High Precision Hall-Effect Switch

Data Sheet Version 1.0
2003-11-20

Features

- 2.7 V to 24 V supply voltage operation
- Operation from unregulated power supply
- High sensitivity and high stability of the magnetic switching points
- High resistance to mechanical stress by active error compensation
- Reverse battery protection (-18V)
- Superior temperature stability
- Peak temperatures up to $195^{\circ} \mathrm{C}$ without damage
- Low jitter (typ. $1 \mu \mathrm{~s}$)
- Digital output signal
- Bipolar version
- Excellent matching between the 2 Hall probes

- Hall plate distance 1.45 mm
- Direction \& speed information
- Direction signal switches 1μ s before the speed signal
- SMD package P-TSOP-6-6-3

Type	Ordering Code	Package
TLE4966H	Q62705-K693	P-TSOP-6-6-3

Functional Description

The TLE4966H is an integrated circuit double Hall-effect sensor designed specifically for highly accurate applications. Precise magnetic switching points and high temperature stability are achieved by active compensation circuits and chopper techniques on chip. The TLE4966H provides a speed signal at Q2 for every magnetic pole pair and a direction information at Q1. The direction output switches $1 \mu \mathrm{~s}(\mathrm{~min}$.$) before the speed output.$

Circuit Description

The chopped Double Hall Switch comprises two Hall probes, bias generator, compensation circuits, oscillator, and output transistors.
The bias generator provides currents for the Hall probes and the active circuits. Compensation circuits stabilize the temperature behavior and reduce technology variations.

The Active Error Compensation rejects offsets in signal stages and the influence of mechanical stress to the Hall probes caused by molding and soldering processes and other thermal stresses in the package. This chopper technique together with the threshold generator and the comparator ensures high accurate magnetic switching points.

Figure 1: Block Diagram

Pin Configuration

Figure 2: Pin Configuration

Pin Definition and Functions P-TSOP-6-6-3 package

Pin	Symbol	Function
1	Q2	Speed
2	GND	Recommended connection to GND
3	Q1	Direction
4	Vs	Supply voltage
5	GND	Recommended connection to GND
6	GND	Ground

Absolute Maximum Ratings

$\mathrm{Tj}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	min.	max.	Unit	Conditions
Supply Voltage	V_{s}	$\begin{aligned} & \hline-18 \\ & -18 \\ & -18 \end{aligned}$	$\begin{aligned} & 18 \\ & 24 \\ & 26 \end{aligned}$	V	for $1 \mathrm{~h}, \mathrm{Rs}>=200 \mathrm{Ohm}$ for $5 \mathrm{~min}, \mathrm{Rs}>=200$ Ohm
Supply Current through protection device	Is	-50	+50	mA	
Output Voltage	V_{Q}	$\begin{aligned} & \hline-0.7 \\ & -0,7 \\ & \hline \end{aligned}$	$\begin{array}{r} 18 \\ 26 \\ \hline \end{array}$	V	for 5 min @ 1.2 kOhm pull up
Continuous Output Current	I_{0}	-50	+50	mA	
Junction Temperature	T_{j}	-	$\begin{aligned} & 155 \\ & 165 \\ & 175 \\ & 195 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$	for 2000 h (not additive) for 1000 h (not additive) for 168 h (not additive) for $3 \times 1 \mathrm{~h}$ (additive)
Storage Temperature	Ts	-40	150	${ }^{\circ} \mathrm{C}$	
Magnetic Flux Density	B	-	unlimit.	mT	

Note: Stresses above those listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD Protection

Human Body Model (HBM) tests according to:
EOS/ESD Association Standard S5.1-1993 and Mil. Std. 883D method 3015.7

Parameter	Symbol	max.	Unit	Conditions
ESD Voltage	$\mathrm{V}_{\text {ESD }}$	± 4	kV	$\mathrm{HBM}, \mathrm{R}=1.500 \mathrm{Ohm}$, $\mathrm{C}=100 \mathrm{pF} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Operating Range

Parameter	Symbol	min.	typ.	max.	Unit	Conditions
Supply Voltage	V_{S}	2.7	-	18	V	
				24		1 h with $\mathrm{R}_{\mathrm{s}}>=200 \mathrm{Ohm}$
				26		
for $5 \mathrm{~min} \mathrm{R}_{\mathrm{S}}>=200 \mathrm{hm}$						
Output Voltage	V_{Q}	-0.7	-	18	V	
Junction Temperature	T_{j}	-40	-	150	${ }^{\circ} \mathrm{C}$	
				175		
Output Current	I_{Q}	0	-	10	mA	

AC/DC Characteristics

over operating range, unless otherwise specified. Typical values correspond to $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	min.	typ.	max.	Unit	Conditions
Supply Current	$\mathrm{I}_{\text {S }}$	3	5.5	8	mA	$\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V} . .18 \mathrm{~V}$
Reverse Current	$\mathrm{I}_{\text {SR }}$	0	0.2	1	mA	$\mathrm{V}_{\mathrm{S}}=-18 \mathrm{~V}$
Output Saturation Voltage	$\mathrm{V}_{\text {QSAT }}$	-	0.3	0.6	V	$\mathrm{I}_{\mathrm{Q}}=10 \mathrm{~mA}$
Output Leakage Current	$\mathrm{IQ}_{\text {LEAK }}$	-	0.05	10	$\mu \mathrm{A}$	for $\mathrm{V}_{\mathrm{Q}}=18 \mathrm{~V}$
Output Fall Time	t_{f}	-	0.2	1	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=1.2 \mathrm{kOhm} ; \mathrm{C}_{\mathrm{L}}<50 \mathrm{pF} ;$ Figure 3
Output Rise Time	t_{r}	-	0.2	1	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=1.2 \mathrm{kOhm} ; \mathrm{C}_{\mathrm{L}}<50 \mathrm{pF} ;$ Figure 3
Chopper Frequency	$\mathrm{f}_{\text {osc }}$	-	320	-	kHz	
Switching Frequency	f_{SW}	0	-	15^{17}	kHz	
Delay Time ${ }^{\text {2 }}$	t_{d}	-	13	-	$\mu \mathrm{s}$	
Delay of Count Signal	$\mathrm{t}_{\text {d, count }}$	-	1	-	$\mu \mathrm{s}$	
Output Jitter ${ }^{3}$	$\mathrm{t}_{\text {QJ }}$	-	1	-	$\mu \mathrm{S}_{\text {RMS }}$	Typ. Value for Square-Wave Signal 1 kHz
Repeatability of magnetic thresholds ${ }^{4)}$	$\mathrm{B}_{\text {REP }}$	-	40	-	$\mu \mathrm{T}_{\text {RMS }}$	Typ. Value for $\Delta \mathrm{B} / \Delta \mathrm{t}>12 \mathrm{mT} / \mathrm{ms}$
Power-On Time ${ }^{5}$	$\mathrm{t}_{\text {PON }}$	-	13	-	$\mu \mathrm{S}$	$\mathrm{V}_{\mathrm{S}}>=2.7 \mathrm{~V}$
Distance of Hall plates	$\mathrm{d}_{\text {HALL }}$	-	1.45	-	mm	
Thermal Resistance ${ }^{6)}$ P-TSOP-6-6-3	$\mathrm{R}_{\text {thJA }}$	-	100	-	K/W	

${ }^{11}$ To operate the sensor at the max. switching frequency, the value of the magnetic signal amplitude must be 1.4 times higher than for static fields. This is due to the -3 dB corner frequency of the low pass filter in the signal path.
${ }^{2)}$ Systematic delay between magnetic threshold reached and output switching.
${ }^{3)}$ Jitter is the unpredictable deviation of the output switching delay.
${ }^{4)} \mathrm{B}_{\text {REP }}$ is equivalent to the noise constant.
${ }^{5)}$ Time from applying $\mathrm{V}_{\mathrm{S}}>=2.7 \mathrm{~V}$ to the sensor until the output state is valid.
${ }^{6)}$ Thermal resistance from junction to ambient.
e.g.: $\mathrm{V}_{\mathrm{S}}=12.0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}_{-} \text {typ }}=5.5 \mathrm{~mA}, \mathrm{~V}_{\text {QSAT typ }}=0.3 \mathrm{~V}, 2^{*} I_{\mathrm{Q}}=10 \mathrm{~mA} \Rightarrow$ Power Dissipation $P_{\text {dis }}=72.0 \mathrm{~mW}$. $\ln \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}-\left(\mathrm{R}_{\text {thJA }}{ }^{*} \mathrm{P}_{\text {dis }}\right)=175^{\circ} \mathrm{C}-(100 \mathrm{~K} / \mathrm{W} * 0.072 \mathrm{~W})=>\mathrm{T}_{\mathrm{A}}=167.8^{\circ} \mathrm{C}$

Magnetic Characteristics

over operating range, unless otherwise specified. Typical values correspond to $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$.

Parameter	Symbol	Tj [${ }^{\circ} \mathrm{C}$]	min.	typ.	max.	Unit	Conditions
Operate Point TLE4966H	$\mathrm{B}_{\text {OP }}$	$\begin{gathered} -40 \\ 25 \\ 150 \\ \hline \end{gathered}$	$\begin{aligned} & 5.2 \\ & 5.0 \\ & 4.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.7 \\ & 7.5 \\ & 7.1 \\ & \hline \end{aligned}$	$\begin{gathered} 10.3 \\ 10.0 \\ 9.5 \end{gathered}$	mT	
$\begin{aligned} & \text { Release Point } \\ & \text { TLE4966H } \end{aligned}$	B_{RP}	$\begin{gathered} -40 \\ 25 \\ 150 \\ \hline \end{gathered}$	$\begin{gathered} -10.3 \\ -10.0 \\ -9.5 \\ \hline \end{gathered}$	$\begin{array}{r} -7.7 \\ -7.5 \\ -7.1 \\ \hline \end{array}$	$\begin{aligned} & -5.2 \\ & -5.0 \\ & -4.7 \end{aligned}$	mT	
Hysteresis TLE4966H	$\mathrm{B}_{\mathrm{HYS}}$	$\begin{gathered} -40 \\ 25 \\ 150 \\ \hline \end{gathered}$	10.0	15.0	20.0	mT	
Magnetic Matching TLE4966H	$\mathrm{B}_{\text {match }}$	$\begin{gathered} -40 \\ 25 \\ 150 \\ \hline \end{gathered}$	-3.0	$\overline{-}$	3.0	mT	Valid for $\mathrm{B}_{\mathrm{OP} 1}-\mathrm{B}_{\mathrm{OP} 2}$ and $B_{R P 1}-B_{R P 2}$
Magnetic Offset TLE4966H	$\mathrm{B}_{\text {OFF }}$	$\begin{gathered} -40 \\ 25 \\ 150 \end{gathered}$	-3.0	$\overline{-}$	3.0	mT	$\left(\mathrm{B}_{\mathrm{OP}}+\mathrm{B}_{\mathrm{RP}}\right) / 2$
Temperature Compensation of Magnetic Thresholds	TC	-	-	-350	-	ppm/ ${ }^{\circ} \mathrm{C}$	

Positive magnetic fields related with south pole of magnet to the branded side of package.
Note: Typical characteristics specify mean values expected over the production spread.

TLE4966H

Timing diagrams for the speed and direction outputs

Figure 3: Timing definition of the speed signal

Figure 4: Timing Definition of the Direction Signal

TLE4966H

Figure 5: Definition of the Direction Signal

Rotation Direction	State of Direction Output $\mathrm{V}_{\mathrm{Q} 1}$
left to right	low
right to left	high

Package Dimensions

Figure 6: Package Dimension

Figure 7: Foot print

Figure 8: Distance from Package to Die

Figure 9: Marking

TLE4966H Revision History: \quad Version 1.0 Previous Version: 2003-11-20\quad Subjects (major changes since last revision)

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
feedback.sensors@infineon.com

Edition 2001-02-22

Published by Infineon Technologies AG
St.-Martin-Strasse 53
D-81541 München
© Infineon Technologies AG 2000
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of noninfringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

