

128K x 16 Static RAM

Features

· Low voltage range:

— CY62136V18: 1.65V-1.95V

- CY62136V: 2.7V-3.6V

· Ultra-low active, standby power

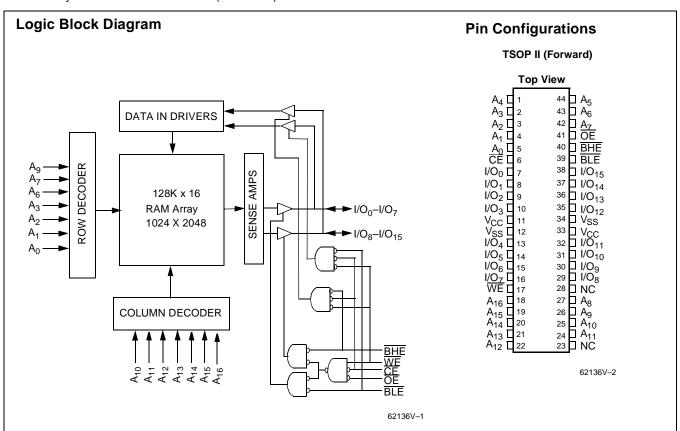
Easy memory expansion with CE and OE features

• TTL-compatible inputs and outputs

· Automatic power-down when deselected

· CMOS for optimum speed/power

Functional Description

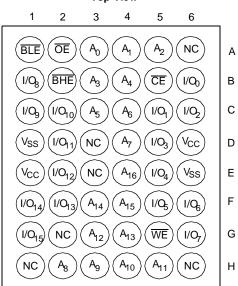

The CY62136V and CY62136V18 are high-performance CMOS static RAMs organized as 131,072 words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The in-

put/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs are disabled ($\overline{\text{OE}}$ HIGH), $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified on the address pins $(A_0$ through A_{16}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through $I/O_{15})$ is written into the location specified on the address pins $(A_0$ through $A_{16})$.

Reading from the device is accomplished by taking Chip Enable $(\overline{\text{CE}})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

The CY62136V and CY62136V18 are available in 48-ball FBGA and standard 44-pin TSOP Type II (forward pinout) packaging.



More Battery Life and MoBL are trademarks of Cypress Semiconductor Corporation.

Pin Configuration (continued)

62136V-3

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied-55°C to +125°C

Supply Voltage to Ground Potential.....-0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State ^[1]	
Output Current into Outputs (LOW)	
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62136V18	Industrial	−40°C to +85°C	1.65V to 1.95V
CY62136V	Industrial	−40°C to +85°C	2.7V to 3.6V

Product Portfolio

					Power Dissipation (Industrial)			ndustrial)
	V _{CC} Range				Opera	ting (I _{CC})	St	tandby (I _{SB2})
Product	V _{CC(min)}	V _{CC(typ)} ^[2]	V _{CC(max)}	Speed	Typ. ^[2]	Maximum	Typ . ^[2]	Maximum
CY62136V	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	1 μΑ	15 µA
CY62136V18	1.65	1.80	1.95	70 ns	3 mA	7 mA	1 μΑ	15 μΑ

Shaded areas contain preliminary information.

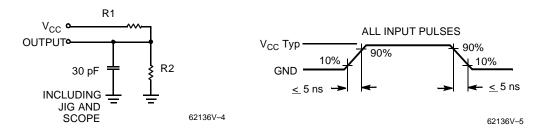
Notes

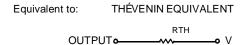
- 1. V_{II} (min) = -2.0V for pulse durations less than 20 ns.
- 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

Electrical Characteristics Over the Operating Range

						CY62136V			
Parameter	Description	Test Conditions			Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.	7V	2.4			V	
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 2.	7V			0.4	V	
V _{IH}	Input HIGH Voltage		V _{CC} = 3.	6V	2.2		V _{CC} + 0.5V	V	
V _{IL}	Input LOW Voltage		V _{CC} = 2.	7V	-0.5		0.8	V	
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	1		-1	<u>+</u> 1	+1	μA	
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Or	utput Disab	led	-1	+1	+1	μA	
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC},$ CMOS levels	V _{CC} = 3.	6V		7	15	mA	
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels				1	2	mA	
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\label{eq:control_control} \begin{split} \overline{CE} &\geq V_{CC} - 0.3V, \\ V_{IN} &\geq V_{CC} - 0.3V \text{ or } \\ V_{IN} &\leq 0.3V, \text{ f = f}_{MAX} \end{split}$					100	μА	
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs		V _{CC} = 3.6V	LL		1	15	μΑ	

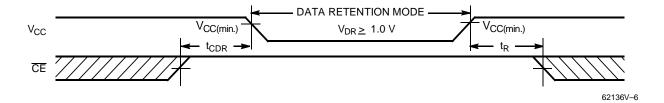
Parameter	Description	Test Condi	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 1.65V	1.5			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	V _{CC} = 1.65V			0.2	V
V _{IH}	Input HIGH Voltage		V _{CC} = 1.95V	1.4		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage		V _{CC} = 1.65V	-0.5		0.4	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$		-1	<u>+</u> 1	+1	μA
I _{OZ}	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Ou	ıtput Disabled	-1	+1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$, CMOS levels	V _{CC} = 1.95V		3	7	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\begin{tabular}{ll} \hline \hline \hline CE &\geq V_{CC}-0.3V, \\ V_{IN} &\geq V_{CC}-0.3V \ or \\ V_{IN} &\leq 0.3V, \ f = f_{MAX} \\ \hline \end{tabular}$				100	μΑ
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs		V _{CC} = LL 1.95V		1	15	μΑ


Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Note:
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms


Parameters	3.0V	1.8V	UNIT
R1	1105	15294	Ohms
R2	1550	11300	Ohms
R _{TH}	645	6500	Ohms
V _{TH}	1.75V	0.85V	Volts

Shaded areas contain preliminary information.

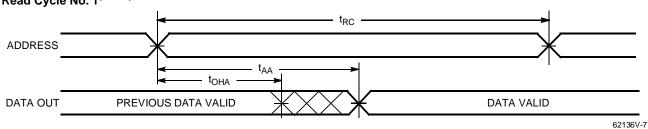
Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[5]		Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention (CY62136V18)			1.0		1.95	V
V _{DR}	V _{CC} for Data Retention (CY62136V)			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\begin{split} &\frac{V_{CC}=1.0V}{CE \geq V_{CC}-0.3V}, \\ &V_{IN} \geq V_{CC}-0.3V \text{ or } \\ &V_{IN} \leq 0.3V \\ &\text{No input may exceed} \\ &V_{CC}+0.3V \end{split}$	LL		0.1	5	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			100			μs

Data Retention Waveform

Notes:

- 4. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.
 5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

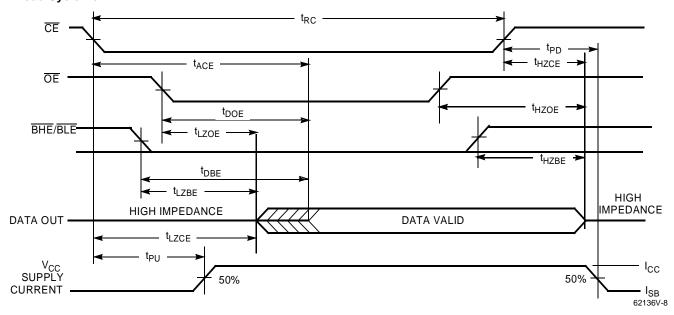


Switching Characteristics Over the Operating Range^[5]

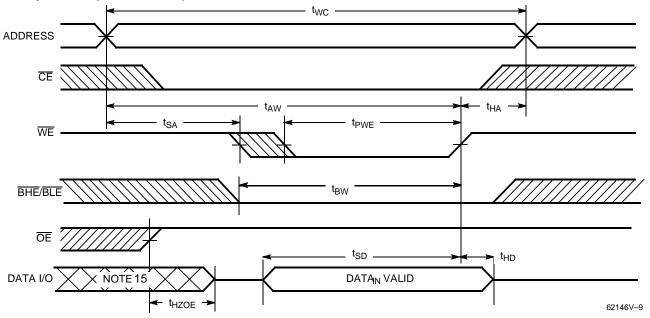
		70		
Parameter	Description	Min.	Max.	Unit
READ CYCLE		1		1
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
t _{DBE}	BLE / BHE LOW to Data Valid		35	ns
t _{LZBE}	BLE / BHE LOW to Low Z ^[6, 7]	5		ns
t _{HZBE}	BLE / BHE HIGH to High Z ^[8]		25	ns
WRITE CYCLE ^[8, 9]				
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{BW}	BLE / BHE LOW to Write End	60		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns

Switching Waveforms

Read Cycle No. 1^[10, 11]

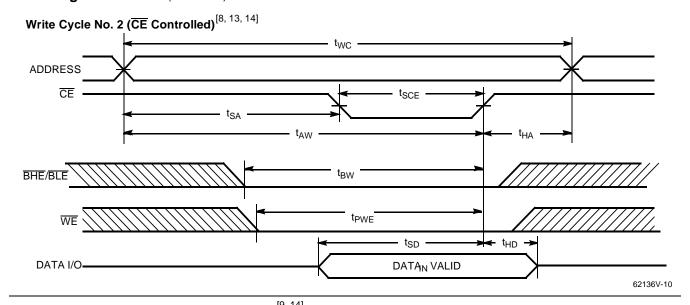

Notes:

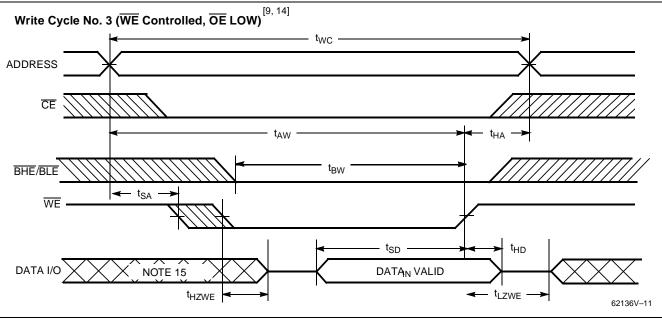
- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
 Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.



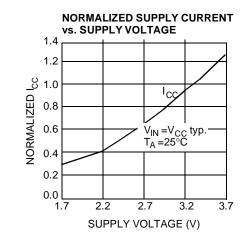
Switching Waveforms (continued)

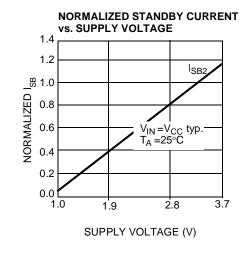
Read Cycle No. 2 [11, 12]

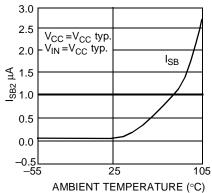


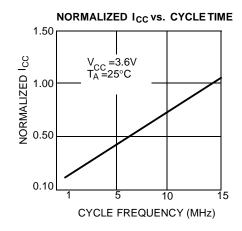

Notes:

- Address valid prior to or coincident with \(\overline{CE}\) transition LOW.
 Data I/O is high impedance if \(\overline{OE} = \bigver_{IH}\).
 If \(\overline{CE}\) goes HIGH simultaneously with \(\overline{WE}\) HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.


Switching Waveforms (continued)





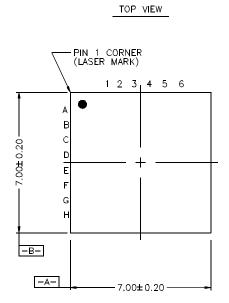

Typical DC and AC Characteristics

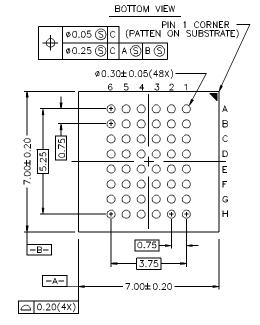
STANDBY CURRENT vs. AMBIENT TEMPERATURE

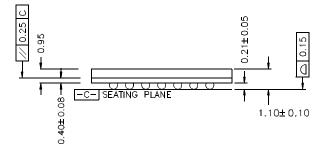
Truth Table

CE	WE	ŌΕ	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Χ	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information

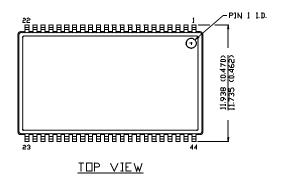

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62136VLL-70ZI	Z44	44-Pin TSOP II	Industrial
	CY62136VLL-70BAI	BA48	48-Ball Fine Pitch BGA	
	CY62136V18LL-70BAI	BA48	48-Ball Fine Pitch BGA	

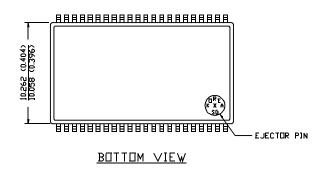

Shaded areas contain preliminary information.

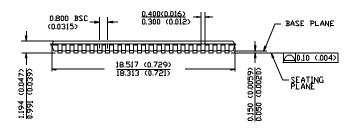

Document #: 38-00728-*B

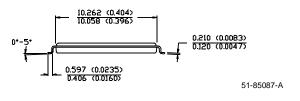
Package Diagrams

48-Ball (7.00 mm x 7.00 mm) FBGA BA48


51-85096-A




Package Diagrams (continued)


44-Pin TSOP II Z44

DIMENSION IN MM (INCH)
MAX
MIN.

