I/O	I/O
R3	V_{DD}	$V_{\text {DD }}$
R4	I/O	I/O
R5	I/O	I/O
R6	I/O	I/O
R7	I/O	I/O
R8	I/O	I/O
R9	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
R10	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
R11	I/O	I/O
R12	I/O	I/O
R13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
R14	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
R15	I/O	I/O
R16	I/O	I/O
R17	I/O	I/O
R18	I/O	I/O
R19	I/O	I/O
R20	$V_{D D}$	$V_{D D}$
R21	I/O	I/O
R22	I/O	1/0
T1	I/O	1/0
T2	I/O	1/0
T3	NC	1/0
T4	I/O	1/0
T5	I/O	1/0
T6	I/O	1/0

484-Pin FBGA (Continued)

Pin Number	APA450 Function	APA600 Function
T7	I/O	I/O
T8	I/O	I/O
T9	I/O	I/O
T10	I/O	I/O
T11	I/O	I/O
T12	I/O	I/O
T13	I/O	I/O
T14	I/O	I/O
T15	I/O	I/O
T16	I/O	I/O
T17	RCK	RCK
T18	I/O	I/O
T19	I/O	I/O
T20	NC	I/O
T21	I/O	I/O
T22	I/O	I/O
U1	I/O	I/O
U2	I/O	I/O
U3	I/O	I/O
U4	I/O	I/O
U5	I/O	I/O
U6	I/O	I/O
U7	I/O	I/O
U8	I/O	I/O
U9	I/O	I/O
U10	I/O	I/O
U11	I/O	I/O
U12	I/O	I/O
U13	I/O	I/O
U14	I/O	I/O
U15	I/O	I/O
U16	TCK	TCK
U17	$V_{\text {PP }}$	VPP
U18	TRST	TRST
U19	I/O	I/O
U20	NC	I/O
U21	I/O	I/O
U22	I/O	I/O
V1	I/O	I/O
V2	I/O	I/O
V3	GND	GND
V4	I/O	I/O

484-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
V5	I/O	I/O
V6	1/0	I/O
V7	1/0	I/O
V8	I/O	I/O
v9	I/O	I/O
V10	I/O	I/O
V11	I/O	I/O
V12	I/O	I/O
V13	I/O	I/O
V14	I/O	I/O
V15	I/O	I/O
V16	I/O	I/O
V17	TDI	TDI
V18	$V_{\text {PN }}$	$\mathrm{V}_{\text {PN }}$
V19	TDO	TDO
V20	GND	GND
V21	NC	I/O
V22	I/O	I/O
W1	NC	I/O
W2	I/O	I/O
W3	I/O	I/O
W4	GND	GND
W5	I/O	I/O
W6	I/O	I/O
W7	I/O	I/O
W8	I/O	I/O
W9	I/O	I/O
W10	I/O	I/O
W11	I/O	I/O
W12	I/O	I/O
W13	I/O	I/O
W14	I/O	I/O
W15	I/O	I/O
W16	I/O	I/O
W17	I/O	I/O
W18	TMS	TMS
W19	GND	GND
W20	NC	I/O
W21	NC	I/O
W22	I/O	I/O
Y1	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
Y2	I/O	I/O

ProASIC PLUS Flash Family FPGAs

484-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
Y3	I/O	I/O
Y4	I/O	I/O
Y5	GND	GND
Y6	I/O	I/O
Y7	I/O	I/O
Y8	V_{DD}	V_{DD}
Y9	$V_{D D}$	$V_{D D}$
Y10	I/O	I/O
Y11	1/0	1/0
Y12	1/0	1/0
Y13	I/O	I/O
Y14	V_{DD}	$V_{\text {D }}$
Y15	V_{DD}	$V_{\text {D }}$
Y16	I/O	I/O
Y17	I/O	1/0
Y18	GND	GND
Y19	I/O	I/O
Y20	I/O	I/O
Y21	NC	I/O
Y22	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
AA1	GND	GND
AA2	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA3	I/O	1/0
AA4	1/0	1/0
AA5	1/0	1/0
AA6	1/0	I/O
AA7	1/0	I/O
AA8	1/0	I/O
AA9	I/O	I/O
AA10	I/O	I/O
AA11	I/O	I/O
AA12	I/O	I/O
AA13	I/O	I/O
AA14	I/O	I/O
AA15	I/O	I/O
AA16	1/0	1/0
AA17	I/O	I/O
AA18	NC	I/O
AA19	NC	I/O
AA20	I/O	1/0
AA21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA22	GND	GND

484-Pin FBGA (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA450 Function	APA600 Function
AB1	GND	GND
AB2	GND	GND
AB3	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AB4	I/O	I/O
AB5	//O	I/O
AB6	//O	I/O
AB7	//O	I/O
AB8	//O	I/O
AB9	//O	I/O
AB10	I/O	I/O
AB11	I/O	I/O
AB12	//O	I/O
AB13	I/O	I/O
AB14	I/O	I/O
AB15	I/O	I/O
AB16	I/O	I/O
AB17	I/O	I/O
AB18	NC	I/O
AB19	I/O	I/O
AB20	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AB21	GND	GND
AB22	GND	GND

Package Pin Assignments (Continued)
676-Pin FBGA (Bottom View)

676-FBGA Pin

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	$\begin{aligned} & \hline \text { APA600 } \\ & \text { Function } \end{aligned}$	APA750 Function
A1	GND	GND
A2	GND	GND
A3	I/O	I/O
A4	I/O	I/O
A5	I/O	I/O
A6	I/O	I/O
A7	I/O	I/O
A8	I/O	I/O
A9	I/O	I/O
A10	I/O	I/O
A11	I/O	I/O
A12	I/O	I/O
A13	I/O	I/O
A14	I/O	I/O
A15	I/O	I/O
A16	I/O	I/O
A17	I/O	I/O
A18	I/O	I/O
A19	I/O	I/O
A20	I/O	I/O
A21	I/O	I/O
A22	I/O	I/O
A23	I/O	I/O
A24	I/O	I/O
A25	GND	GND
A26	GND	GND
B1	GND	GND
B2	GND	GND
B3	GND	GND
B4	GND	GND
B5	I/O	I/O
B6	I/O	I/O
B7	I/O	I/O
B8	I/O	I/O
B9	I/O	I/O
B10	I/O	I/O
B11	I/O	I/O
B12	I/O	I/O
B13	I/O	I/O
B14	I/O	I/O
B15	I/O	I/O
B16	I/O	I/O
B17	I/O	I/O

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
B18	I/O	I/O
B19	I/O	I/O
B20	1/0	1/0
B21	1/0	1/0
B22	I/O	I/O
B23	1/0	1/0
B24	I/O	I/O
B25	GND	GND
B26	GND	GND
C1	GND	GND
C2	GND	GND
C3	GND	GND
C4	GND	GND
C5	I/O	I/O
C6	1/0	1/0
C7	1/0	1/0
C8	I/O	I/O
C9	1/0	1/0
C10	I/O	1/0
C11	1/0	1/0
C12	I/O	I/O
C13	I/O	I/O
C14	1/0	1/0
C15	I/O	I/O
C16	I/O	1/0
C17	I/O	I/O
C18	1/0	1/0
C19	I/O	I/O
C20	I/O	I/O
C21	1/0	1/0
C22	I/O	I/O
C23	1/0	I/O
C24	I/O	I/O
C25	1/0	1/0
C26	1/0	1/0
D1	I/O	I/O
D2	I/O	I/O
D3	GND	GND
D4	I/O	I/O
D5	I/O	I/O
D6	I/O	1/0
D7	1/0	I/O
D8	1/O	1/0

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
D9	I/O	I/O
D10	I/O	I/O
D11	I/O	I/O
D12	1/0	I/O
D13	I/O	I/O
D14	I/O	I/O
D15	1/0	I/O
D16	I/O	I/O
D17	1/0	1/0
D18	I/O	I/O
D19	1/0	I/O
D20	I/O	I/O
D21	I/O	I/O
D22	1/0	I/O
D23	I/O	I/O
D24	1/0	1/0
D25	I/O	I/O
D26	1/0	I/O
E1	I/O	I/O
E2	1/0	I/O
E3	I/O	I/O
E4	I/O	I/O
E5	1/0	I/O
E6	I/O	I/O
E7	I/O	I/O
E8	1/0	1/0
E9	I/O	I/O
E10	I/O	I/O
E11	I/O	I/O
E12	1/0	I/O
E13	I/O	I/O
E14	1/0	I/O
E15	I/O	1/0
E16	I/O	1/0
E17	1/0	1/0
E18	I/O	I/O
E19	1/0	I/O
E20	I/O	I/O
E21	1/0	I/O
E22	1/0	I/O
E23	1/0	I/O
E24	1/0	1/0
E25	I/O	I/O

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
E26	I/O	I/O
F1	1/0	1/0
F2	1/0	I/O
F3	I/O	I/O
F4	I/O	1/0
F5	GND	GND
F6	I/O	I/O
F7	NC	NC
F8	I/O	I/O
F9	1/0	I/O
F10	1/0	1/0
F11	I/O	I/O
F12	1/0	1/0
F13	1/0	1/0
F14	1/0	1/0
F15	I/O	I/O
F16	1/0	1/0
F17	I/O	I/O
F18	I/O	1/0
F19	1/0	1/0
F20	1/0	1/0
F21	I/O	1/0
F22	1/0	I/O
F23	1/0	I/O
F24	1/0	I/O
F25	I/O	1/0
F26	1/0	1/0
G1	1/0	I/O
G2	1/0	1/0
G3	I/O	I/O
G4	1/0	1/0
G5	I/O	I/O
G6	1/0	1/0
G7	I/O	I/O
G8	V_{DD}	V_{DD}
G9	NC	NC
G10	1/O	I/O
G11	NC	NC
G12	1/O	I/O
G13	NC	NC
G14	1/O	I/O
G15	NC	NC
G16	1/O	I/O

ProASICPLUS Flash Family FPGAs

676-FBGA Pin (Continued)

Pin Number	APA600 Function	APA750 Function
G17	NC	NC
G18	I/O	I/O
G19	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
G20	NC	NC
G21	I/O	I/O
G22	I/O	I/O
G23	I/O	I/O
G24	I/O	I/O
G25	I/O	I/O
G26	I/O	I/O
H1	I/O	I/O
H2	I/O	I/O
H3	I/O	I/O
H4	I/O	I/O
H5	I/O	I/O
H6	I/O	I/O
H7	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
H8	$V_{\text {DD }}$	$V_{\text {DD }}$
H9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H11	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
H12	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H14	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
H18	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
H19	$V_{D D}$	$V_{\text {DD }}$
H20	V_{DD}	$V_{\text {DD }}$
H21	I/O	I/O
H22	I/O	I/O
H23	I/O	I/O
H24	I/O	I/O
H25	I/O	I/O
H26	I/O	I/O
J1	I/O	I/O
J2	I/O	I/O
J3	I/O	I/O
J4	I/O	I/O
J5	I/O	I/O
J6	I/O	I/O
J7	NC	NC

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
J8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
J9	V_{DD}	V_{DD}
J10	$V_{D D}$	$V_{D D}$
J11	$V_{\text {DD }}$	$V_{\text {DD }}$
J12	$V_{D D}$	$V_{D D}$
J13	$V_{D D}$	$V_{D D}$
J14	$V_{D D}$	$V_{D D}$
J15	$V_{\text {DD }}$	$V_{\text {D }}$
J16	$V_{\text {D }}$	$V_{\text {DD }}$
J17	$V_{D D}$	$V_{D D}$
J18	$V_{\text {DD }}$	$V_{\text {DD }}$
J19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
J20	NC	NC
J21	I/O	I/O
J22	1/0	I/O
J23	I/O	1/0
J24	1/0	1/0
J25	1/0	I/O
J26	1/0	I/O
K1	1/0	1/0
K2	1/0	1/0
K3	1/0	1/0
K4	I/O	1/0
K5	1/0	1/0
K6	I/O	I/O
K7	I/O	I/O
K8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K9	V_{DD}	V_{DD}
K10	GND	GND
K11	GND	GND
K12	GND	GND
K13	GND	GND
K14	GND	GND
K15	GND	GND
K16	GND	GND
K17	GND	GND
K18	$V_{\text {D }}$	$V_{\text {D }}$
K19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K20	I/O	I/O
K21	1/0	I/O
K22	I/O	1/0
K23	I/O	I/O
K24	I/O	1/0

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
K25	I/O	I/O
K26	I/O	I/O
L1	1/0	I/O
L2	1/0	I/O
L3	1/0	I/O
L4	1/0	I/O
L5	I/O	I/O
L6	I/O	I/O
L7	NC	NC
L8	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
L9	$V_{D D}$	$V_{D D}$
L10	GND	GND
L11	GND	GND
L12	GND	GND
L13	GND	GND
L14	GND	GND
L15	GND	GND
L16	GND	GND
L17	GND	GND
L18	V_{DD}	V_{DD}
L19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
L20	NC	NC
L21	I/O	1/O
L22	I/O	I/O
L23	I/O	I/O
L24	I/O	I/O
L25	1/0	I/O
L26	I/O	I/O
M1	I/O	I/O
M2	I/O	I/O
M3	I/O	I/O
M4	I/O	I/O
M5	I/O	I/O
M6	1/0	I/O
M7	I/O	I/O
M8	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
M9	$V_{\text {D }}$	$V_{\text {D }}$
M10	GND	GND
M11	GND	GND
M12	GND	GND
M13	GND	GND
M14	GND	GND
M15	GND	GND

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
M16	GND	GND
M17	GND	GND
M18	$V_{\text {D }}$	$V_{D D}$
M19	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
M20	I/O	I/O
M21	I/O	I/O
M22	1/0	1/0
M23	1/0	1/0
M24	1/0	1/0
M25	1/0	I/O
M26	I/O	I/O
N1	GL1	GL1
N2	AGND	AGND
N3	1/O (GLMX1)	I/O (GLMX1)
N4	I/O	I/O
N5	NPECL1	NPECL1
N6	I/O	I/O
N7	NC	NC
N8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N9	V_{DD}	V_{DD}
N10	GND	GND
N11	GND	GND
N12	GND	GND
N13	GND	GND
N14	GND	GND
N15	GND	GND
N16	GND	GND
N17	GND	GND
N18	$V_{\text {D }}$	$V_{\text {D }}$
N19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N20	NC	NC
N21	I/O	I/O
N22	GL3	GL3
N23	I/O	I/O
N24	NPECL2	NPECL2
N25	GL4	GL4
N26	I/O	I/O
P1	GL2	GL2
P2	AVDD	AVDD
P3	I/O	I/O
P4	I/O	I/O
P5	PPECL1 (I/P)	PPECL1 (I/P)
P6	1/0	1/0

ProASICPLUS Flash Family FPGAs

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
P7	I/O	I/O
P8	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
P9	$V_{\text {DD }}$	$V_{\text {DD }}$
P10	GND	GND
P11	GND	GND
P12	GND	GND
P13	GND	GND
P14	GND	GND
P15	GND	GND
P16	GND	GND
P17	GND	GND
P18	$V_{\text {DD }}$	$V_{\text {DD }}$
P19	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
P20	I/O	I/O
P21	I/O	I/O
P22	I/O (GLMX2)	I/O (GLMX2)
P23	I/O	I/O
P24	PPECL2 (I/P)	PPECL2 (I/P)
P25	AVDD	AVDD
P26	AGND	AGND
R1	I/O	I/O
R2	I/O	I/O
R3	I/O	I/O
R4	I/O	I/O
R5	I/O	I/O
R6	I/O	I/O
R7	NC	NC
R8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
R9	$V_{\text {DD }}$	$V_{\text {DD }}$
R10	GND	GND
R11	GND	GND
R12	GND	GND
R13	GND	GND
R14	GND	GND
R15	GND	GND
R16	GND	GND
R17	GND	GND
R18	$V_{\text {DD }}$	$V_{\text {DD }}$
R19	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
R20	NC	NC
R21	I/O	I/O
R22	I/O	I/O
R23	I/O	I/O

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
R24	I/O	1/0
R25	I/O	I/O
R26	I/O	I/O
T1	1/0	I/O
T2	1/0	1/0
T3	I/O	1/0
T4	I/O	1/0
T5	1/0	1/0
T6	I/O	1/0
T7	I/O	I/O
T8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
T9	V_{DD}	V_{DD}
T10	GND	GND
T11	GND	GND
T12	GND	GND
T13	GND	GND
T14	GND	GND
T15	GND	GND
T16	GND	GND
T17	GND	GND
T18	$V_{\text {D }}$	$V_{\text {D }}$
T19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
T20	I/O	I/O
T21	1/0	1/0
T22	I/O	1/0
T23	1/0	I/O
T24	1/0	I/O
T25	I/O	I/O
T26	I/O	I/O
U1	I/O	I/O
U2	1/0	1/0
U3	1/0	1/0
U4	I/O	I/O
U5	1/0	1/0
U6	I/O	1/0
U7	NC	NC
U8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U9	$V_{\text {D }}$	$V_{\text {D }}$
U10	GND	GND
U11	GND	GND
U12	GND	GND
U13	GND	GND
U14	GND	GND

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
U15	GND	GND
U16	GND	GND
U17	GND	GND
U18	$V_{D D}$	$V_{D D}$
U19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U20	NC	NC
U21	I/O	I/O
U22	I/O	I/O
U23	I/O	I/O
U24	I/O	I/O
U25	I/O	I/O
U26	I/O	I/O
V1	I/O	I/O
V2	I/O	I/O
V3	I/O	I/O
V4	I/O	I/O
V5	I/O	I/O
V6	I/O	I/O
V7	I/O	I/O
V8	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V9	$V_{D D}$	$V_{D D}$
V10	$V_{D D}$	$V_{D D}$
V11	$V_{\text {DD }}$	$V_{\text {DD }}$
V12	$V_{D D}$	$V_{D D}$
V13	$V_{\text {DD }}$	$V_{\text {DD }}$
V14	$V_{D D}$	$V_{D D}$
V15	$V_{\text {DD }}$	$V_{\text {DD }}$
V16	$V_{\text {D }}$	$V_{\text {D }}$
V17	$V_{D D}$	$V_{D D}$
V18	$V_{\text {DD }}$	$V_{\text {DD }}$
V19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V20	I/O	I/O
V21	I/O	I/O
V22	I/O	I/O
V23	I/O	I/O
V24	I/O	I/O
V25	I/O	I/O
V26	I/O	I/O
W1	I/O	I/O
W2	I/O	I/O
W3	I/O	I/O
W4	I/O	I/O
W5	I/O	I/O

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
W6	I/O	I/O
W7	$V_{D D}$	$V_{D D}$
W8	$V_{D D}$	$V_{D D}$
w9	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
W10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
W11	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
W12	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
W13	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
W14	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
W15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
W16	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
W17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
W18	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
W19	V_{DD}	V_{DD}
W20	$V_{\text {DDP }}$	$V_{\text {DDP }}$
W21	I/O	I/O
W22	I/O	1/0
W23	I/O	I/O
W24	I/O	I/O
W25	I/O	1/0
W26	I/O	1/0
Y1	I/O	1/0
Y2	I/O	1/0
Y3	1/0	I/O
Y4	1/0	I/O
Y5	I/O	I/O
Y6	I/O	1/0
Y7	I/O	I/O
Y8	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
Y9	NC	NC
Y10	I/O	I/O
Y11	NC	NC
Y12	I/O	1/0
Y13	NC	NC
Y14	1/O	1/O
Y15	NC	NC
Y16	1/O	I/O
Y17	NC	NC
Y18	I/O	I/O
Y19	$V_{\text {D }}$	$V_{\text {D }}$
Y20	V_{PP}	V_{PP}
Y21	I/O	I/O
Y22	1/0	1/0

ProASICPLUS Flash Family FPGAs

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
Y23	I/O	I/O
Y24	I/O	I/O
Y25	I/O	I/O
Y26	I/O	I/O
AA1	I/O	I/O
AA2	I/O	I/O
AA3	I/O	I/O
AA4	I/O	I/O
AA5	I/O	I/O
AA6	GND	GND
AA7	I/O	I/O
AA8	I/O	I/O
AA9	I/O	I/O
AA10	I/O	I/O
AA11	I/O	I/O
AA12	I/O	I/O
AA13	I/O	I/O
AA14	I/O	I/O
AA15	I/O	I/O
AA16	I/O	I/O
AA17	I/O	I/O
AA18	I/O	I/O
AA19	I/O	I/O
AA20	I/O	I/O
AA21	TDO	TDO
AA22	GND	GND
AA23	GND	GND
AA24	I/O	I/O
AA25	I/O	I/O
AA26	I/O	I/O
AB1	I/O	I/O
AB2	I/O	I/O
AB3	I/O	I/O
AB4	I/O	I/O
AB5	I/O	I/O
AB6	GND	GND
AB7	GND	GND
AB8	I/O	I/O
AB9	I/O	I/O
AB10	I/O	I/O
AB11	I/O	I/O
AB12	I/O	I/O
AB13	I/O	I/O

676-FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA600 Function	APA750 Function
AB14	I/O	1/0
AB15	I/O	I/O
AB16	1/0	I/O
AB17	1/0	I/O
AB18	I/O	I/O
AB19	1/0	I/O
AB20	I/O	I/O
AB21	TCK	TCK
AB22	TRST	TRST
AB23	I/O	I/O
AB24	1/0	I/O
AB25	I/O	1/0
AB26	I/O	1/0
AC1	I/O	I/O
AC2	I/O	1/0
AC3	1/0	I/O
AC4	I/O	1/0
AC5	GND	GND
AC6	I/O	I/O
AC7	1/0	1/0
AC8	I/O	I/O
AC9	GND	GND
AC10	I/O	I/O
AC11	I/O	1/0
AC12	I/O	1/0
AC13	I/O	I/O
AC14	1/0	1/0
AC15	I/O	I/O
AC16	I/O	1/0
AC17	I/O	I/O
AC18	I/O	1/0
AC19	I/O	1/0
AC20	I/O	I/O
AC21	I/O	I/O
AC22	TMS	TMS
AC23	RCK	RCK
AC24	I/O	I/O
AC25	I/O	I/O
AC26	I/O	I/O
AD1	I/O	I/O
AD2	I/O	I/O
AD3	1/0	I/O
AD4	1/0	1/0

676-FBGA Pin (Continued)

Pin Number	APA600 Function	APA750 Function
AD5	I/O	I/O
AD6	I/O	I/O
AD7	I/O	I/O
AD8	I/O	I/O
AD9	I/O	I/O
AD10	I/O	I/O
AD11	I/O	I/O
AD12	I/O	I/O
AD13	I/O	I/O
AD14	I/O	I/O
AD15	I/O	1/O
AD16	I/O	I/O
AD17	I/O	I/O
AD18	I/O	I/O
AD19	I/O	I/O
AD20	I/O	I/O
AD21	I/O	I/O
AD22	I/O	I/O
AD23	TDI	TDI
AD24	$V_{P N}$	$V_{\text {PN }}$
AD25	I/O	I/O
AD26	I/O	I/O
AE1	GND	GND
AE2	GND	GND
AE3	GND	GND
AE4	I/O	I/O
AE5	I/O	I/O
AE6	1/O	I/O
AE7	I/O	I/O
AE8	I/O	1/O
AE9	I/O	1/O
AE10	I/O	I/O
AE11	I/O	1/O
AE12	I/O	I/O
AE13	I/O	I/O
AE14	I/O	1/O
AE15	I/O	I/O
AE16	1/O	1/O
AE17	I/O	I/O
AE18	I/O	I/O
AE19	I/O	I/O
AE20	I/O	I/O
AE21	I/O	1/O

676-FBGA Pin (Continued)

Pin Number	APA600 Function	APA750 Function
AE22	I/O	I/O
AE23	I/O	I/O
AE24	I/O	I/O
AE25	GND	GND
AE26	GND	GND
AF1	GND	GND
AF2	GND	GND
AF3	GND	GND
AF4	GND	GND
AF5	I/O	I/O
AF6	I/O	I/O
AF7	I/O	I/O
AF8	I/O	I/O
AF9	I/O	I/O
AF10	I/O	I/O
AF11	I/O	I/O
AF12	I/O	I/O
AF13	I/O	I/O
AF14	I/O	I/O
AF15	I/O	I/O
AF16	I/O	I/O
AF17	I/O	I/O
AF18	I/O	I/O
AF19	I/O	I/O
AF20	I/O	I/O
AF21	I/O	I/O
AF22	I/O	I/O
AF23	I/O	I/O
AF24	I/O	I/O
AF25	GND	GND
AF26	GND	GND

Package Pin Assignments (Continued)
896-Pin FBGA (Bottom View)

896 FBGA Pin

Pin Number	APA750 Function	APA1000 Function
A2	GND	GND
A3	GND	GND
A4	I/O	I/O
A5	GND	GND
A6	I/O	I/O
A7	GND	GND
A8	I/O	I/O
A9	I/O	I/O
A10	I/O	I/O
A11	I/O	I/O
A12	I/O	I/O
A13	I/O	I/O
A14	I/O	I/O
A15	I/O	I/O
A16	I/O	I/O
A17	I/O	I/O
A18	I/O	I/O
A19	I/O	I/O
A20	I/O	I/O
A21	1/O	I/O
A22	I/O	I/O
A23	I/O	I/O
A24	GND	GND
A25	I/O	I/O
A26	GND	GND
A27	I/O	I/O
A28	GND	GND
A29	GND	GND
B1	GND	GND
B2	GND	GND
B3	I/O	I/O
B4	$V_{\text {DD }}$	$V_{\text {DD }}$
B5	I/O	I/O
B6	$V_{\text {DD }}$	$V_{\text {DD }}$
B7	I/O	I/O
B8	I/O	I/O
B9	1/O	1/O
B10	I/O	I/O
B11	I/O	I/O
B12	I/O	1/O
B13	I/O	I/O
B14	I/O	I/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
B15	I/O	1/0
B16	I/O	I/O
B17	1/0	1/0
B18	1/0	1/0
B19	1/0	1/0
B20	I/O	1/0
B21	1/0	1/0
B22	1/0	1/0
B23	1/0	1/0
B24	I/O	I/O
B25	V_{DD}	V_{DD}
B26	I/O	I/O
B27	V_{DD}	V_{DD}
B28	I/O	I/O
B29	GND	GND
B30	GND	GND
C1	GND	GND
C2	I/O	I/O
C3	V_{DD}	V_{DD}
C4	I/O	I/O
C5	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
C6	I/O	I/O
C7	I/O	I/O
C8	I/O	I/O
C9	1/0	I/O
C10	1/0	I/O
C11	1/0	I/O
C12	1/0	I/O
C13	I/O	I/O
C14	1/0	I/O
C15	1/0	I/O
C16	I/O	I/O
C17	1/0	1/0
C18	I/O	I/O
C19	I/O	I/O
C20	I/O	I/O
C21	I/O	I/O
C22	1/0	I/O
C23	1/0	I/O
C24	1/0	I/O
C25	I/O	I/O
C26	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$

ProASIC PLUS Flash Family FPGAs

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
C27	I/O	I/O
C28	$V_{D D}$	$V_{D D}$
C29	NC	I/O
C30	GND	GND
D1	I/O	I/O
D2	V_{DD}	V_{DD}
D3	I/O	I/O
D4	GND	GND
D5	I/O	I/O
D6	1/0	I/O
D7	1/0	I/O
D8	I/O	I/O
D9	1/0	1/0
D10	1/0	1/0
D11	1/0	1/0
D12	1/0	1/0
D13	1/0	1/0
D14	1/0	1/0
D15	1/0	1/0
D16	I/O	I/O
D17	I/O	I/O
D18	1/0	I/O
D19	I/O	I/O
D20	1/0	I/O
D21	1/0	1/0
D22	1/0	1/0
D23	1/0	1/0
D24	1/0	I/O
D25	1/0	1/0
D26	1/0	I/O
D27	GND	GND
D28	I/O	I/O
D29	V_{DD}	V_{DD}
D30	I/O	I/O
E1	GND	GND
E2	I/O	I/O
E3	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E4	I/O	I/O
E5	V_{DD}	V_{DD}
E6	I/O	I/O
E7	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
E8	I/O	I/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
E9	I/O	I/O
E10	I/O	I/O
E11	I/O	I/O
E12	1/0	1/0
E13	1/0	1/0
E14	1/0	1/0
E15	1/0	1/0
E16	1/0	1/0
E17	1/0	I/O
E18	1/0	1/0
E19	1/0	1/0
E20	1/0	1/0
E21	1/0	1/0
E22	1/0	I/O
E23	1/0	I/O
E24	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E25	I/O	I/O
E26	$V_{D D}$	V_{DD}
E27	I/O	I/O
E28	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
E29	I/O	I/O
E30	GND	GND
F1	I/O	I/O
F2	V_{DD}	V_{DD}
F3	I/O	I/O
F4	1/0	1/0
F5	1/0	1/0
F6	GND	GND
F7	I/O	I/O
F8	1/0	1/0
F9	1/0	1/0
F10	1/0	1/0
F11	1/0	1/0
F12	I/O	I/O
F13	I/O	I/O
F14	I/O	1/0
F15	I/O	1/0
F16	I/O	1/0
F17	I/O	I/O
F18	1/0	I/O
F19	1/0	1/0
F20	1/0	1/0

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
F21	I/O	I/O
F22	1/0	I/O
F23	1/0	I/O
F24	1/0	I/O
F25	GND	GND
F26	I/O	I/O
F27	1/0	I/O
F28	I/O	I/O
F29	V_{DD}	V_{DD}
F30	I/O	I/O
G1	GND	GND
G2	I/O	I/O
G3	1/0	I/O
G4	1/0	I/O
G5	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
G6	I/O	I/O
G7	$V_{D D}$	V_{DD}
G8	I/O	I/O
G9	$V_{\text {DDP }}$	$V_{\text {DDP }}$
G10	I/O	I/O
G11	I/O	1/0
G12	1/0	I/O
G13	1/0	I/O
G14	1/0	I/O
G15	I/O	I/O
G16	I/O	I/O
G17	I/O	I/O
G18	I/O	I/O
G19	I/O	I/O
G20	1/0	I/O
G21	I/O	I/O
G22	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
G23	I/O	I/O
G24	V_{DD}	$V_{D D}$
G25	I/O	I/O
G26	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
G27	I/O	I/O
G28	1/0	I/O
G29	I/O	I/O
G30	GND	GND
H1	I/O	I/O
H2	1/0	I/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
H3	I/O	I/O
H4	I/O	I/O
H5	I/O	1/0
H6	I/O	1/0
H7	I/O	I/O
H8	GND	GND
H9	NC	I/O
H10	NC	I/O
H11	NC	I/O
H12	NC	I/O
H13	NC	I/O
H14	NC	I/O
H15	NC	I/O
H16	NC	I/O
H17	NC	I/O
H18	NC	I/O
H19	NC	I/O
H2O	NC	I/O
H21	NC	I/O
H22	NC	I/O
H23	GND	GND
H24	I/O	I/O
H25	I/O	I/O
H26	I/O	I/O
H27	I/O	I/O
H28	I/O	I/O
H29	I/O	I/O
H30	I/O	I/O
J1	I/O	I/O
J2	I/O	I/O
J3	I/O	I/O
J4	I/O	I/O
J5	I/O	I/O
J6	I/O	I/O
J7	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
J8	I/O	I/O
J9	V_{DD}	V_{DD}
J10	NC	I/O
J11	NC	1/0
J12	NC	1/0
J13	NC	1/0
J14	NC	1/0

ProASIC PLUS Flash Family FPGAs

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
J15	NC	I/O
J16	NC	1/0
J17	NC	1/0
J18	NC	1/0
J19	NC	1/0
J20	NC	1/0
J21	NC	I/O
J22	V_{DD}	V_{DD}
J23	I/O	I/O
J24	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
J25	I/O	I/O
J26	1/0	I/O
J27	1/0	1/0
J28	1/0	1/0
J29	I/O	I/O
J30	I/O	I/O
K1	I/O	I/O
K2	I/O	1/0
K3	1/0	I/O
K4	1/0	I/O
K5	1/0	I/O
K6	1/0	1/0
K7	1/0	1/0
K8	1/0	1/0
K9	NC	I/O
K10	$V_{D D}$	V_{DD}
K11	NC	I/O
K12	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
K13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K14	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
K20	NC	I/O
K21	V_{DD}	V_{DD}
K22	NC	I/O
K23	I/O	1/0
K24	1/0	1/0
K25	1/0	I/O
K26	1/0	I/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
K27	I/O	I/O
K28	I/O	I/O
K29	I/O	I/O
K30	I/O	I/O
L1	I/O	I/O
L2	I/O	I/O
L3	I/O	I/O
L4	I/O	I/O
L5	I/O	I/O
L6	I/O	I/O
L7	I/O	I/O
L8	I/O	I/O
L9	NC	I/O
L10	NC	I/O
L11	V_{DD}	V_{DD}
L12	V_{DD}	$V_{D D}$
L13	$V_{\text {D }}$	$V_{\text {DD }}$
L14	$V_{\text {D }}$	$V_{\text {DD }}$
L15	$V_{\text {D }}$	$V_{\text {DD }}$
L16	$V_{\text {D }}$	$V_{\text {D }}$
L17	$V_{D D}$	$V_{D D}$
L18	$V_{D D}$	$V_{D D}$
L19	$V_{\text {D }}$	$V_{D D}$
L20	$V_{D D}$	$V_{D D}$
L21	NC	I/O
L22	NC	I/O
L23	I/O	I/O
L24	I/O	I/O
L25	1/0	I/O
L26	I/O	I/O
L27	I/O	1/0
L28	I/O	I/O
L29	I/O	1/0
L30	1/0	I/O
M1	1/0	I/O
M2	I/O	I/O
M3	1/0	I/O
M4	1/0	I/O
M5	1/0	I/O
M6	1/0	I/O
M7	1/0	I/O
M8	1/O	I/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
M9	NC	I/O
M10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M11	$V_{\text {DD }}$	$V_{D D}$
M12	GND	GND
M13	GND	GND
M14	GND	GND
M15	GND	GND
M16	GND	GND
M17	GND	GND
M18	GND	GND
M19	GND	GND
M20	$V_{\text {DD }}$	$V_{D D}$
M21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
M22	NC	I/O
M23	I/O	I/O
M24	I/O	I/O
M25	I/O	I/O
M26	I/O	I/O
M27	I/O	I/O
M28	I/O	I/O
M29	I/O	I/O
M30	I/O	I/O
N1	I/O	I/O
N2	I/O	I/O
N3	I/O	I/O
N4	I/O	I/O
N5	I/O	I/O
N6	I/O	I/O
N7	I/O	I/O
N8	I/O	I/O
N9	NC	I/O
N10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
N11	$V_{\text {DD }}$	$V_{\text {DD }}$
N12	GND	GND
N13	GND	GND
N14	GND	GND
N15	GND	GND
N16	GND	GND
N17	GND	GND
N18	GND	GND
N19	GND	GND
N20	$V_{\text {DD }}$	$V_{\text {DD }}$

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
N21	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
N22	NC	I/O
N23	I/O	1/0
N24	I/O	1/0
N25	I/O	1/0
N26	I/O	1/0
N27	1/0	1/0
N28	1/0	1/0
N29	1/0	1/0
N30	I/O	I/O
P1	I/O	I/O
P2	1/0	1/0
P3	I/O	I/O
P4	I/O	I/O
P5	I/O	I/O
P6	I/O	I/O
P7	I/O	1/0
P8	I/O	1/0
P9	I/O	1/O
P10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P11	$V_{D D}$	V_{DD}
P12	GND	GND
P13	GND	GND
P14	GND	GND
P15	GND	GND
P16	GND	GND
P17	GND	GND
P18	GND	GND
P19	GND	GND
P20	$V_{\text {DD }}$	$V_{\text {D }}$
P21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
P22	I/O	I/O
P23	I/O	I/O
P24	I/O	I/O
P25	I/O	I/O
P26	I/O	I/O
P27	I/O	I/O
P28	I/O	I/O
P29	I/O	I/O
P30	I/O	I/O
R1	I/O	I/O
R2	I/O (GLMX1)	I/O (GLMX1)

ProASICPLUS Flash Family FPGAs

896 FBGA Pin (Continued)

Pin Number	APA750 Function	APA1000 Function
R3	AGND	AGND
R4	NPECL1	NPECL1
R5	GL1	GL1
R6	I/O	I/O
R7	I/O	I/O
R8	I/O	I/O
R9	NC	I/O
R10	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
R11	$V_{\text {DD }}$	$V_{\text {DD }}$
R12	GND	GND
R13	GND	GND
R14	GND	GND
R15	GND	GND
R16	GND	GND
R17	GND	GND
R18	GND	GND
R19	GND	GND
R20	$V_{\text {DD }}$	$V_{\text {DD }}$
R21	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
R22	I/O	I/O
R23	I/O	I/O
R24	I/O	I/O
R25	I/O	I/O
R26	I/O	I/O
R27	NPECL2	NPECL2
R28	AGND	AGND
R29	I/O (GLMX2)	I/O (GLMX2)
R30	I/O	I/O
T1	I/O	I/O
T2	AVDD	AVDD
T3	GL2	GL2
T4	PPECL1 (I/P)	PPECL1 (I/P)
T5	I/O	I/O
T6	I/O	I/O
T7	I/O	I/O
T8	I/O	I/O
T9	I/O	I/O
T10	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
T11	$V_{\text {DD }}$	$V_{\text {DD }}$
T12	GND	GND
T13	GND	GND
T14	GND	GND

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
T15	GND	GND
T16	GND	GND
T17	GND	GND
T18	GND	GND
T19	GND	GND
T20	$V_{D D}$	$V_{D D}$
T21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
T22	I/O	I/O
T23	1/0	1/0
T24	1/0	1/0
T25	1/0	1/0
T26	PPECL2 (IP)	PPECL2 (IP)
T27	GL4	GL4
T28	GL3	GL3
T29	AVDD	AVDD
T30	I/O	I/O
U1	1/0	1/0
U2	1/0	I/O
U3	1/0	1/0
U4	1/0	I/O
U5	1/0	1/0
U6	I/O	I/O
U7	I/O	1/0
U8	1/0	I/O
U9	NC	I/O
U10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U11	$V_{D D}$	$V_{D D}$
U12	GND	GND
U13	GND	GND
U14	GND	GND
U15	GND	GND
U16	GND	GND
U17	GND	GND
U18	GND	GND
U19	GND	GND
U20	$V_{D D}$	$V_{D D}$
U21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
U22	NC	I/O
U23	1/0	1/0
U24	1/0	1/0
U25	1/0	1/0
U26	1/0	I/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
U27	I/O	I/O
U28	1/0	I/O
U29	1/0	I/O
U30	1/0	I/O
V1	1/0	I/O
V2	1/0	1/0
V3	1/0	I/O
V4	1/0	I/O
V5	1/0	I/O
V6	1/0	I/O
V7	1/0	I/O
V8	1/0	I/O
v9	NC	I/O
V10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V11	$V_{D D}$	$V_{D D}$
V12	GND	GND
V13	GND	GND
V14	GND	GND
V15	GND	GND
V16	GND	GND
V17	GND	GND
V18	GND	GND
V19	GND	GND
V20	$V_{D D}$	$V_{D D}$
V21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
V22	NC	I/O
V23	1/0	I/O
V24	1/0	I/O
V25	1/0	I/O
V26	1/0	I/O
V27	1/0	I/O
V28	1/0	I/O
V29	1/0	I/O
V30	I/O	I/O
W1	1/0	I/O
W2	1/0	I/O
W3	1/0	I/O
W4	1/0	I/O
W5	1/0	I/O
W6	1/0	I/O
W7	1/0	I/O
W8	1/0	I/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
W9	NC	I/O
W10	$V_{\text {DDP }}$	$V_{\text {DDP }}$
W11	$V_{D D}$	$V_{D D}$
W12	GND	GND
W13	GND	GND
W14	GND	GND
W15	GND	GND
W16	GND	GND
W17	GND	GND
W18	GND	GND
W19	GND	GND
W20	$V_{D D}$	$V_{D D}$
W21	$V_{\text {DDP }}$	$V_{\text {DDP }}$
W22	NC	I/O
W23	I/O	I/O
W24	I/O	I/O
W25	I/O	I/O
W26	I/O	I/O
W27	I/O	I/O
W28	I/O	I/O
W29	I/O	I/O
W30	I/O	I/O
Y1	I/O	I/O
Y2	1/0	I/O
Y3	I/O	I/O
Y4	1/0	I/O
Y5	I/O	1/0
Y6	I/O	I/O
Y7	I/O	I/O
Y8	1/0	I/O
Y9	NC	I/O
Y10	NC	I/O
Y11	V_{DD}	$V_{D D}$
Y12	$V_{D D}$	$V_{D D}$
Y13	$V_{D D}$	$V_{D D}$
Y14	$V_{D D}$	$V_{D D}$
Y15	$V_{\text {DD }}$	$V_{\text {D }}$
Y16	$V_{\text {DD }}$	$V_{\text {D }}$
Y17	$V_{\text {DD }}$	$V_{\text {D }}$
Y18	$V_{\text {DD }}$	$V_{\text {D }}$
Y19	$V_{D D}$	$V_{\text {D }}$
Y20	$V_{D D}$	$V_{D D}$

ProASIC PLUS Flash Family FPGAs

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
Y21	NC	I/O
Y22	NC	I/O
Y23	I/O	I/O
Y24	I/O	I/O
Y25	I/O	I/O
Y26	I/O	I/O
Y27	I/O	I/O
Y28	1/0	I/O
Y29	1/0	I/O
Y30	1/0	I/O
AA1	I/O	//O
AA2	1/0	I/O
AA3	I/O	I/O
AA4	I/O	//O
AA5	I/O	I/O
AA6	I/O	//O
AA7	I/O	I/O
AA8	I/O	I/O
AA9	NC	I/O
AA10	$V_{\text {D }}$	V_{DD}
AA11	NC	I/O
AA12	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA13	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA14	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA15	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA16	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA17	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA18	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA19	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AA20	NC	I/O
AA21	$V_{\text {D }}$	V_{DD}
AA22	NC	I/O
AA23	I/O	I/O
AA24	1/0	I/O
AA25	I/O	//O
AA26	I/O	I/O
AA27	1/0	I/O
AA28	I/O	I/O
AA29	I/O	I/O
AA30	I/O	I/O
AB1	I/O	I/O
AB2	I/O	I/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
AB3	1/0	I/O
AB4	1/0	I/O
AB5	1/0	I/O
AB6	I/O	I/O
AB7	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AB8	I/O	I/O
AB9	$V_{D D}$	V_{DD}
AB10	NC	I/O
AB11	NC	1/0
AB12	NC	1/0
AB13	NC	1/0
AB14	NC	1/0
AB15	NC	1/0
AB16	NC	I/O
AB17	NC	1/0
AB18	NC	I/O
AB19	NC	1/0
AB20	NC	I/O
AB21	NC	I/O
AB22	$V_{D D}$	V_{DD}
AB23	I/O	I/O
AB24	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AB25	I/O	I/O
AB26	1/0	I/O
AB27	1/0	I/O
AB28	1/0	I/O
AB29	1/0	I/O
AB30	1/0	I/O
AC1	1/0	I/O
AC2	1/0	1/0
AC3	1/0	I/O
AC4	1/0	I/O
AC5	1/0	I/O
AC6	1/0	1/0
AC7	1/0	I/O
AC8	GND	GND
AC9	NC	I/O
AC10	NC	I/O
AC11	NC	I/O
AC12	NC	I/O
AC13	NC	I/O
AC14	NC	1/0

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
AC15	NC	I/O
AC16	NC	I/O
AC17	NC	I/O
AC18	NC	1/0
AC19	NC	I/O
AC20	NC	1/0
AC21	NC	I/O
AC22	NC	I/O
AC23	GND	GND
AC24	I/O	I/O
AC25	1/0	I/O
AC26	1/0	I/O
AC27	1/0	I/O
AC28	1/0	I/O
AC29	1/0	I/O
AC30	1/0	I/O
AD1	GND	GND
AD2	I/O	I/O
AD3	1/0	I/O
AD4	I/O	I/O
AD5	$V_{\text {DDP }}$	$V_{\text {DDP }}$
AD6	I/O	I/O
AD7	V_{DD}	V_{DD}
AD8	I/O	I/O
AD9	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
AD10	I/O	I/O
AD11	1/0	I/O
AD12	1/0	I/O
AD13	1/0	I/O
AD14	1/0	I/O
AD15	1/0	I/O
AD16	1/0	I/O
AD17	1/0	I/O
AD18	1/0	I/O
AD19	1/0	I/O
AD20	1/0	I/O
AD21	I/O	I/O
AD22	$\mathrm{V}_{\text {DDP }}$	$V_{\text {DDP }}$
AD23	TCK	TCK
AD24	$V_{D D}$	$V_{\text {D }}$
AD25	TRST	TRST
AD26	$V_{\text {DDP }}$	$V_{\text {DDP }}$

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
AD27	I/O	I/O
AD28	I/O	I/O
AD29	I/O	I/O
AD30	GND	GND
AE1	I/O	I/O
AE2	V_{DD}	V_{DD}
AE3	I/O	I/O
AE4	I/O	I/O
AE5	I/O	I/O
AE6	GND	GND
AE7	I/O	I/O
AE8	I/O	I/O
AE9	1/0	I/O
AE10	1/0	I/O
AE11	I/O	I/O
AE12	I/O	I/O
AE13	I/O	I/O
AE14	I/O	I/O
AE15	I/O	I/O
AE16	I/O	I/O
AE17	I/O	I/O
AE18	I/O	I/O
AE19	I/O	I/O
AE20	I/O	I/O
AE21	I/O	I/O
AE22	I/O	I/O
AE23	I/O	I/O
AE24	I/O	I/O
AE25	GND	GND
AE26	I/O	I/O
AE27	I/O	I/O
AE28	I/O	I/O
AE29	V_{DD}	V_{DD}
AE30	I/O	I/O
AF1	GND	GND
AF2	I/O	I/O
AF3	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AF4	I/O	I/O
AF5	V_{DD}	V_{DD}
AF6	I/O	I/O
AF7	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AF8	I/O	I/O

ProASIC PLUS Flash Family FPGAs

896 FBGA Pin (Continued)

Pin Number	APA750 Function	APA1000 Function

AF9	I/O	I/O
AF10	I/O	I/O

AF11	I/O	I/O
AF12	I/O	I/O

AF13 I/O I/O

AF14	I/O	I/C
AF15	I/O	

AF16 I/O I/O
AF17 I/O I/O
AF19 I/O I/O
AF20 I/O I/O

AF21	I/O	I/O
AF22	I/O	I/O

AF23 I/O I/O
AF24 $V_{\text {DDP }} \quad V_{D D}$

AF25
AF26
AF27
AF28
AF29
AF30
AG1
AG2
AG3
AG4
AG5
AG6
AG7
AG8
AG9
AG10
AG11
AG1
AG1
AG1
AG1
AG16
AG17
AG18
AG19
AG20
O
I/O
/O
O
I/O
$\mathrm{V}_{\text {DDP }}$
I/O
$V_{D D}$
TDO
$V_{\text {DDP }}$
$V_{\text {PN }}$
GND
I/O
$V_{D D}$
I/O
GND
I/O
1/O

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
AG21	1/0	1/0
AG22	1/0	1/0
AG23	1/0	1/0
AG24	1/0	1/0
AG25	1/0	1/0
AG26	I/O	1/0
AG27	GND	GND
AG28	RCK	RCK
AG29	V_{DD}	V_{DD}
AG30	I/O	I/O
AH1	GND	GND
AH2	I/O	I/O
AH3	V_{DD}	V_{DD}
AH4	I/O	I/O
AH5	$V_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AH6	1/O	I/O
AH7	1/0	1/0
AH8	1/0	I/O
AH9	1/0	I/O
AH10	1/0	I/O
AH11	1/0	1/0
AH12	1/0	1/0
AH13	1/0	1/0
AH14	1/0	I/O
AH15	1/0	I/O
AH16	1/0	1/0
AH17	1/0	1/0
AH18	1/0	1/0
AH19	1/0	1/0
AH20	1/0	1/0
AH21	1/0	1/0
AH22	1/0	1/0
AH23	1/0	1/0
AH24	I/O	I/O
AH25	I/O	I/O
AH26	$\mathrm{V}_{\text {DDP }}$	$\mathrm{V}_{\text {DDP }}$
AH27	TDI	TDI
AH28	$V_{D D}$	$V_{\text {D }}$
AH29	$V_{P P}$	$V_{P P}$
AH30	GND	GND
AJ1	GND	GND
AJ2	GND	GND

896 FBGA Pin (Continued)

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA750 Function	APA1000 Function
AJ3	I/O	I/O
AJ4	V_{DD}	V_{DD}
AJ5	I/O	I/O
AJ6	V_{DD}	V_{DD}
AJ7	I/O	I/O
AJ8	1/0	I/O
AJ9	1/0	I/O
AJ10	1/0	1/0
AJ11	1/0	I/O
AJ12	1/0	1/0
AJ13	1/0	1/0
AJ14	1/0	1/0
AJ15	1/0	I/O
AJ16	1/0	I/O
AJ17	1/0	I/O
AJ18	1/0	I/O
AJ19	1/0	I/O
AJ20	1/0	I/O
AJ21	1/0	I/O
AJ22	1/0	I/O
AJ23	1/0	I/O
AJ24	I/O	I/O
AJ25	$V_{D D}$	V_{DD}
AJ26	I/O	I/O
AJ27	$V_{D D}$	$V_{D D}$
AJ28	TMS	TMS
AJ29	GND	GND
AJ30	GND	GND
AK2	GND	GND
AK3	GND	GND
AK4	I/O	I/O
AK5	GND	GND
AK6	I/O	I/O
AK7	GND	GND
AK8	I/O	I/O
AK9	1/0	I/O
AK10	1/0	I/O
AK11	1/0	1/0
AK12	1/0	1/0
AK13	1/0	1/0
AK14	1/0	1/0
AK15	1/0	I/O

896 FBGA Pin (Continued)

Pin Number	APA750 Function	APA1000 Function
AK16	I/O	I/O
AK17	I/O	I/O
AK18	I/O	I/O
AK19	I/O	I/O
AK20	I/O	I/O
AK21	I/O	I/O
AK22	I/O	I/O
AK23	I/O	I/O
AK24	GND	GND
AK25	I/O	I/O
AK26	GND	GND
AK27	I/O	I/O
AK28	GND	GND
AK29	GND	GND

ProASIC PLUS Flash Family FPGAs

Package Pin Assignments (Continued)

1152-Pin FBGA (Bottom View)

ProASIC PLUS Flash Family FPGAs

1152 FBGA Pin

$\begin{gathered} \hline \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
A2	NC
A3	GND
A4	GND
A5	GND
A6	I/O
A7	$V_{\text {DD }}$
A8	$V_{\text {DD }}$
A9	$V_{\text {DD }}$
A10	V_{DD}
A11	I/O
A12	GND
A13	I/O
A14	$\mathrm{V}_{\text {DDP }}$
A15	$\mathrm{V}_{\text {DDP }}$
A16	I/O
A17	GND
A18	GND
A19	I/O
A20	$\mathrm{V}_{\text {DDP }}$
A21	$\mathrm{V}_{\text {DDP }}$
A22	I/O
A23	GND
A24	I/O
A25	$V_{\text {DD }}$
A26	$V_{\text {DD }}$
A27	$V_{\text {DD }}$
A28	$V_{\text {DD }}$
A29	I/O
A30	GND
A31	GND
A32	GND
A33	NC
B1	NC
B2	NC
B3	GND
B4	GND
B5	GND
B6	NC
B7	I/O
B8	NC
B9	I/O
B10	NC
B11	I/O
B12	GND
B13	I/O

1152 FBGA Pin

$\begin{gathered} \hline \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
B14	$\mathrm{V}_{\text {DDP }}$
B15	$V_{\text {DDP }}$
B16	I/O
B17	GND
B18	GND
B19	I/O
B20	$V_{\text {DDP }}$
B21	$V_{\text {DDP }}$
B22	I/O
B23	GND
B24	I/O
B25	NC
B26	I/O
B27	NC
B28	I/O
B29	NC
B30	GND
B31	GND
B32	GND
B33	NC
B34	NC
C1	GND
C2	GND
C3	NC
C4	GND
C5	GND
C6	I/O
C7	GND
C8	I/O
C9	GND
C10	I/O
C11	I/O
C12	I/O
C13	I/O
C14	I/O
C15	I/O
C16	I/O
C17	I/O
C18	I/O
C19	I/O
C20	I/O
C21	I/O
C22	I/O
C23	I/O
C24	I/O

1152 FBGA Pin

Pin Number	APA1000 Function
C25	I/O
C26	GND
C27	I/O
C28	GND
C29	I/O
C30	GND
C31	GND
C32	NC
C33	GND
C34	GND
D1	GND
D2	GND
D3	GND
D4	GND
D5	I/O
D6	$V_{\text {DD }}$
D7	I/O
D8	V_{DD}
D9	I/O
D10	I/O
D11	I/O
D12	I/O
D13	I/O
D14	I/O
D15	I/O
D16	I/O
D17	I/O
D18	I/O
D19	I/O
D20	I/O
D21	I/O
D22	I/O
D23	I/O
D24	I/O
D25	I/O
D26	I/O
D27	V_{DD}
D28	I/O
D29	$V_{\text {DD }}$
D30	I/O
D31	GND
D32	GND
D33	GND
D34	GND
E1	GND

1152 FBGA Pin

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
E2	GND
E3	GND
E4	I/O
E5	$V_{D D}$
E6	I/O
E7	$\mathrm{V}_{\text {DDP }}$
E8	I/O
E9	I/O
E10	I/O
E11	I/O
E12	I/O
E13	I/O
E14	I/O
E15	I/O
E16	I/O
E17	I/O
E18	I/O
E19	I/O
E20	I/O
E21	I/O
E22	I/O
E23	I/O
E24	I/O
E25	I/O
E26	I/O
E27	I/O
E28	$V_{\text {DDP }}$
E29	I/O
E30	V_{DD}
E31	I/O
E32	GND
E33	GND
E34	GND
F1	I/O
F2	NC
F3	I/O
F4	V_{DD}
F5	I/O
F6	GND
F7	I/O
F8	I/O
F9	I/O
F10	I/O
F11	I/O
F12	I/O

1152 FBGA Pin

Pin Number	APA1000 Function
F13	I/O
F14	I/O
F15	I/O
F16	I/O
F17	I/O
F18	I/O
F19	I/O
F20	I/O
F21	I/O
F22	I/O
F23	I/O
F24	I/O
F25	I/O
F26	I/O
F27	I/O
F28	I/O
F29	GND
F30	I/O
F31	V_{DD}
F32	I/O
F33	NC
F34	NC
G1	$V_{\text {DD }}$
G2	I/O
G3	GND
G4	I/O
G5	$\mathrm{V}_{\text {DDP }}$
G6	I/O
G7	$V_{\text {DD }}$
G8	I/O
G9	$\mathrm{V}_{\text {DDP }}$
G10	I/O
G11	I/O
G12	I/O
G13	I/O
G14	I/O
G15	I/O
G16	I/O
G17	I/O
G18	I/O
G19	I/O
G20	I/O
G21	I/O
G22	I/O
G23	I/O

1152 FBGA Pin

Pin Number	APA1000 Function
G24	I/O
G25	I/O
G26	$\mathrm{V}_{\text {DDP }}$
G27	I/O
G28	V_{DD}
G29	I/O
G30	$\mathrm{V}_{\text {DDP }}$
G31	I/O
G32	GND
G33	I/O
G34	$V_{\text {DD }}$
H1	$V_{D D}$
H2	NC
H3	I/O
H4	V_{DD}
H5	I/O
H6	I/O
H7	I/O
H8	GND
H9	I/O
H10	I/O
H11	I/O
H12	I/O
H13	I/O
H14	I/O
H15	I/O
H16	I/O
H17	I/O
H18	I/O
H19	I/O
H20	I/O
H21	I/O
H22	I/O
H23	I/O
H24	I/O
H25	I/O
H26	I/O
H27	GND
H28	I/O
H29	I/O
H30	I/O
H31	V_{DD}
H32	I/O
H33	NC
H34	$V_{\text {DD }}$

1152 FBGA Pin

Pin Number	APA1000 Function
J1	V_{DD}
J2	I/O
J3	GND
J4	I/O
J5	I/O
J6	I/O
J7	$\mathrm{V}_{\text {DDP }}$
J8	I/O
J9	V_{DD}
J10	I/O
J11	$\mathrm{V}_{\text {DDP }}$
J12	I/O
J13	I/O
J14	I/O
J15	I/O
J16	I/O
J17	I/O
J18	I/O
J19	I/O
J20	I/O
J21	I/O
J22	I/O
J23	I/O
J24	$\mathrm{V}_{\text {DDP }}$
J25	I/O
J26	$V_{\text {DD }}$
J27	I/O
J28	$\mathrm{V}_{\text {DDP }}$
J29	I/O
J30	I/O
J31	I/O
J32	GND
J33	I/O
J34	$V_{\text {DD }}$
K1	$V_{\text {DD }}$
K2	NC
K3	I/O
K4	I/O
K5	I/O
K6	I/O
K7	I/O
K8	I/O
K9	I/O
K10	GND
K11	I/O

1152 FBGA Pin

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
K12	I/O
K13	1/0
K14	I/O
K15	I/O
K16	I/O
K17	1/0
K18	1/0
K19	I/O
K20	1/0
K21	1/0
K22	I/O
K23	1/0
K24	1/0
K25	GND
K26	I/O
K27	1/0
K28	1/0
K29	1/0
K30	1/0
K31	1/0
K32	I/O
K33	NC
K34	V_{DD}
L1	I/O
L2	I/O
L3	1/0
L4	1/0
L5	1/0
L6	I/O
L7	1/0
L8	I/O
L9	$V_{\text {DDP }}$
L10	I/O
L11	V_{DD}
L12	I/O
L13	I/O
L14	I/O
L15	1/0
L16	I/O
L17	I/O
L18	I/O
L19	1/0
L20	I/O
L21	I/O
L22	I/O

ProASIC PLUS Flash Family FPGAs

1152 FBGA Pin

Pin Number	APA1000 Function
L23	I/O
L24	V_{DD}
L25	I/O
L26	$\mathrm{V}_{\text {DDP }}$
L27	I/O
L28	I/O
L29	I/O
L30	I/O
L31	I/O
L32	I/O
L33	I/O
L34	I/O
M1	GND
M2	GND
M3	I/O
M4	I/O
M5	I/O
M6	I/O
M7	I/O
M8	I/O
M9	I/O
M10	I/O
M11	I/O
M12	V_{DD}
M13	I/O
M14	$\mathrm{V}_{\text {DDP }}$
M15	$V_{\text {DDP }}$
M16	$V_{\text {DDP }}$
M17	$V_{\text {DDP }}$
M18	$V_{\text {DDP }}$
M19	$V_{\text {DDP }}$
M20	$\mathrm{V}_{\text {DDP }}$
M21	$V_{\text {DDP }}$
M22	I/O
M23	V_{DD}
M24	I/O
M25	I/O
M26	I/O
M27	I/O
M28	I/O
M29	I/O
M30	I/O
M31	I/O
M32	I/O
M33	GND

1152 FBGA Pin

Pin Number	APA1000 Function
M34	GND
N1	I/O
N2	I/O
N3	I/O
N4	I/O
N5	I/O
N6	I/O
N7	I/O
N8	I/O
N9	I/O
N10	I/O
N11	I/O
N12	I/O
N13	$V_{\text {DD }}$
N14	$V_{\text {DD }}$
N15	$V_{\text {DD }}$
N16	$V_{\text {DD }}$
N17	$V_{D D}$
N18	$V_{\text {DD }}$
N19	$V_{\text {DD }}$
N20	$V_{\text {DD }}$
N21	$V_{\text {DD }}$
N22	$V_{D D}$
N23	I/O
N24	I/O
N25	I/O
N26	I/O
N27	I/O
N28	I/O
N29	I/O
N30	I/O
N31	I/O
N32	I/O
N33	I/O
N34	I/O
P1	$V_{\text {DDP }}$
P2	$V_{\text {DDP }}$
P3	I/O
P4	I/O
P5	I/O
P6	I/O
P7	I/O
P8	I/O
P9	I/O
P10	I/O

1152 FBGA Pin

Pin Number	APA1000 Function
P11	I/O
P12	$V_{\text {DDP }}$
P13	$V_{\text {DD }}$
P14	GND
P15	GND
P16	GND
P17	GND
P18	GND
P19	GND
P20	GND
P21	GND
P22	$V_{D D}$
P23	$V_{\text {DDP }}$
P24	I/O
P25	I/O
P26	I/O
P27	I/O
P28	I/O
P29	I/O
P30	I/O
P31	I/O
P32	I/O
P33	$\mathrm{V}_{\text {DDP }}$
P34	$V_{\text {DDP }}$
R1	$\mathrm{V}_{\text {DDP }}$
R2	$V_{\text {DDP }}$
R3	I/O
R4	I/O
R5	I/O
R6	I/O
R7	I/O
R8	I/O
R9	I/O
R10	I/O
R11	I/O
R12	$V_{\text {DDP }}$
R13	$V_{\text {DD }}$
R14	GND
R15	GND
R16	GND
R17	GND
R18	GND
R19	GND
R20	GND
R21	GND

1152 FBGA Pin

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
R22	$V_{\text {DD }}$
R23	$\mathrm{V}_{\text {DDP }}$
R24	I/O
R25	I/O
R26	I/O
R27	I/O
R28	I/O
R29	I/O
R30	1/0
R31	I/O
R32	1/0
R33	$V_{\text {DDP }}$
R34	$V_{\text {DDP }}$
T1	I/O
T2	I/O
T3	1/0
T4	1/0
T5	I/O
T6	I/O
T7	I/O
T8	I/O
T9	I/O
T10	I/O
T11	I/O
T12	$V_{\text {DDP }}$
T13	V_{DD}
T14	GND
T15	GND
T16	GND
T17	GND
T18	GND
T19	GND
T20	GND
T21	GND
T22	$V_{\text {DD }}$
T23	$V_{\text {DDP }}$
T24	I/O
T25	1/0
T26	I/O
T27	I/O
T28	I/O
T29	I/O
T30	1/0
T31	I/O
T32	I/O

1152 FBGA Pin

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
T33	I/O
T34	I/O
U1	GND
U2	GND
U3	I/O
U4	$\begin{gathered} \mathrm{I} / \mathrm{O} \\ (\mathrm{GLMX1}) \end{gathered}$
U5	AGND
U6	NPECL1
U7	GL1
U8	I/O
U9	I/O
U10	I/O
U11	I/O
U12	$V_{\text {DDP }}$
U13	$V_{\text {DD }}$
U14	GND
U15	GND
U16	GND
U17	GND
U18	GND
U19	GND
U20	GND
U21	GND
U22	$V_{\text {DD }}$
U23	$V_{\text {DDP }}$
U24	I/O
U25	I/O
U26	I/O
U27	I/O
U28	I/O
U29	NPECL2
U30	AGND
U31	$\begin{gathered} \text { I/O } \\ \text { (GLMX2) } \end{gathered}$
U32	I/O
U33	GND
U34	GND
V1	GND
V2	GND
V3	I/O
V4	AVDD
V5	GL2
V6	$\begin{gathered} \text { PPECL1 } \\ (1 / P) \end{gathered}$

1152 FBGA Pin

Pin Number	APA1000 Function
V7	I/O
V8	I/O
V9	I/O
V10	I/O
V11	I/O
V12	$\mathrm{V}_{\text {DDP }}$
V13	$V_{\text {DD }}$
V14	GND
V15	GND
V16	GND
V17	GND
V18	GND
V19	GND
V20	GND
V21	GND
V22	$V_{\text {DD }}$
V23	$V_{\text {DDP }}$
V24	I/O
V25	I/O
V26	I/O
V27	I/O
V28	$\begin{gathered} \text { PPECL2 } \\ (I / P) \end{gathered}$
V29	GL4
V30	GL3
V31	AVDD
V32	I/O
V33	GND
V34	GND
W1	I/O
W2	I/O
W3	I/O
W4	I/O
W5	I/O
W6	I/O
W7	I/O
W8	I/O
W9	I/O
W10	I/O
W11	I/O
W12	$\mathrm{V}_{\text {DDP }}$
W13	$V_{\text {DD }}$
W14	GND
W15	GND
W16	GND

1152 FBGA Pin

Pin Number	APA1000 Function
W17	GND
W18	GND
W19	GND
W20	GND
W21	GND
W22	$V_{D D}$
W23	$\mathrm{V}_{\text {DDP }}$
W24	I/O
W25	I/O
W26	I/O
W27	I/O
W28	I/O
W29	I/O
W30	I/O
W31	I/O
W32	I/O
W33	I/O
W34	I/O
Y1	$\mathrm{V}_{\text {DDP }}$
Y2	$V_{\text {DDP }}$
Y3	I/O
Y4	I/O
Y5	I/O
Y6	I/O
Y7	I/O
Y8	I/O
Y9	I/O
Y10	I/O
Y11	I/O
Y12	$V_{\text {DDP }}$
Y13	$V_{D D}$
Y14	GND
Y15	GND
Y16	GND
Y17	GND
Y18	GND
Y19	GND
Y20	GND
Y21	GND
Y22	$V_{D D}$
Y23	$V_{\text {DDP }}$
Y24	I/O
Y25	I/O
Y26	I/O
Y27	I/O

1152 FBGA Pin

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
Y28	I/O
Y29	I/O
Y30	I/O
Y31	I/O
Y32	I/O
Y33	$\mathrm{V}_{\text {DDP }}$
Y34	$\mathrm{V}_{\text {DDP }}$
AA1	$V_{\text {DDP }}$
AA2	$V_{\text {DDP }}$
AA3	I/O
AA4	I/O
AA5	I/O
AA6	I/O
AA7	I/O
AA8	I/O
AA9	I/O
AA10	I/O
AA11	I/O
AA12	$V_{\text {DDP }}$
AA13	V_{DD}
AA14	GND
AA15	GND
AA16	GND
AA17	GND
AA18	GND
AA19	GND
AA20	GND
AA21	GND
AA22	V_{DD}
AA23	$V_{\text {DDP }}$
AA24	I/O
AA25	I/O
AA26	I/O
AA27	I/O
AA28	I/O
AA29	I/O
AA30	I/O
AA31	I/O
AA32	I/O
AA33	$V_{\text {DDP }}$
AA34	$\mathrm{V}_{\text {DDP }}$
AB1	I/O
AB2	I/O
AB3	I/O
AB4	I/O

1152 FBGA Pin

$\begin{gathered} \hline \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
AB5	I/O
AB6	I/O
AB7	I/O
AB8	I/O
AB9	I/O
AB10	I/O
AB11	I/O
AB12	I/O
AB13	$V_{\text {DD }}$
AB14	$V_{\text {DD }}$
AB15	$V_{\text {DD }}$
AB16	$V_{\text {DD }}$
AB17	$V_{\text {DD }}$
AB18	$V_{\text {DD }}$
AB19	$V_{\text {DD }}$
AB20	$V_{\text {DD }}$
AB21	$V_{\text {DD }}$
AB22	V_{DD}
AB23	I/O
AB24	I/O
AB25	I/O
AB26	I/O
AB27	I/O
AB28	I/O
AB29	I/O
AB30	I/O
AB31	I/O
AB32	I/O
AB33	I/O
AB34	I/O
AC1	GND
AC2	GND
AC3	I/O
AC4	I/O
AC5	I/O
AC6	I/O
AC7	I/O
AC8	I/O
AC9	I/O
AC10	I/O
AC11	I/O
AC12	V_{DD}
AC13	I/O
AC14	$\mathrm{V}_{\text {DDP }}$
AC15	$\mathrm{V}_{\text {DDP }}$

1152 FBGA Pin

Pin Number	APA1000 Function
AC16	$\mathrm{V}_{\text {DDP }}$
AC17	$V_{\text {DDP }}$
AC18	$V_{\text {DDP }}$
AC19	$V_{\text {DDP }}$
AC20	$V_{\text {DDP }}$
AC21	$\mathrm{V}_{\text {DDP }}$
AC22	I/O
AC23	$V_{D D}$
AC24	I/O
AC25	I/O
AC26	I/O
AC27	I/O
AC28	I/O
AC29	I/O
AC30	I/O
AC31	I/O
AC32	I/O
AC33	GND
AC34	GND
AD1	I/O
AD2	I/O
AD3	I/O
AD4	I/O
AD5	I/O
AD6	I/O
AD7	I/O
AD8	I/O
AD9	$\mathrm{V}_{\text {DDP }}$
AD10	I/O
AD11	V_{DD}
AD12	I/O
AD13	I/O
AD14	I/O
AD15	I/O
AD16	I/O
AD17	I/O
AD18	I/O
AD19	I/O
AD20	I/O
AD21	I/O
AD22	I/O
AD23	I/O
AD24	V_{DD}
AD25	I/O
AD26	$\mathrm{V}_{\text {DDP }}$

1152 FBGA Pin

Pin Number	APA1000 Function
AD27	I/O
AD28	I/O
AD29	I/O
AD30	I/O
AD31	I/O
AD32	I/O
AD33	I/O
AD34	I/O
AE1	$V_{\text {DD }}$
AE2	NC
AE3	I/O
AE4	I/O
AE5	I/O
AE6	I/O
AE7	I/O
AE8	I/O
AE9	I/O
AE10	GND
AE11	I/O
AE12	I/O
AE13	I/O
AE14	I/O
AE15	I/O
AE16	I/O
AE17	I/O
AE18	I/O
AE19	I/O
AE20	I/O
AE21	I/O
AE22	I/O
AE23	I/O
AE24	I/O
AE25	GND
AE26	I/O
AE27	I/O
AE28	I/O
AE29	I/O
AE30	I/O
AE31	I/O
AE32	I/O
AE33	NC
AE34	$V_{\text {DD }}$
AF1	V_{DD}
AF2	I/O
AF3	GND

1152 FBGA Pin

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
AF4	I/O
AF5	I/O
AF6	I/O
AF7	$V_{\text {DDP }}$
AF8	I/O
AF9	$V_{D D}$
AF10	I/O
AF11	$V_{\text {DDP }}$
AF12	I/O
AF13	I/O
AF14	I/O
AF15	I/O
AF16	I/O
AF17	I/O
AF18	I/O
AF19	I/O
AF20	1/0
AF21	I/O
AF22	I/O
AF23	I/O
AF24	$\mathrm{V}_{\text {DDP }}$
AF25	TCK
AF26	$V_{\text {DD }}$
AF27	TRST
AF28	$V_{\text {DDP }}$
AF29	I/O
AF30	1/0
AF31	I/O
AF32	GND
AF33	I/O
AF34	$V_{D D}$
AG1	$V_{D D}$
AG2	NC
AG3	I/O
AG4	$V_{D D}$
AG5	I/O
AG6	1/0
AG7	I/O
AG8	GND
AG9	I/O
AG10	I/O
AG11	I/O
AG12	I/O
AG13	I/O
AG14	I/O

1152 FBGA Pin

$\begin{gathered} \hline \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
AG15	I/O
AG16	I/O
AG17	I/O
AG18	I/O
AG19	I/O
AG20	I/O
AG21	I/O
AG22	I/O
AG23	I/O
AG24	I/O
AG25	I/O
AG26	I/O
AG27	GND
AG28	I/O
AG29	I/O
AG30	I/O
AG31	$V_{\text {DD }}$
AG32	I/O
AG33	NC
AG34	$V_{\text {DD }}$
AH1	$V_{\text {DD }}$
AH2	I/O
AH3	GND
AH4	I/O
AH5	$\mathrm{V}_{\text {DDP }}$
AH6	I/O
AH7	V_{DD}
AH8	I/O
AH9	$\mathrm{V}_{\text {DDP }}$
AH10	I/O
AH11	I/O
AH12	I/O
AH13	I/O
AH14	I/O
AH15	I/O
AH16	I/O
AH17	I/O
AH18	I/O
AH19	I/O
AH20	I/O
AH21	I/O
AH22	I/O
AH23	I/O
AH24	I/O
AH25	I/O

1152 FBGA Pin

Pin Number	APA1000 Function
AH26	$\mathrm{V}_{\text {DDP }}$
AH27	I/O
AH28	$V_{D D}$
AH29	TDO
AH30	$V_{\text {DDP }}$
AH31	$V_{P N}$
AH32	GND
AH33	I/O
AH34	$V_{\text {DD }}$
AJ1	I/O
AJ2	NC
AJ3	I/O
AJ4	V_{DD}
AJ5	I/O
AJ6	GND
AJ7	I/O
AJ8	I/O
AJ9	I/O
AJ10	I/O
AJ11	I/O
AJ12	I/O
AJ13	I/O
AJ14	I/O
AJ15	I/O
AJ16	I/O
AJ17	I/O
AJ18	I/O
AJ19	I/O
AJ20	I/O
AJ21	1/O
AJ22	I/O
AJ23	I/O
AJ24	I/O
AJ25	I/O
AJ26	I/O
AJ27	I/O
AJ28	I/O
AJ29	GND
AJ30	RCK
AJ31	V_{DD}
AJ32	I/O
AJ33	NC
AJ34	NC
AK1	GND
AK2	GND

1152 FBGA Pin

Pin Number	APA1000 Function
AK3	GND
AK4	I/O
AK5	$V_{D D}$
AK6	I/O
AK7	$\mathrm{V}_{\text {DDP }}$
AK8	I/O
AK9	I/O
AK10	I/O
AK11	I/O
AK12	I/O
AK13	I/O
AK14	I/O
AK15	I/O
AK16	I/O
AK17	I/O
AK18	I/O
AK19	I/O
AK20	I/O
AK21	I/O
AK22	I/O
AK23	I/O
AK24	I/O
AK25	I/O
AK26	I/O
AK27	I/O
AK28	$V_{\text {DDP }}$
AK29	TDI
AK30	$V_{\text {DD }}$
AK31	$V_{\text {PP }}$
AK32	GND
AK33	GND
AK34	GND
AL1	GND
AL2	GND
AL3	GND
AL4	GND
AL5	I/O
AL6	$V_{\text {DD }}$
AL7	I/O
AL8	$V_{D D}$
AL9	I/O
AL10	I/O
AL11	I/O
AL12	I/O
AL13	I/O

1152 FBGA Pin

$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	APA1000 Function
AL14	I/O
AL15	I/O
AL16	I/O
AL17	I/O
AL18	I/O
AL19	I/O
AL20	I/O
AL21	I/O
AL22	I/O
AL23	I/O
AL24	I/O
AL25	I/O
AL26	I/O
AL27	V_{DD}
AL28	I/O
AL29	V_{DD}
AL30	TMS
AL31	GND
AL32	GND
AL33	GND
AL34	GND
AM1	GND
AM2	GND
AM3	NC
AM4	GND
AM5	GND
AM6	I/O
AM7	GND
AM8	I/O
AM9	GND
AM10	I/O
AM11	I/O
AM12	I/O
AM13	I/O
AM14	I/O
AM15	I/O
AM16	I/O
AM17	I/O
AM18	I/O
AM19	I/O
AM20	I/O
AM21	I/O
AM22	I/O
AM23	I/O
AM24	I/O

1152 FBGA Pin		1152 FBGA Pin	
Pin Number	$\begin{aligned} & \hline \text { APA1000 } \\ & \text { Function } \end{aligned}$	$\begin{gathered} \text { Pin } \\ \text { Number } \end{gathered}$	$\begin{aligned} & \hline \text { APA1000 } \\ & \text { Function } \end{aligned}$
AM25	I/O	AP3	GND
AM26	GND	AP4	GND
AM27	I/O	AP5	GND
AM28	GND	AP6	I/O
AM29	I/O	AP7	$V_{D D}$
AM30	GND	AP8	$V_{D D}$
AM31	GND	AP9	$V_{D D}$
AM32	NC	AP10	$V_{\text {DD }}$
AM33	GND	AP11	I/O
AM34	GND	AP12	GND
AN1	NC	AP13	I/O
AN2	NC	AP14	$V_{\text {DDP }}$
AN3	GND	AP15	$V_{\text {DDP }}$
AN4	GND	AP16	I/O
AN5	GND	AP17	GND
AN6	NC	AP18	GND
AN7	I/O	AP19	I/O
AN8	NC	AP20	$V_{\text {DDP }}$
AN9	I/O	AP21	$V_{\text {DDP }}$
AN10	NC	AP22	I/O
AN11	1/O	AP23	GND
AN12	GND	AP24	I/O
AN13	I/O	AP25	$V_{D D}$
AN14	$V_{\text {DDP }}$	AP26	$V_{\text {DD }}$
AN15	$V_{\text {DDP }}$	AP27	$V_{D D}$
AN16	I/O	AP28	$V_{D D}$
AN17	GND	AP29	I/O
AN18	GND	AP30	GND
AN19	I/O	AP31	GND
AN20	$V_{\text {DDP }}$	AP32	GND
AN21	$V_{\text {DDP }}$	AP33	NC
AN22	1/0		
AN23	GND		
AN24	I/O		
AN25	NC		
AN26	1/0		
AN27	NC		
AN28	I/O		
AN29	NC		
AN30	GND		
AN31	GND		
AN32	GND		
AN33	NC		
AN34	NC		
AP2	NC		

2 FBGA Pin

List of Changes

The following table lists critical changes that were made in the current version of the document.

ProASICPLUS Flash Family FPGAs

Previous version	Changes in current version (Advanced v3.0)	Page
Advanced v0.7	The "Product Availability" table on page 4 was updated.	page 4
	The "Array Coordinates" section on page 10 and Table 2 are new.	page 10
	The "Power-up Sequencing" section on page 12 is new.	page 12
	Table 4 on page 11 was updated.	page 11
	The "Timing Control and Characteristics" section on page 15 was updated. Physical Implementation, Functional Description, Lock Signal, and PLL Configuration Options are new.	page 15 to page 16
	Figure 14 on page 17 was updated.	page 17
	Figure 15 on page 18 was updated.	page 18
	Sample Implementations, Adjustable Clock Delay, and the "Clock Skew Minimization" section on page 16 are new.	page 16
	Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20 are new.	page 19 to page 21
	The "PLL Electrical Specifications" table on page 22 is new.	page 22
	The "Design Environment" section on page 27 was updated.	page 27
	Figure 26 on page 27 was updated.	page 27
	The "Calculating Typical Power Dissipation" section on page 29 was updated.	page 29
	The "DC Electrical Specifications (VDDP $=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$) 1 " table on page 32 was updated.	page 32
	The "DC Electrical Specifications (VDDP $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ and $\mathrm{VDD} 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}) 1$ " table on page 33 was updated.	page 33
	The "DC Specifications (3.3V PCI Operation)1" table on page 34 was updated.	page 34
	The "Tristate Buffer Delays" section on page 36 (the figure and table) have been updated.	page 36
	The "Output Buffer Delays" section on page 37 (the figure and table) have been updated.	page 37
	The "Input Buffer Delays" table on page 38 was updated.	page 38
	The "Global Input Buffer Delays" table on page 38 was updated.	page 38
	The "Predicted Global Routing Delay*" table on page 39 was updated.	page 39
	The "Global Routing Skew" table on page 39 was updated.	page 39
	The "Sample Macrocell Library Listing*" table on page 40 was updated.	page 40
	The "Pin Description" section on page 61 was updated. GLMX is new.	page 61
	The "Recommended Design Practice for VPN/VPP" section on page 62 was updated.	page 62
	Pin AK31 of FG1152 for the APA1000 changed to $\mathrm{V}_{\text {PP }}$.	page 128
(Advanced v0.6)	The "Features and Benefits" section on page 1 were updated.	page 1
	The "ProASICPLUS Product Profile" table on page 1 was updated.	page 1
	The "Ordering Information" section on page 3 was updated.	page 3
	The "Plastic Device Resources" table on page 3 was updated.	page 3
	The "Product Plan" table on page 4 was updated.	page 4
	Table 1 on page 10 was updated.	page 10
	Figure 12 on page 15 was updated.	page 15
	The "Design Environment" section on page 23 was updated.	page 23
	The "Package Thermal Characteristics" table on page 24 was updated.	page 24
	The "Calculating Power Dissipation" section on page 25 was updated.	page 25
	The "Absolute Maximum Ratings*" table on page 26 was updated.	page 26
	The "Programming and Storage and Operating Temperature Limits" table on page 26 was updated.	page 26
	The "Supply Voltages" table on page 26 was updated.	page 26
	The "Recommended Operating Conditions" table on page 26 was updated.	page 26
	The "DC Electrical Specifications ($\left.\mathrm{V}_{\mathrm{DDP}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}\right) 1$ " table on page 27 was updated.	page 27
	The "DC Electrical Specifications ($\mathrm{V}_{\mathrm{DDP}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ and $\left.\mathrm{VDD} 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}\right) 1$ " table on page 28 was updated.	page 28
	The "Synchronous Write and Read to the Same Location" figure on page 44 was updated.	page 44
	The "Asynchronous Write and Synchronous Read to the Same Location" figure on page 45 was updated.	page 45
	The "Asynchronous FIFO Read" figure on page 50 was updated.	page 50
	The "Pin Description" section on page 57 has been updated.	page 57
	The "Recommended Design Practice for VPN/VPP" section on page 57 is new.	page 57
	The "100-Pin TQFP" figure on page 62 is new.	page 62
	The "484-Pin FBGA" figure on page 96 is new.	page 96
Advanced v0.5	The description for the V_{PN} pin has changed.	page 57

Previous version	Changes in current version (Advanced v3.0)	Page
Advanced v0.4	The "Plastic Device Resources" table on page 3 has been updated.	page 3
	Figure 12 and Figure 13 on page 15 have been updated.	page 15
	The "Tristate Buffer Delays" table on page 31 has been updated.	page 31
	The "Output Buffer Delays" table on page 32 has been updated.	page 32
	The "Input Buffer Delays" table on page 33 has been updated.	page 33
	The "Global Input Buffer Delays" table on page 34 has been updated.	page 34
	The "456-Pin PBGA" table on page 74 has been updated.	page 74
	The "676-FBGA Pin" table on page 103 has been updated.	page 103
Advanced v0.3	The "ProASIC ${ }^{\text {PLUS }}$ Product Profile" figure on page 1 has been changed.	page 1
	The "Plastic Device Resources" figure on page 3 has been updated.	page 3
	The Supply Voltages table on page 10 has been updated.	page 10
	WDATA has ben changed to DI, and RDATA has been changed to DO to make them consistent with the signal names found in the Macro Library Guide.	
	Figure 13 on page 19 and Figure 14 on page 20 have been updated.	page 19 and page 20
	The "Design Environment" figure on page 23 and Figure 18 on page 23 have been updated.	$\begin{aligned} & \text { page } 23 \\ & \text { and page } 23 \end{aligned}$
	The table in the "Package Thermal Characteristics" section on page 24 has been updated.	page 24
	The "Calculating Power Dissipation" section on page 25 is new.	page 25
	The "Programming and Storage and Operating Temperature Limits" section on page 26 is new.	page 26
	The "Supply Voltages" section on page 26 has been updated.	page 26
	The "DC Electrical Specifications ($\left.\mathrm{V}_{\mathrm{DDP}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}\right) 1$ " table on page 27 was updated.	page 27
	The "DC Electrical Specifications ($\mathrm{V}_{\mathrm{DDP}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ and $\mathrm{VDD} 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$) 1 " table on page 28 was updated.	page 28
	The "AC Specifications (3.3V PCI Revision 2.2 Operation)" table on page 30 was updated.	page 30
	The "Clock Conditioning Circuit" section on page 14 was updated.	page 14
	Figure 12 on page 15 was updated.	page 15
	Figure 13 on page 15 is new.	page 15
	Tables 5, 6, and 7 from Advanced v0.3 were removed.	
	The "Memory Block SRAM Interface Signals" figure on page 19 was updated.	page 19
	The "Memory Block FIFO Interface Signals" figure on page 48 was updated.	page 48
	All pinout tables have been updated, and several packages are new: 208-Pin PQFP - APA150, APA300, APA450, APA600 456-Pin PBGA - APA150, APA300, APA450, APA600 144-Pin FBGA - APA150, APA300, APA450 256-Pin FBGA - APA150, APA300, APA450, APA600 676-Pin FBGA - APA600	
Advanced v0.1	Figure 15 on page 21 has been updated	page 21

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production." The definition of these categories are as follows:

Product Brief

The product brief is a modified version of an advanced datasheet containing general product information. This brief summarizes specific device and family information for unreleased products.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

Actel Corporation
955 East Arques Avenue Sunnyvale, California 94086 USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Europe Ltd.
Dunlop House, Riverside Way Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276401450
Fax: +44 (0)1276 401490

Actel Japan

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668

Actel Hong Kong

39th Floor
One Pacific Place
88 Queensway Admiralty, Hong Kong
Tel: 852-22735712

[^0]: 1. This mode is available through the delay feature of the Global MUX driver.
[^1]: Note: -F speed grade devices are 20% sl ower than the standard numbers.

