- 2-V to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ Operation
- Max $t_{p d}$ of 6.5 ns at 5 V
- Typical Volp (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\mathrm{OHV}}$ (Output V_{OH} Undershoot) $>2.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Support Mixed-Mode Voltage Operation on All Ports
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

description/ordering information

These octal buffers/drivers are designed for 2-V to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The 'LV240A devices are designed specifically to improve both the performance and density of 3 -state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.
These devices are organized as two 4-bit buffers/line drivers with separate output-enable $(\overline{\mathrm{OE}})$ inputs. When $\overline{\mathrm{OE}}$ is low, the device passes data from the A inputs to the Y outputs. When $\overline{\mathrm{OE}}$ is high, the outputs are in the high-impedance state.

SN54LV240A . . J OR W PACKAGE
SN74LV240A ... DB, DGV, DW, NS, OR PW PACKAGE (TOP VIEW)

	\bigcirc	
1A1 ${ }^{2}$	19	2 O
2 Y 4 [3	18	1 Y 1
1A2	17	12 A 4
2 Y3 [5	16	1 Y 2
1 A3 [6	15	2A3
$2 \mathrm{Y} \mathrm{Cl}^{7}$	14	1 Y 3
	13	2A2
2 Y 1 [9	12	1
GND [10	11	

SN54LV240A... FK PACKAGE
(TOP VIEW)

ORDERING INFORMATION

TA	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - DW	Tube of 25	SN74LV240ADW	LV240A
		Reel of 2000	SN74LV240ADWR	
	SOP - NS	Reel of 2000	SN74LV240ANSR	74LV240A
	SSOP - DB	Reel of 2000	SN74LV240ADBR	LV240A
	TSSOP - PW	Tube of 70	SN74LV240APW	LV240A
		Reel of 2000	SN74LV240APWR	
		Reel of 250	SN74LV240APWT	
	TVSOP - DGV	Reel of 2000	SN74LV240ADGVR	LV240A
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube of 20	SNJ54LV240AJ	SNJ54LV240AJ
	CFP - W	Tube of 85	SNJ54LV240AW	SNJ54LV240AW
	LCCC - FK	Tube of 55	SNJ54LV240AFK	SNJ54LV240AFK

†Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
description/ordering information (continued)
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE (each buffer)	
INPUTS OUTPUT $\overline{\text { OE }}$ A Y L H L L L H H X Z	

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
Supply voltage range, V_{CC} -0.5 V to 7 V
Input voltage range, V_{I} (see Note 1) -0.5 V to 7 V
Voltage range applied to any output in the high-impedance
or power-off state, V_{O} (see Note 1) -0.5 V to 7 V
Output voltage range applied in the high or low state, V_{O} (see Notes 1 and 2) -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$ -20 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0\right.$ or $\left.\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right)$ $\pm 50 \mathrm{~mA}$
Continuous output current, $\mathrm{I}_{\mathrm{O}}\left(\mathrm{V}_{\mathrm{O}}=0\right.$ to $\left.\mathrm{V}_{\mathrm{CC}}\right)$ $\pm 35 \mathrm{~mA}$
Continuous current through V_{CC} or GND $\pm 70 \mathrm{~mA}$
Package thermal impedance, θ_{JA} (see Note 3): DB package $70^{\circ} \mathrm{C} / \mathrm{W}$
DGV package $92^{\circ} \mathrm{C} / \mathrm{W}$
DW package $58^{\circ} \mathrm{C} / \mathrm{W}$
NS package $60^{\circ} \mathrm{C} / \mathrm{W}$
PW package $83^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$$\dagger$ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, andfunctional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is notimplied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

INSTRUMENTS

SN54LV240A, SN74LV240A
OCTAL BUFFERS/DRIVERS
WITH 3-STATE OUTPUTS
SCLS384F - SEPTEMBER 1997 - REVISED JULY 2003
recommended operating conditions (see Note 4)

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	LOAD CAPACITANCE	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54LV240A		SN74LV240A		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tpd	A	Y	$C_{L}=15 \mathrm{pF}$		6.3*	11.6*	1*	14*	1	14	ns
ten	$\overline{\mathrm{OE}}$	Y			8.5*	14.6*	1*	47*	1	17	
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y			9.7*	14.1*	1*	-16*	1	16	
tpd	A	Y	$C_{L}=50 \mathrm{pF}$		8.2	14.4	1	17	1	17	
ten	$\overline{\mathrm{OE}}$	Y			10.3	17.8	1	21	1	21	
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y			14.2	19.2	-1	21	1	21	ns
$\mathrm{t}_{\text {sk(0) }}$						2	र			2	

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	LOAD CAPACITANCE	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54LV240A		SN74LV240A		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tpd	A	Y	$C_{L}=15 \mathrm{pF}$		4.6*	7.5*	1*	9*	1	9	ns
ten	$\overline{\mathrm{OE}}$	Y			6.2*	10.6*	1*	12.5*	1	12.5	
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y			8.3*	12.5*		13.5*	1	13.5	
tpd	A	Y	$C_{L}=50 \mathrm{pF}$		5.9	11	1	12.5	1	12.5	ns
ten	$\overline{\mathrm{OE}}$	Y			7.5	14.1	1	16	1	16	
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y			11.8	15	-1	17	1	17	
$\mathrm{t}_{\text {sk }}(0)$						1.5	Q			1.5	

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	LOAD CAPACITANCE	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54LV240A		SN74LV240A		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
tpd	A	Y	$C_{L}=15 \mathrm{pF}$		3.4*	5.5*	1*	6.5*	1	6.5	ns
ten	$\overline{\mathrm{OE}}$	Y			4.6*	7.3*	1*	8.5*	1	8.5	
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y			7.4*	12.2*	1*	13.5*	1	13.5	
tpd	A	Y	$C_{L}=50 \mathrm{pF}$		4.4	7.5	1	8.5	1	8.5	
ten	$\overline{\mathrm{OE}}$	Y			5.6	9.3	1	10.5	1	10.5	
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	Y			9.7	14.2	1	15.5	1	15.5	ns
$\mathrm{t}_{\text {sk(0) }}$						1	,			1	

[^0]noise characteristics, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 5)

PARAMETER	SN74LV240A		UNIT
		MIN	

NOTE 5: Characteristics are for surface-mount packages only.
operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	Vcc	TYP	UNIT
Power dissipation capacitance	$C_{L}=50 \mathrm{pF}, \quad \mathrm{f}=10 \mathrm{MHz}$	3.3 V	14	pF
		5 V	16.4	

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS

LOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.
E. $\quad t P L Z$ and $t P H Z$ are the same as $t_{d i s}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as ten.
G. $\mathrm{t}_{\mathrm{PHL}}$ and tPLH are the same as t_{pd} -
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

28 PINS SHOWN

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

DIM	PINS **	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com	Audio
Data Converters	dataconverter.ti.com	Automotive
DSP	dsp.ti.com	Broadband
Interface	interface.ti.com	Digital Control
Logic	logic.ti.com	Military
Power Mgmt	power.ti.com	Optical Networking
Microcontrollers	microcontroller.ti.com	Security
		Telephony
		Video \& Imaging
		Wireless

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

[^0]: * On products compliant to MIL-PRF-38535, this parameter is not production tested.

